Difference between revisions of "Aufgaben:Exercise 1.6: Rectangular-in-Time Low-Pass Filter"

From LNTwww
 
(8 intermediate revisions by the same user not shown)
Line 30: Line 30:
 
''Please note:''
 
''Please note:''
 
*The exercise belongs to the chapter  [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory|Some Low-Pass Functions in Systems Theory]].   
 
*The exercise belongs to the chapter  [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory|Some Low-Pass Functions in Systems Theory]].   
*Reference is made especially to the page   [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory#Slit_low-pass_filter_–_Rectangular-in-time|Slit low-pass filter]].
+
*In particular, reference is made to the page   [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory#Slit_low-pass_filter_–_Rectangular-in-time|Slit low-pass filter]].
 
   
 
   
  
Line 45: Line 45:
 
{Let the input signal&nbsp; $x(t)$&nbsp; be a rectangle symmetric about&nbsp; $t = 0$&nbsp; of duration&nbsp;$T = 2 \ \rm ms$&nbsp; and height&nbsp;$1 \, \rm V$. Let&nbsp; $τ = 0$ hold. <br>Which statements are true?
 
{Let the input signal&nbsp; $x(t)$&nbsp; be a rectangle symmetric about&nbsp; $t = 0$&nbsp; of duration&nbsp;$T = 2 \ \rm ms$&nbsp; and height&nbsp;$1 \, \rm V$. Let&nbsp; $τ = 0$ hold. <br>Which statements are true?
 
|type="[]"}
 
|type="[]"}
- $y(t)$&nbsp; is rechteckförmig.
+
- $y(t)$&nbsp; is rectangular.
+ $y(t)$&nbsp; is dreieckförmig.
+
+ $y(t)$&nbsp; is triangular.
- $y(t)$&nbsp; is trapezförmig.
+
- $y(t)$&nbsp; is trapezoidal.
+ Der Maximalwert von&nbsp; $y(t)$&nbsp; beträgt&nbsp; $ 1\hspace{0.05cm} \rm V$.
+
+ The maximum value of&nbsp; $y(t)$&nbsp; is&nbsp; $ 1\hspace{0.05cm} \rm V$.
  
  
 
{Which statements are true, if&nbsp; $x(t)$&nbsp; has a rectangle width of &nbsp;$T = 1 \ \rm ms$&nbsp;?
 
{Which statements are true, if&nbsp; $x(t)$&nbsp; has a rectangle width of &nbsp;$T = 1 \ \rm ms$&nbsp;?
 
|type="[]"}
 
|type="[]"}
- $y(t)$&nbsp; ist rectangular.
+
- $y(t)$&nbsp; is rectangular.
- $y(t)$&nbsp; ist triangular.
+
- $y(t)$&nbsp; is triangular.
+ $y(t)$&nbsp; ist trapezoidal.
+
+ $y(t)$&nbsp; is trapezoidal.
 
- The maximum value of&nbsp; $y(t)$&nbsp; is&nbsp; $1\hspace{0.05cm} \rm V$.
 
- The maximum value of&nbsp; $y(t)$&nbsp; is&nbsp; $1\hspace{0.05cm} \rm V$.
  
Line 88: Line 88:
  
  
[[File: P_ID859__LZI_A_1_6_c.png | Trapezoid pulse| rechts|frame]]  
+
[[File: P_ID859__LZI_A_1_6_c.png | right| frame|Trapezoid pulse]]  
 
'''(3)'''&nbsp; <u>Approach 3</u> is correct:
 
'''(3)'''&nbsp; <u>Approach 3</u> is correct:
 
*Convolution of two rectangles of different widths results in the trapezoidal output signal as shown in the sketch.  
 
*Convolution of two rectangles of different widths results in the trapezoidal output signal as shown in the sketch.  
Line 96: Line 96:
  
  
[[File: P_ID860__LZI_A_1_6_d.png | Akausale HP–Sprungantwort | rechts|frame]]  
+
[[File: P_ID860__LZI_A_1_6_d.png | right| frame|Non-causal HP step response]]  
'''(4)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2, 3 und 4</u>:
+
'''(4)'''&nbsp; <u>Approaches 2, 3 and 4</u> are correct:
*Die Impulsantwort des Gesamtsystems lautet: &nbsp; $h_{\rm HP}(t) = \delta(t) - h(t).$&nbsp; Beide Anteile sind in der Skizze dargestellt.  
+
*The impulse response of the total system is: &nbsp; $h_{\rm HP}(t) = \delta(t) - h(t).$&nbsp; Both parts are shown in the sketch.  
*Durch Integration über&nbsp; $h_{\rm HP}(t)$&nbsp; und Multiplikation mit&nbsp; $1 \hspace{0.05cm} \rm V$&nbsp; kommt man zum gesuchten Signal&nbsp; $z(t)$. <br>In der unteren Skizze sind  dargestellt:
+
*The searched-for signal&nbsp; $z(t)$ is obtained via integration over &nbsp; $h_{\rm HP}(t)$&nbsp; and multiplication by&nbsp; $1 \hspace{0.05cm} \rm V$&nbsp;. <br>In the below sketch are shown:
:#das Integral über &nbsp;$δ(t)$&nbsp; blau,  
+
:#the integral over &nbsp;$δ(t)$&nbsp; blue,  
:#die Funktion &nbsp;$-σ(t)$&nbsp; rot,&nbsp; und
+
:#the function &nbsp;$-σ(t)$&nbsp; red,&nbsp; and
:#das gesamte Signal &nbsp;$z(t)$&nbsp; grün.
+
:#the entire signal &nbsp;$z(t)$&nbsp; green.
*$z(t)$&nbsp; ist eine ungerade Funktion in&nbsp; $t$&nbsp; mit einer Sprungstelle bei&nbsp; $t = 0$: &nbsp; Der Signalwert bei&nbsp; $t = 0$&nbsp; liegt genau in der Mitte zwischen dem links&ndash; und dem rechteckseitigem Grenzwert und ist somit Null.  
+
*$z(t)$&nbsp; is an odd function in&nbsp; $t$&nbsp; with a jump discontinuity at&nbsp; $t = 0$: &nbsp; The signal value at&nbsp; $t = 0$&nbsp; is exactly halfway between the left&ndash; and the right-hand limit and is therefore zero.  
*Für&nbsp; $t > 1 \hspace{0.05cm} \rm ms$&nbsp; gilt ebenfalls&nbsp; $z(t) = 0$, da das Gesamtsystem eine Hochpass-Charakteristik aufweist.
+
*For&nbsp; $t > 1 \hspace{0.05cm} \rm ms$&nbsp;, &nbsp; $z(t) = 0$ holds, too, since the overall system has a high-pass characteristic.
 
<br clear=all>
 
<br clear=all>
[[File: P_ID861__LZI_A_1_6_e.png | Kausale HP–Sprungantwort | rechts|frame]]  
+
[[File: P_ID861__LZI_A_1_6_e.png | right| frame|Causal HP step response]]  
'''(5)'''&nbsp; Die untere Grafik zeigt die resultierende Impulsantwort&nbsp; $h_{\rm HP}(t)$&nbsp; und die Sprungantwort&nbsp; $σ_{\rm HP}(t)$.  
+
'''(5)'''&nbsp; The bottom graph shows the resulting impulse response&nbsp; $h_{\rm HP}(t)$&nbsp; and the step response&nbsp; $σ_{\rm HP}(t)$.  
*Diese springt bei&nbsp; $t = 0$&nbsp; auf&nbsp; $1$&nbsp; und klingt bis zum Zeitpunkt&nbsp; $t = 2 \hspace{0.05cm} \rm ms$&nbsp; auf den Endwert "Null" ab.  
+
*The latter jumps at&nbsp; $t = 0$&nbsp; to the value&nbsp; $1$&nbsp; and decays to the final value of "zero" until time&nbsp; $t = 2 \hspace{0.05cm} \rm ms$&nbsp;.  
*Zum Zeitpunkt&nbsp; $t = 1\ \rm  ms$&nbsp; ergibt sich &nbsp;$σ_{\rm HP}(t) = 0.5$.
+
*At time&nbsp; $t = 1\ \rm  ms$&nbsp;, the following is obtained: &nbsp;$σ_{\rm HP}(t) = 0.5$.
  
*Das Signal&nbsp; $z(t)$&nbsp; ist formgleich mit der Sprungantwort&nbsp; $σ_{\rm HP}(t)$, ist jedoch noch mit&nbsp; $1 \hspace{0.05cm} \rm V$&nbsp; zu multiplizieren.  
+
*The signal&nbsp; $z(t)$&nbsp; is identical in shape to the step response&nbsp; $σ_{\rm HP}(t)$ but is yet to be multiplied by&nbsp; $1 \hspace{0.05cm} \rm V$&nbsp;.  
*Der gesuchte Signalwert zur Zeit&nbsp; $t_1 = 1 \hspace{0.05cm} \rm ms$&nbsp; ergibt sich also zu&nbsp; $z(t_1) \; \rm \underline{ = \ 0.5 \: {\rm V}}$.  
+
*The searched-for signal value at time&nbsp; $t_1 = 1 \hspace{0.05cm} \rm ms$&nbsp; thus results in&nbsp; $z(t_1) \; \rm \underline{ = \ 0.5 \: {\rm V}}$.  
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Latest revision as of 14:49, 8 September 2021

Rectangular impulse response, non-causal and causal

We consider below the constellation shown in the graph:

  • The frequency response  $H(f) = H_1(f) · H_2(f)$  in the lower branch is determined by the impulse responses of its two subcomponents.
  • Here,  $h_1(t)$  is constantly equal to  $k$  in the reange from  $-1\ \rm ms$  to  $+1\ \rm ms$  and zero outside.
  • At the range limits, half the value is valid in each case.
  • The time variable drawn in the figure is thus  $Δt = 2 \ \rm ms$.


The impulse response of the second system function  $H_2(f)$  is:

$$h_2(t) = \delta(t - \tau).$$

The frequency response between the signals  $x(t)$  and  $z(t)$  is of high-pass character and generally:

$$H_{\rm HP}(f) = 1 - H_1(f) \cdot {\rm e}^{-{\rm j\hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi}f \tau}.$$
  • For the subtasks  (1)  to  (4)  the following holds:   $τ = 0$   ⇒   $H(f) = H_1(f)$.
  • However, using  $τ = 0$  this can also be formulated as follows  $(Δt = 2 \ \rm ms)$:
$$H_{\rm HP}(f) = 1 - {\rm si}( \pi \cdot {\rm \Delta}t \cdot f).$$
  • With no effect on the solution of the problem, note that this equation is not applicable for  $τ ≠ 0$  because of:
$$|H_{\rm HP}(f)|\hspace{0.09cm} \ne \hspace{0.09cm}1 - |H_1(f)| .$$





Please note:



Questions

1

Calculate the height  $k$  of the impulse response  $h_1(t)$  on the side condition of  $H_1(f = 0) = 1$.

$k \ =\ $

$\ \rm 1/s$

2

Let the input signal  $x(t)$  be a rectangle symmetric about  $t = 0$  of duration $T = 2 \ \rm ms$  and height $1 \, \rm V$. Let  $τ = 0$ hold.
Which statements are true?

$y(t)$  is rectangular.
$y(t)$  is triangular.
$y(t)$  is trapezoidal.
The maximum value of  $y(t)$  is  $ 1\hspace{0.05cm} \rm V$.

3

Which statements are true, if  $x(t)$  has a rectangle width of  $T = 1 \ \rm ms$ ?

$y(t)$  is rectangular.
$y(t)$  is triangular.
$y(t)$  is trapezoidal.
The maximum value of  $y(t)$  is  $1\hspace{0.05cm} \rm V$.

4

The following still holds:   $τ = 0$. Compute the output signal  $z(t)$, if  $x(t)$  jumps from zero to  $1\hspace{0.05cm} \rm V$  at time  $t = 0$ .
Which statements are true?

$z(t)$  is an even function of time.
$z(t)$  has a jump discontinuity at  $t = 0$ .
At time  $t = 0$ ,   $z(t) = 0$ holds.
For  $t > 1 \ \rm ms$ ,   $z(t) = 0$ is true.

5

What is the curve shape of  $z(t)$  in response to the step-shaped input signal  $x(t)$, if the runtime is  $τ =1 \hspace{0.05cm} \rm ms$ ?
What signal value occurs at $t =1 \hspace{0.05cm} \rm ms$ ?

$z(t = 1 \rm \ ms) =\ $

$\ \rm V$


Solution

(1)  The condition  $H(f = 0) = 1$  means that the area of the impulse response is equal to  $1$ .   From this it follows that:

$$k = {1}/{\Delta t} \hspace{0.15cm}\underline{= 500\hspace{0.1cm}{ 1/{\rm s}}} .$$


(2)  Approaches 2 and 4 are correct:

  • The output signal  $y(t)$  is obtained as the convolution product of  $x(t)$  and  $h(t)$.
  • Convolution of two rectangles of equal width results in a triangle with its maximum at  $t = 0$:
$$y(t = 0 ) = 1\hspace{0.05cm}{\rm V}\cdot \int_{ - 1\,{\rm ms} }^{ 1\,{\rm ms} } {k \hspace{0.1cm}}{\rm d}\tau = 1\hspace{0.05cm}{\rm V}\cdot \int_{ - 1\,{\rm ms} }^{ 1\,{\rm ms} } {\frac{1}{2\,{\rm ms}} \hspace{0.1cm}}{\rm d}\tau= 1\hspace{0.05cm}{\rm V}.$$


Trapezoid pulse

(3)  Approach 3 is correct:

  • Convolution of two rectangles of different widths results in the trapezoidal output signal as shown in the sketch.
  • The maximum value occurs in the constant range from $-0.5 \hspace{0.05cm} \rm ms$  to  $+0.5 \hspace{0.05cm} \rm ms$  and is
$$y(t = 0 ) = 1\hspace{0.05cm}{\rm V} \cdot \frac{1}{2\,{\rm ms}} \hspace{0.05cm}\cdot 1\,{\rm ms} = 0.5\hspace{0.05cm}{\rm V}.$$


Non-causal HP step response

(4)  Approaches 2, 3 and 4 are correct:

  • The impulse response of the total system is:   $h_{\rm HP}(t) = \delta(t) - h(t).$  Both parts are shown in the sketch.
  • The searched-for signal  $z(t)$ is obtained via integration over   $h_{\rm HP}(t)$  and multiplication by  $1 \hspace{0.05cm} \rm V$ .
    In the below sketch are shown:
  1. the integral over  $δ(t)$  blue,
  2. the function  $-σ(t)$  red,  and
  3. the entire signal  $z(t)$  green.
  • $z(t)$  is an odd function in  $t$  with a jump discontinuity at  $t = 0$:   The signal value at  $t = 0$  is exactly halfway between the left– and the right-hand limit and is therefore zero.
  • For  $t > 1 \hspace{0.05cm} \rm ms$ ,   $z(t) = 0$ holds, too, since the overall system has a high-pass characteristic.


Causal HP step response

(5)  The bottom graph shows the resulting impulse response  $h_{\rm HP}(t)$  and the step response  $σ_{\rm HP}(t)$.

  • The latter jumps at  $t = 0$  to the value  $1$  and decays to the final value of "zero" until time  $t = 2 \hspace{0.05cm} \rm ms$ .
  • At time  $t = 1\ \rm ms$ , the following is obtained:  $σ_{\rm HP}(t) = 0.5$.
  • The signal  $z(t)$  is identical in shape to the step response  $σ_{\rm HP}(t)$ but is yet to be multiplied by  $1 \hspace{0.05cm} \rm V$ .
  • The searched-for signal value at time  $t_1 = 1 \hspace{0.05cm} \rm ms$  thus results in  $z(t_1) \; \rm \underline{ = \ 0.5 \: {\rm V}}$.