Difference between revisions of "Aufgaben:Exercise 1.6Z: Interpretation of the Frequency Response"

From LNTwww
 
(10 intermediate revisions by the same user not shown)
Line 3: Line 3:
  
 
[[File:P_ID862__LZI_Z_1_6.png|right|frame|Impulse response and input signals]]  
 
[[File:P_ID862__LZI_Z_1_6.png|right|frame|Impulse response and input signals]]  
The task is to investigate the influence of a low-pass filter  $H(f)$  on cosinusoidal signals of the form
+
The task is meant to investigate the influence of a low-pass filter  $H(f)$  on cosinusoidal signals of the form
 
:$$x_i(t) = A_x \cdot {\rm cos}(2\pi  f_i  t ).$$  
 
:$$x_i(t) = A_x \cdot {\rm cos}(2\pi  f_i  t ).$$  
In the graph you can see the signals  $x_i(t)$, where the index $i$  indicates the frequency in $\rm kHz$ . So,  $x_2(t)$  describes a  $2 \hspace{0.09cm} \rm  kHz$–signal.
+
In the graph you can see the signals  $x_i(t)$ where the index $i$  indicates the frequency in $\rm kHz$ . So,  $x_2(t)$  describes a  $2 \hspace{0.09cm} \rm  kHz$–signal.
  
 
The signal amplitude in each case is $A_x = 1 \hspace{0.05cm} \rm  V$. The direct (DC) signal  $x_0(t)$  is to be interpreted as a limiting case of a cosine signal with frequeny  $f_0 =0$.
 
The signal amplitude in each case is $A_x = 1 \hspace{0.05cm} \rm  V$. The direct (DC) signal  $x_0(t)$  is to be interpreted as a limiting case of a cosine signal with frequeny  $f_0 =0$.
Line 26: Line 26:
  
 
''Please note:''  
 
''Please note:''  
*The exercise belongs to the chapter   [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory| Some Low-Pass Functions in Systems Theory]].  
+
*The exercise belongs to the chapter   [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory|Some Low-Pass Functions in Systems Theory]].  
*Contrary to the usual definition of the amplitude, the "$A_i$" may well be negative. This corresponds then to the function „minus-cosine”.
+
*Contrary to the usual definition of the amplitude, the "$A_i$" may well be negative. Then, this corresponds to the function "minus-cosine".
 
   
 
   
  
Line 83: Line 83:
  
 
'''(3)'''&nbsp; <u>Approaches 1 and 3</u> are correct:
 
'''(3)'''&nbsp; <u>Approaches 1 and 3</u> are correct:
*Da&nbsp; $y_i(t)$&nbsp; cosinusförmig ist, ist die Amplitude&nbsp; $A_i = y_i(t = 0)$. Das Ausgangssignal wird hier über die Faltung berechnet:
+
*The amplitude is&nbsp; $A_i = y_i(t = 0)$ since&nbsp; $y_i(t)$&nbsp; is cosine-shaped. The output signal is calculated by convolution for this purpose:
 
:$$A_i = y_i (t=0) = \int\limits_{ - \infty }^{ + \infty } {x_i ( \tau  )}  \cdot h ( {0 - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
 
:$$A_i = y_i (t=0) = \int\limits_{ - \infty }^{ + \infty } {x_i ( \tau  )}  \cdot h ( {0 - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
*Berücksichtigt man die Symmetrie und die zeitliche Begrenzung von&nbsp; $h(t)$, so kommt man zum Ergebnis:
+
*Considering the symmetry and the time limitation of&nbsp; $h(t)$ the following result is obtained:
 
:$$A_i = \frac{A_x}{\Delta t} \cdot \int\limits_{ - \Delta t /2 }^{ + \Delta t /2 } {\rm cos}(2\pi  f_i  \tau )\hspace{0.1cm}{\rm d}\tau.$$
 
:$$A_i = \frac{A_x}{\Delta t} \cdot \int\limits_{ - \Delta t /2 }^{ + \Delta t /2 } {\rm cos}(2\pi  f_i  \tau )\hspace{0.1cm}{\rm d}\tau.$$
  
  
  
'''(4)'''&nbsp; Richtig sind die <u>Lösungsvorschläge  2, 3 und 5</u>:
+
'''(4)'''&nbsp; <u>Approaches 2, 3 and 5</u> are correct:
*Beim Gleichsignal &nbsp;$x_0(t) = A_x$&nbsp; ist &nbsp;$f_i = 0$&nbsp; zu setzen und man erhält &nbsp;$A_0 = A_x \ \rm \underline{ = \ 1 \hspace{0.05cm} V}$.
+
*For the direct (DC) signal  &nbsp;$x_0(t) = A_x$&nbsp;, set &nbsp;$f_i = 0$&nbsp; and one obtains &nbsp;$A_0 = A_x \ \rm \underline{ = \ 1 \hspace{0.05cm} V}$.
*Dagegen verschwindet bei den Cosinusfrequenzen &nbsp;$f_2 = 2 \ \rm kHz$&nbsp; und &nbsp;$f_4 = 4 \ \rm kHz$&nbsp; jeweils das Integral, da dann genau über eine bzw. zwei Periodendauern zu integrieren ist: &nbsp; $A_2 \ \rm \underline{ = \hspace{0.05cm} 0}$&nbsp; und&nbsp; $A_4 \hspace{0.05cm} \rm \underline{ = \ 0}$.
+
*In contrast to this, for the cosine frequencies &nbsp;$f_2 = 2 \ \rm kHz$&nbsp; and &nbsp;$f_4 = 4 \ \rm kHz$&nbsp; the integral vanishes in each case because then it is integrated over one and two periods, respectively: &nbsp; $A_2 \ \rm \underline{ = \hspace{0.05cm} 0}$&nbsp; und&nbsp; $A_4 \hspace{0.05cm} \rm \underline{ = \ 0}$.
*Im Frequenzbereich entsprechen die hier behandelten Fälle:
+
*In the frequency domain, the cases which are dealt with here correspond to:
 
:$$H(f=0) = 1, \hspace{0.3cm}H(f=\Delta f) = 0, \hspace{0.3cm}H(f=2\Delta f) = 0.$$
 
:$$H(f=0) = 1, \hspace{0.3cm}H(f=\Delta f) = 0, \hspace{0.3cm}H(f=2\Delta f) = 0.$$
  
  
  
'''(5)'''&nbsp; Das Ergebnis der Teilaufgabe&nbsp; '''(3)'''&nbsp; lautet unter Berücksichtigung der Symmetrie für&nbsp; $f_i = f_1$:
+
'''(5)'''&nbsp; The result of subtask&nbsp; '''(3)'''&nbsp; – considering the symmetry – is for&nbsp; $f_i = f_1$:
 
:$$A_1= \frac{2A_x}{\Delta t} \cdot \int\limits_{ 0 }^{  \Delta t /2 } {\rm cos}(2\pi  f_1  \tau )\hspace{0.1cm}{\rm
 
:$$A_1= \frac{2A_x}{\Delta t} \cdot \int\limits_{ 0 }^{  \Delta t /2 } {\rm cos}(2\pi  f_1  \tau )\hspace{0.1cm}{\rm
 
  d}\tau =  \frac{2A_x}{2\pi  f_1 \cdot \Delta t} \cdot {\rm sin}(2\pi  f_1  \frac{\Delta t}{2}
 
  d}\tau =  \frac{2A_x}{2\pi  f_1 \cdot \Delta t} \cdot {\rm sin}(2\pi  f_1  \frac{\Delta t}{2}
 
  )= A_x \cdot {\rm si}(\pi  f_1  \Delta t ).$$
 
  )= A_x \cdot {\rm si}(\pi  f_1  \Delta t ).$$
*Mit&nbsp; $f_1 · Δt = 0.5$&nbsp; lautet somit das Ergebnis:
+
*Taking &nbsp; $f_1 · Δt = 0.5$&nbsp;into account the result is:
 
:$$A_1 = A_x \cdot {\rm si}(\frac{\pi}{2} ) = \frac{2A_x}{\pi} \hspace{0.15cm}\underline{= 0.637\,{\rm V}}.$$
 
:$$A_1 = A_x \cdot {\rm si}(\frac{\pi}{2} ) = \frac{2A_x}{\pi} \hspace{0.15cm}\underline{= 0.637\,{\rm V}}.$$
*Entsprechend erhält man mit&nbsp; $f_3 · Δt = 1.5$:
+
*Correspondingly, the following is obtained using&nbsp; $f_3 · Δt = 1.5$:
 
:$$A_3 = A_x \cdot {\rm si}({3\pi}/{2} ) = -\frac{2A_x}{3\pi} = -{A_1}/{3}\hspace{0.15cm}\underline{= -0.212\,{\rm V}}.$$
 
:$$A_3 = A_x \cdot {\rm si}({3\pi}/{2} ) = -\frac{2A_x}{3\pi} = -{A_1}/{3}\hspace{0.15cm}\underline{= -0.212\,{\rm V}}.$$
*Genau zu den gleichen Ergebnissen aber deutlich schneller kommt man durch die Anwendung der Gleichung:
+
*The exact same results are obtained but much faster by applying the equation:
 
:$$A_i = A_x · H(f = f_i).$$
 
:$$A_i = A_x · H(f = f_i).$$
  
*Bereits aus den Grafiken auf der Angabenseite erkennt man, dass das Integral über&nbsp; $x_1(t)$&nbsp; im markierten Bereich positiv und das Integral über&nbsp; $x_3(t)$&nbsp; negativ ist.  
+
*From the graphs on the information page it is already obvious that the integral over&nbsp; $x_1(t)$&nbsp; is positive in the marked area and the integral over&nbsp; $x_3(t)$&nbsp; is negative.  
*Es ist allerdings anzumerken, dass man im Allgemeinen als Amplitude meist den Betrag bezeichnet (siehe Hinweis auf der Angabenseite).
+
*However, it should be noted that in general amplitude is usually referred to as the magnitude (See notice on the information page).
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Latest revision as of 19:33, 7 September 2021

Impulse response and input signals

The task is meant to investigate the influence of a low-pass filter  $H(f)$  on cosinusoidal signals of the form

$$x_i(t) = A_x \cdot {\rm cos}(2\pi f_i t ).$$

In the graph you can see the signals  $x_i(t)$ where the index $i$  indicates the frequency in $\rm kHz$ . So,  $x_2(t)$  describes a  $2 \hspace{0.09cm} \rm kHz$–signal.

The signal amplitude in each case is $A_x = 1 \hspace{0.05cm} \rm V$. The direct (DC) signal  $x_0(t)$  is to be interpreted as a limiting case of a cosine signal with frequeny  $f_0 =0$.

The upper sketch shows the rectangular impulse response  $h(t)$  of the low-pass filter. Its frequency response is:

$$H(f) = {\rm si}(\pi {f}/{ {\rm \Delta}f}) .$$

Due to linearity and the fact that $H(f)$  is real and even the output signals are also cosine-shaped:

$$y_i(t) = A_i \cdot {\rm cos}(2\pi f_i t ) .$$
  • The signal amplitudes $A_i$  at the output for different frequencies  $f_i$ are searched-for and the solution is to be found in the time domain only.
  • This somewhat circuitous solution is intended to make the basic relationship between the time and frequency domains clear.





Please note:

  • The exercise belongs to the chapter  Some Low-Pass Functions in Systems Theory.
  • Contrary to the usual definition of the amplitude, the "$A_i$" may well be negative. Then, this corresponds to the function "minus-cosine".




Questions

1

Which low-pass filter is at hand here?

Ideal low-pass filter,
slit low-pass filter,
Gaussian low-pass filter.

2

State the equivalent bandwidth of  $H(f)$ .

$\Delta f \ =\ $

$\ \rm kHz$

3

In general, compute the amplitude  $A_i$  as a function of  $x_i(t)$  and  $h(t)$. Which of the following should be considered in the calculations?

For the cosine signal,  $A_i = y_i(t = 0)$ holds.
The following holds:  $y_i(t) = x_i(t) · h(t)$.
The following holds:  $y_i(t) = x_i(t) ∗ h(t)$.

4

Which of the following results are true for  $A_0, A_2$  and  $A_4$ ?   The following still holds:   $A_i = y_i(t = 0)$.

$A_0 = 0$.
$A_0 = 1 \hspace{0.05cm} \rm V $.
$A_2 = 0$.
$A_2 = 1 \hspace{0.05cm} \rm V $.
$A_4 = 0$.
$A_4 =1 \hspace{0.05cm} \rm V $.

5

Compute the amplitudes  $A_1$  and  $A_3$  for a  $1 \ \rm kHz$– and  $3 \ \rm kHz$–signal.
Interpret the results using the spectral functions.

$A_1 \ = \ $

$\ \rm V$
$A_3 \ = \ $

$\ \rm V$


Solution

(1)  Approach 2 is correct:   It is a slit low-pass filter.


(2)  The (equivalent) time duration of the impulse response is  $Δt = 0.5 \ \rm ms$.   The equivalent bandwidth is equal to the reciprocal:

$$Δf = 1/Δt \ \rm \underline{= \ 2 \ kHz}.$$


(3)  Approaches 1 and 3 are correct:

  • The amplitude is  $A_i = y_i(t = 0)$ since  $y_i(t)$  is cosine-shaped. The output signal is calculated by convolution for this purpose:
$$A_i = y_i (t=0) = \int\limits_{ - \infty }^{ + \infty } {x_i ( \tau )} \cdot h ( {0 - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
  • Considering the symmetry and the time limitation of  $h(t)$ the following result is obtained:
$$A_i = \frac{A_x}{\Delta t} \cdot \int\limits_{ - \Delta t /2 }^{ + \Delta t /2 } {\rm cos}(2\pi f_i \tau )\hspace{0.1cm}{\rm d}\tau.$$


(4)  Approaches 2, 3 and 5 are correct:

  • For the direct (DC) signal  $x_0(t) = A_x$ , set  $f_i = 0$  and one obtains  $A_0 = A_x \ \rm \underline{ = \ 1 \hspace{0.05cm} V}$.
  • In contrast to this, for the cosine frequencies  $f_2 = 2 \ \rm kHz$  and  $f_4 = 4 \ \rm kHz$  the integral vanishes in each case because then it is integrated over one and two periods, respectively:   $A_2 \ \rm \underline{ = \hspace{0.05cm} 0}$  und  $A_4 \hspace{0.05cm} \rm \underline{ = \ 0}$.
  • In the frequency domain, the cases which are dealt with here correspond to:
$$H(f=0) = 1, \hspace{0.3cm}H(f=\Delta f) = 0, \hspace{0.3cm}H(f=2\Delta f) = 0.$$


(5)  The result of subtask  (3)  – considering the symmetry – is for  $f_i = f_1$:

$$A_1= \frac{2A_x}{\Delta t} \cdot \int\limits_{ 0 }^{ \Delta t /2 } {\rm cos}(2\pi f_1 \tau )\hspace{0.1cm}{\rm d}\tau = \frac{2A_x}{2\pi f_1 \cdot \Delta t} \cdot {\rm sin}(2\pi f_1 \frac{\Delta t}{2} )= A_x \cdot {\rm si}(\pi f_1 \Delta t ).$$
  • Taking   $f_1 · Δt = 0.5$ into account the result is:
$$A_1 = A_x \cdot {\rm si}(\frac{\pi}{2} ) = \frac{2A_x}{\pi} \hspace{0.15cm}\underline{= 0.637\,{\rm V}}.$$
  • Correspondingly, the following is obtained using  $f_3 · Δt = 1.5$:
$$A_3 = A_x \cdot {\rm si}({3\pi}/{2} ) = -\frac{2A_x}{3\pi} = -{A_1}/{3}\hspace{0.15cm}\underline{= -0.212\,{\rm V}}.$$
  • The exact same results are obtained – but much faster – by applying the equation:
$$A_i = A_x · H(f = f_i).$$
  • From the graphs on the information page it is already obvious that the integral over  $x_1(t)$  is positive in the marked area and the integral over  $x_3(t)$  is negative.
  • However, it should be noted that in general amplitude is usually referred to as the magnitude (See notice on the information page).