Difference between revisions of "Aufgaben:Exercise 1.7Z: Overall Systems Analysis"

From LNTwww
Line 1: Line 1:
 
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory}}
 
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory}}
  
[[File:EN_LZI_Z_1_7.png|right|frame|System with Gaussian low-passe filters and nonlinear characteristic curve]]  
+
[[File:EN_LZI_Z_1_7.png|right|frame|System with Gaussian low-passe filters and non-linear characteristic curve]]  
Ein Gesamtsystem  $G$  mit Eingang  $w(t)$  und Ausgang  $z(t)$  besteht aus drei Komponenten:
+
An overall system  $G$  with input $w(t)$  and output  $z(t)$  consists of three components:
*Die erste Komponente ist ein Gaußtiefpass mit der Impulsantwort
+
*The first component is a Gaussian low-pass filter with impulse response
 
:$$h_1(t) = \frac{1}{\Delta t_1} \cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm} (t/\Delta t_1)^2}, \hspace{0.5cm} \Delta
 
:$$h_1(t) = \frac{1}{\Delta t_1} \cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm} (t/\Delta t_1)^2}, \hspace{0.5cm} \Delta
 
  t_1= {0.3\,\rm ms}.$$
 
  t_1= {0.3\,\rm ms}.$$
*Danach folgt eine Nichtlinearität mit der Kennlinie
+
*This is then followed by a non-linearity with the characteristic curve
 
:$$y(t) = \left\{ \begin{array}{c} +{8\,\rm V} \\ 2 \cdot x(t)  \\  {-8\,\rm V} \\  \end{array} \right.\quad \quad \begin{array}{*{10}c}  {\rm{f\ddot{u}r}}  \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\  \end{array}\begin{array}{*{20}c} {x(t) \ge +{4\,\rm V}},  \\
 
:$$y(t) = \left\{ \begin{array}{c} +{8\,\rm V} \\ 2 \cdot x(t)  \\  {-8\,\rm V} \\  \end{array} \right.\quad \quad \begin{array}{*{10}c}  {\rm{f\ddot{u}r}}  \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\  \end{array}\begin{array}{*{20}c} {x(t) \ge +{4\,\rm V}},  \\
 
{{-4\,\rm V} < x(t) < +{4\,\rm V}},  \\ {x(t)\le {-4\,\rm V}}.  \\ \end{array}$$
 
{{-4\,\rm V} < x(t) < +{4\,\rm V}},  \\ {x(t)\le {-4\,\rm V}}.  \\ \end{array}$$
:&rArr; &nbsp; Das Eingangssignal&nbsp; $x(t)$&nbsp; der Nichtlinearität wird um den Faktor&nbsp; $2$&nbsp; verstärkt und falls nötig auf den Bereich&nbsp; $±8 \ \rm V$&nbsp; begrenzt.
+
:&rArr; &nbsp; The input signal&nbsp; $x(t)$&nbsp; of the non-linearity is amplified by the factor&nbsp; $2$&nbsp; and if necessary limited to the range&nbsp; $±8 \ \rm V$&nbsp;.
*Am Ende der Kette folgt wieder ein Gaußtiefpass, der durch seinen Frequenzgang gegeben ist:
+
*At the end of the chain there is again a Gaussian low-pass filter given by its frequency response:
 
:$$H_3(f) = {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}(f/\Delta f_3)^2}, \hspace{0.5cm} \Delta f_3= {2.5\,\rm kHz}.$$
 
:$$H_3(f) = {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}(f/\Delta f_3)^2}, \hspace{0.5cm} \Delta f_3= {2.5\,\rm kHz}.$$
  
Das Eingangssignal &nbsp;$w(t)$&nbsp; des Gesamtsystems sei ein Gaußimpuls mit Amplitude&nbsp; $5 \ \rm V$&nbsp; und variabler (äquivalenter) Dauer&nbsp; $T$:
+
Let the input signal&nbsp;$w(t)$&nbsp; of the overall system be a Gaussian pulse with amplitude&nbsp; $5 \ \rm V$&nbsp; and variable (equivalent) duration&nbsp; $T$:
 
:$$w(t) = {5\,\rm V}\cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}(t/T)^2}.$$
 
:$$w(t) = {5\,\rm V}\cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}(t/T)^2}.$$
Zu untersuchen ist, in welchem Bereich die äquivalente Impulsdauer&nbsp; $T$&nbsp; dieses Gaußimpulses variieren kann, damit das Gesamtsystem durch den Frequenzgang
+
What needs to be investigated is the range in which the equivalent impulse duration&nbsp; $T$&nbsp; of this Gaussian pulse can vary such that the overall system can be entirely described by the frequency response
:$$H_{\rm G}(f) = K \cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}(f/\Delta f_{\rm G})^2}$$
+
:$$H_{\rm G}(f) = K \cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}(f/\Delta f_{\rm G})^2}$$. Here, the subscript "G" in frequency response and bandwidth stands for "Gesamtsystem" (German for "overall system").
vollständig beschrieben wird. Der Index „G” bei Frequenzgang und Bandbreite steht hierbei für „Gesamtsystem”.
 
  
  
Line 37: Line 36:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Bedingungen müssen erfüllt sein, damit das Gesamtsystem durch einen einzigen Frequenzgang beschreibbar ist?
+
{What conditions must be satisfied for the overall system to be describable by a single frequency response?
 
|type="[]"}
 
|type="[]"}
+ Es besteht ein linearer Zusammenhang zwischen&nbsp; $w(t)$&nbsp; und&nbsp; $z(t)$.
+
+ There is a linear relationship between&nbsp; $w(t)$&nbsp; and&nbsp; $z(t)$.
- $H_3(f)$&nbsp; muss schmalbandiger sein als&nbsp; $H_1(f)$.
+
- $H_3(f)$&nbsp; must be more narrow-band than&nbsp; $H_1(f)$.
+ Das Signal&nbsp; $x(t)$&nbsp; darf betragsmäßig nicht größer sein als&nbsp; $4 \ \rm V$.
+
+ The signal&nbsp; $x(t)$&nbsp; must not be greater in magnitude than&nbsp; $4 \ \rm V$.
  
  
{Berechnen Sie den Maximalwert für die äquivalente Impulsdauer&nbsp; $T$, damit die unter&nbsp; '''(1)'''&nbsp; genannten Bedingungen erfüllbar sind.
+
{Compute the maximum value for the equivalent impulse duration&nbsp; $T$ so that the conditions given in&nbsp; '''(1)'''&nbsp; are satisfiable.
 
|type="{}"}
 
|type="{}"}
 
$T_{\rm max} \ = \ $ { 0.4 3% } $\ \rm  ms$
 
$T_{\rm max} \ = \ $ { 0.4 3% } $\ \rm  ms$
  
  
{Geben Sie die Parameter des Gesamtfrequenzgangs&nbsp; $H_{\rm G}(f)$&nbsp; an.
+
{Specify the parameters of the overall frequency response&nbsp; $H_{\rm G}(f)$&nbsp;.
 
|type="{}"}
 
|type="{}"}
 
$K \ = \ $ { 2 3% }
 
$K \ = \ $ { 2 3% }
Line 58: Line 57:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind die <u>Antworten1 und 3</u>:
+
'''(1)'''&nbsp; <u>Answers 1 and 3</u> are correct:
*Die erste Aussage ist zutreffend: &nbsp; Nur für ein lineares System kann ein Frequenzgang angegeben werden.  
+
*The first statement is correct: &nbsp; Only for a linear system a frequency response can be specified.  
*Damit dies hier möglich ist, darf die Nichtlinearität keine Rolle spielen.  
+
*For this to be possible here nonlinearity must not play a role.  
*Das heißt, es muss sicher gestellt sein, dass&nbsp; $|x(t)|$&nbsp; nicht größer als&nbsp; $4 \ \rm V$&nbsp; ist.
+
*That is, it must be ensured that&nbsp; $|x(t)|$&nbsp; is not greater than&nbsp; $4 \ \rm V$&nbsp;.
*Dagegen ist die zweite Aussage nicht zutreffend: &nbsp; Die Bandbreite von&nbsp; $H_3(f)$&nbsp; hat keinen Einfluss darauf, ob die Nichtlinearität elimimiert werden kann oder nicht.  
+
*In contrast to this, the second statement is not true: &nbsp; The bandwidth of&nbsp; $H_3(f)$&nbsp; does not affect whether the non-linearity can be eliminated or not.  
  
  
  
'''(2)'''&nbsp; Der erste Gaußtiefpass wird im Frequenzbereich wie folgt beschrieben:
+
'''(2)'''&nbsp; The first Gaussian low-pass filter is described in the frequency domain as follows:
 
:$$X(f)  =  W(f) \cdot H_1(f) = {5\,\rm V}\cdot T \cdot {\rm e}^{-\pi(f \cdot T)^2} \cdot {\rm e}^{-\pi(f/\Delta f_1)^2} =  {5\,\rm V}\cdot T \cdot {\rm e}^{-\pi f^2 (T^2 + \Delta t_1^2)}= {5\,\rm V}\cdot T \cdot {\rm e}^{-\pi(f/\Delta f_x)^2}.$$
 
:$$X(f)  =  W(f) \cdot H_1(f) = {5\,\rm V}\cdot T \cdot {\rm e}^{-\pi(f \cdot T)^2} \cdot {\rm e}^{-\pi(f/\Delta f_1)^2} =  {5\,\rm V}\cdot T \cdot {\rm e}^{-\pi f^2 (T^2 + \Delta t_1^2)}= {5\,\rm V}\cdot T \cdot {\rm e}^{-\pi(f/\Delta f_x)^2}.$$
*Hierbei bezeichnet&nbsp; $Δf_x$&nbsp; die äquivalente Bandbreite von&nbsp; $X(f)$.  
+
*Here, &nbsp; $Δf_x$&nbsp; denotes the equivalent bandwidth of&nbsp; $X(f)$.  
*Der Signalwert bei&nbsp; $t = 0$&nbsp; ist gleich der Spektralfläche  und gleichzeitig der Maximalwert des Signals:
+
*The signal value at&nbsp; $t = 0$&nbsp; is equal to the spectral area and at the same time to the maximum value of the signal:
*Dieser soll nicht größer werden als $4 \ \rm V$:
+
*This should not exceed $4 \ \rm V$:
 
:$$x_{\rm max} = x(t =0) = {5\,\rm V}\cdot T \cdot \Delta f_x \le {4\,\rm V}.$$
 
:$$x_{\rm max} = x(t =0) = {5\,\rm V}\cdot T \cdot \Delta f_x \le {4\,\rm V}.$$
*Daraus folgt durch Koeffizientenvergleich:
+
*From this it follows by comparison of coefficients:
 
:$$\frac{1}{T \cdot \Delta f_x} > \frac{5}{4}\hspace{0.1cm}  \Rightarrow  \hspace{0.1cm} \frac{1}{T^2 \cdot \Delta f_x^2} > \frac{25}{16}
 
:$$\frac{1}{T \cdot \Delta f_x} > \frac{5}{4}\hspace{0.1cm}  \Rightarrow  \hspace{0.1cm} \frac{1}{T^2 \cdot \Delta f_x^2} > \frac{25}{16}
 
\Rightarrow \hspace{0.3cm}\frac{T^2 + \Delta t_1^2}{T^2} > \frac{25}{16}$$
 
\Rightarrow \hspace{0.3cm}\frac{T^2 + \Delta t_1^2}{T^2} > \frac{25}{16}$$
Line 79: Line 78:
 
\Delta t_1^2} \le \frac{16}{9}\hspace{0.3cm}\Rightarrow
 
\Delta t_1^2} \le \frac{16}{9}\hspace{0.3cm}\Rightarrow
 
\hspace{0.3cm} T \le \frac{4}{3} \cdot \Delta t_1 \hspace{0.15cm}\underline{= {0.4\,\rm ms}}.$$
 
\hspace{0.3cm} T \le \frac{4}{3} \cdot \Delta t_1 \hspace{0.15cm}\underline{= {0.4\,\rm ms}}.$$
*Die Kontrollrechnung ergibt:
+
*The control calculation yields:
 
:$$\Delta t_x = \sqrt{T^2 + \Delta t_1^2} = \sqrt{({0.4\,\rm ms})^2 + ({0.3\,\rm ms})^2} = {0.5\,\rm ms} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\Delta f_x = {1}/{\Delta t_x}= {2\,\rm kHz}$$
 
:$$\Delta t_x = \sqrt{T^2 + \Delta t_1^2} = \sqrt{({0.4\,\rm ms})^2 + ({0.3\,\rm ms})^2} = {0.5\,\rm ms} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\Delta f_x = {1}/{\Delta t_x}= {2\,\rm kHz}$$
 
:$$\Rightarrow \hspace{0.3cm} x(t=0) = {5\,\rm V}\cdot T \cdot \Delta f_x = {5\,\rm V}\cdot {0.4\,\rm ms} \cdot  {2\,\rm kHz} = {4\,\rm V}.$$
 
:$$\Rightarrow \hspace{0.3cm} x(t=0) = {5\,\rm V}\cdot T \cdot \Delta f_x = {5\,\rm V}\cdot {0.4\,\rm ms} \cdot  {2\,\rm kHz} = {4\,\rm V}.$$
  
  
'''(3)'''&nbsp; Die Gaußtiefpässe erfüllen die Bedingung&nbsp; $H_1(f = 0) = H_3(f = 0) = 1$.  
+
'''(3)'''&nbsp; The Gaussian low-pass filters satisfy the condition&nbsp; $H_1(f = 0) = H_3(f = 0) = 1$.  
*Unter Berücksichtigung der Verstärkung des zweiten Blocks im linearen Bereich erhält man somit für die Gesamtverstärkung:  
+
*Taking into account the gain of the second block in the linear domain the following is thus obtained for the total gain:  
 
:$$\underline{K \ = \ 2}.$$
 
:$$\underline{K \ = \ 2}.$$
  
*Für die äquivalente Impulsdauer des Gesamtsystems gilt:
+
*For the equivalent impulse duration of the overall system it holds that:
 
:$$\Delta t_{\rm G} = \sqrt{\Delta t_1^2 + \frac{1}{\Delta f_3^2}} = \sqrt{({0.3\,\rm ms})^2 + \left( \frac{1}{{2.5\,\rm
 
:$$\Delta t_{\rm G} = \sqrt{\Delta t_1^2 + \frac{1}{\Delta f_3^2}} = \sqrt{({0.3\,\rm ms})^2 + \left( \frac{1}{{2.5\,\rm
 
  kHz}}\right)^2}={0.5\,\rm ms} \; \; \Rightarrow  \; \;  \Delta f_{\rm G} = {1}/{\Delta t_{\rm G}} \hspace{0.15cm}\underline{= {2\,\rm kHz}}.$$
 
  kHz}}\right)^2}={0.5\,\rm ms} \; \; \Rightarrow  \; \;  \Delta f_{\rm G} = {1}/{\Delta t_{\rm G}} \hspace{0.15cm}\underline{= {2\,\rm kHz}}.$$

Revision as of 14:18, 8 September 2021

System with Gaussian low-passe filters and non-linear characteristic curve

An overall system  $G$  with input $w(t)$  and output  $z(t)$  consists of three components:

  • The first component is a Gaussian low-pass filter with impulse response
$$h_1(t) = \frac{1}{\Delta t_1} \cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm} (t/\Delta t_1)^2}, \hspace{0.5cm} \Delta t_1= {0.3\,\rm ms}.$$
  • This is then followed by a non-linearity with the characteristic curve
$$y(t) = \left\{ \begin{array}{c} +{8\,\rm V} \\ 2 \cdot x(t) \\ {-8\,\rm V} \\ \end{array} \right.\quad \quad \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {x(t) \ge +{4\,\rm V}}, \\ {{-4\,\rm V} < x(t) < +{4\,\rm V}}, \\ {x(t)\le {-4\,\rm V}}. \\ \end{array}$$
⇒   The input signal  $x(t)$  of the non-linearity is amplified by the factor  $2$  and – if necessary – limited to the range  $±8 \ \rm V$ .
  • At the end of the chain there is again a Gaussian low-pass filter given by its frequency response:
$$H_3(f) = {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}(f/\Delta f_3)^2}, \hspace{0.5cm} \Delta f_3= {2.5\,\rm kHz}.$$

Let the input signal $w(t)$  of the overall system be a Gaussian pulse with amplitude  $5 \ \rm V$  and variable (equivalent) duration  $T$:

$$w(t) = {5\,\rm V}\cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}(t/T)^2}.$$

What needs to be investigated is the range in which the equivalent impulse duration  $T$  of this Gaussian pulse can vary such that the overall system can be entirely described by the frequency response

$$H_{\rm G}(f) = K \cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}(f/\Delta f_{\rm G})^2}$$. Here, the subscript "G" in frequency response and bandwidth stands for "Gesamtsystem" (German for "overall system").





Please note:



Questions

1

What conditions must be satisfied for the overall system to be describable by a single frequency response?

There is a linear relationship between  $w(t)$  and  $z(t)$.
$H_3(f)$  must be more narrow-band than  $H_1(f)$.
The signal  $x(t)$  must not be greater in magnitude than  $4 \ \rm V$.

2

Compute the maximum value for the equivalent impulse duration  $T$ so that the conditions given in  (1)  are satisfiable.

$T_{\rm max} \ = \ $

$\ \rm ms$

3

Specify the parameters of the overall frequency response  $H_{\rm G}(f)$ .

$K \ = \ $

$\Delta f_{\rm G} = \ $

$\ \rm kHz$


Solution

(1)  Answers 1 and 3 are correct:

  • The first statement is correct:   Only for a linear system a frequency response can be specified.
  • For this to be possible here nonlinearity must not play a role.
  • That is, it must be ensured that  $|x(t)|$  is not greater than  $4 \ \rm V$ .
  • In contrast to this, the second statement is not true:   The bandwidth of  $H_3(f)$  does not affect whether the non-linearity can be eliminated or not.


(2)  The first Gaussian low-pass filter is described in the frequency domain as follows:

$$X(f) = W(f) \cdot H_1(f) = {5\,\rm V}\cdot T \cdot {\rm e}^{-\pi(f \cdot T)^2} \cdot {\rm e}^{-\pi(f/\Delta f_1)^2} = {5\,\rm V}\cdot T \cdot {\rm e}^{-\pi f^2 (T^2 + \Delta t_1^2)}= {5\,\rm V}\cdot T \cdot {\rm e}^{-\pi(f/\Delta f_x)^2}.$$
  • Here,   $Δf_x$  denotes the equivalent bandwidth of  $X(f)$.
  • The signal value at  $t = 0$  is equal to the spectral area and at the same time to the maximum value of the signal:
  • This should not exceed $4 \ \rm V$:
$$x_{\rm max} = x(t =0) = {5\,\rm V}\cdot T \cdot \Delta f_x \le {4\,\rm V}.$$
  • From this it follows by comparison of coefficients:
$$\frac{1}{T \cdot \Delta f_x} > \frac{5}{4}\hspace{0.1cm} \Rightarrow \hspace{0.1cm} \frac{1}{T^2 \cdot \Delta f_x^2} > \frac{25}{16} \Rightarrow \hspace{0.3cm}\frac{T^2 + \Delta t_1^2}{T^2} > \frac{25}{16}$$
$$ \Rightarrow \hspace{0.1cm}\frac{ \Delta t_1^2}{T^2} > \frac{9}{16}\hspace{0.3cm}\Rightarrow \hspace{0.5cm}\frac{T^2}{ \Delta t_1^2} \le \frac{16}{9}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} T \le \frac{4}{3} \cdot \Delta t_1 \hspace{0.15cm}\underline{= {0.4\,\rm ms}}.$$
  • The control calculation yields:
$$\Delta t_x = \sqrt{T^2 + \Delta t_1^2} = \sqrt{({0.4\,\rm ms})^2 + ({0.3\,\rm ms})^2} = {0.5\,\rm ms} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\Delta f_x = {1}/{\Delta t_x}= {2\,\rm kHz}$$
$$\Rightarrow \hspace{0.3cm} x(t=0) = {5\,\rm V}\cdot T \cdot \Delta f_x = {5\,\rm V}\cdot {0.4\,\rm ms} \cdot {2\,\rm kHz} = {4\,\rm V}.$$


(3)  The Gaussian low-pass filters satisfy the condition  $H_1(f = 0) = H_3(f = 0) = 1$.

  • Taking into account the gain of the second block in the linear domain the following is thus obtained for the total gain:
$$\underline{K \ = \ 2}.$$
  • For the equivalent impulse duration of the overall system it holds that:
$$\Delta t_{\rm G} = \sqrt{\Delta t_1^2 + \frac{1}{\Delta f_3^2}} = \sqrt{({0.3\,\rm ms})^2 + \left( \frac{1}{{2.5\,\rm kHz}}\right)^2}={0.5\,\rm ms} \; \; \Rightarrow \; \; \Delta f_{\rm G} = {1}/{\Delta t_{\rm G}} \hspace{0.15cm}\underline{= {2\,\rm kHz}}.$$