Difference between revisions of "Aufgaben:Exercise 1.8: Variable Edge Steepness"

From LNTwww
 
(40 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Systembeschreibung im Frequenzbereich}}
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory}}
  
[[File:P_ID867__LZI_A_1_8.png|right|frame|Trapez–Tiefpass (rot) und Cosinus–Rolloff–Tiefpass (grün)]]  
+
[[File:EN_LZI_A_1_8.png|right|frame|Trapezoidal low-pass filter (red) and raised-cosine low-pass filter (green)]]  
Zwei Tiefpässe mit variabler Flankensteilheit werden miteinander verglichen. Für Frequenzen  $|f| ≤ f_1$  gilt in beiden Fällen  $H(f) = 1$.  Dagegen werden alle Frequenzen  $|f| ≥ f_2$  vollständig unterdrückt.
+
Two low-pass filters with variable edge steepnesses are compared with each other. For frequencies $|f| ≤ f_1$ ,  $H(f) = 1$  holds in both cases. In contrast, all frequencies $|f| ≥ f_2$  are suppressed entirely.
  
Im Bereich  $f_1 ≤ |f| ≤ f_2$  sind die Frequenzgänge durch folgende Gleichungen festgelegt:
+
In the range $f_1 ≤ |f| ≤ f_2$  the frequency responses are defined by the following equations:
*Trapeztiefpass (TTP):
+
*Trapezoidal low-pass filter  $\rm (TLP)$:
 
:$$H(f) = \frac{f_2 - |f|}{f_2 - f_1} ,$$
 
:$$H(f) = \frac{f_2 - |f|}{f_2 - f_1} ,$$
*Cosinus–Rolloff–Tiefpass (CRTP):
+
*Raised-cosine low-pass filter  $\rm (RCLP)$:
 
:$$H(f) = \cos^2 \left(\frac{|f|- f_1}{f_2 - f_1} \cdot\frac{\pi}{2} \right).$$
 
:$$H(f) = \cos^2 \left(\frac{|f|- f_1}{f_2 - f_1} \cdot\frac{\pi}{2} \right).$$
  
Alternative Systemparameter sind für beide Tiefpässe  
+
Alternative system parameters for both low-pass filters are  
*die über das flächengleiche Rechteck definierte äquivalente Bandbreite  $Δf$, sowie
+
*the equivalent bandwidth $Δf$ defined by the equal-area rectangle, and also
*der Rolloff–Faktor (im Frequenzbereich):
+
*the roll-off factor (in frequency domain):
 
:$$r=\frac{f_2 - f_1}{f_2 + f_1} .$$
 
:$$r=\frac{f_2 - f_1}{f_2 + f_1} .$$
  
In der gesamten Aufgabe gelte  $Δf = 10 \ \rm kHz$  und  $r = 0.2$.  
+
Throughout the task, $Δf = 10 \ \rm kHz$  and  $r = 0.2$ hold true.  
  
Die Impulsantworten lauten mit der äquivalenten Impulsdauer  $Δt = 1/Δf = 0.1 \ \rm ms$:
+
The impulse responses are with the equivalent impulse duration $Δt = 1/Δf = 0.1 \ \rm ms$:
 
:$$h_{\rm TTP}(t) = \frac{1}{\Delta t} \cdot {\rm si}(\pi \cdot
 
:$$h_{\rm TTP}(t) = \frac{1}{\Delta t} \cdot {\rm si}(\pi \cdot
 
\frac{t}{\Delta t} )\cdot {\rm si}(\pi \cdot r \cdot \frac{t}{\Delta t} ),$$
 
\frac{t}{\Delta t} )\cdot {\rm si}(\pi \cdot r \cdot \frac{t}{\Delta t} ),$$
Line 31: Line 31:
  
  
''Hinweise:''  
+
''Please note:''  
*Die Aufgabe gehört zum  Kapitel  [[Lineare_zeitinvariante_Systeme/Einige_systemtheoretische_Tiefpassfunktionen|Einige systemtheoretische Tiefpassfunktionen]].   
+
*The exercise belongs to the chapter  [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory|Some Low-Pass Functions in Systems Theory]].   
*Bezug genommen wird insbesondere auf die Seiten  [[Lineare_zeitinvariante_Systeme/Einige_systemtheoretische_Tiefpassfunktionen#Trapez.E2.80.93Tiefpass|Trapez–Tiefpass]]  sowie  [[Lineare_zeitinvariante_Systeme/Einige_systemtheoretische_Tiefpassfunktionen#Cosinus-Rolloff-Tiefpass|Cosinus–Rolloff–Tiefpass]].  
+
*In particular, reference is made to the pages  [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory#Trapezoidal_low-pass_filter|Trapezoidal low-pass filter]]  and  [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory#Raised-cosine_low-pass_filter|Raised-cosine low-pass filter]].  
*Sie können Ihre Ergebnisse mit dem interaktiven Applet  [[Applets:Frequenzgang_und_Impulsantwort|Frequenzgang und Impulsantwort]]  überprüfen.
+
*You can check your results with the interactive applet  [[Applets:Frequenzgang_und_Impulsantwort|Frequency response and impulse response]].
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lautet die Gleichung für die äquivalente Bandbreite &nbsp;$Δf$?&nbsp; Es gilt
+
{What is the equation for the equivalent bandwidth&nbsp;$Δf$?&nbsp; It holds that
 
|type="[]"}
 
|type="[]"}
 
- $Δf = f_2 - f_1$,
 
- $Δf = f_2 - f_1$,
Line 48: Line 48:
  
  
{Bestimmen Sie die Tiefpass-Parameter &nbsp;$f_1$&nbsp; und &nbsp;$f_2$&nbsp; für &nbsp;$Δf = 10 \ \rm kHz$&nbsp; und &nbsp;$r = 0.2$.
+
{Determine the low-pass filter parameters&nbsp;$f_1$&nbsp; and&nbsp;$f_2$&nbsp; for &nbsp;$Δf = 10 \ \rm kHz$&nbsp; and &nbsp;$r = 0.2$.
 
|type="{}"}
 
|type="{}"}
 
$f_1 \ = \ $ { 4 3% } $\ \rm kHz$
 
$f_1 \ = \ $ { 4 3% } $\ \rm kHz$
Line 54: Line 54:
  
  
{Welche Aussagen sind für die Impulsantwort des Trapez&ndash;Tiefpasses zutreffend, wenn &nbsp;$r = 0.2$&nbsp; vorausgesetzt wird?
+
{Which statements are true for the impulse response of the trapezoidal low-pass filter if &nbsp;$r = 0.2$&nbsp; is assumed?
 
|type="[]"}
 
|type="[]"}
+ $h(t)$&nbsp; besitzt Nullstellen bei&nbsp; $±\hspace{0.03cm}n · Δt \ (n = 1, 2, \text{...})$.
+
+ $h(t)$&nbsp; has zeros at&nbsp; $±\hspace{0.03cm}n · Δt \ (n = 1, 2, \text{...})$.
- $h(t)$&nbsp; besitzt zusätzliche Nullstellen zu anderen Zeiten.
+
- $h(t)$&nbsp; has additional zeros at other times.
- Mit &nbsp;$r = 0$&nbsp; würde &nbsp;$h(t)$&nbsp; schneller abklingen.
+
- $h(t)$&nbsp; would decay faster with &nbsp;$r = 0$&nbsp;.
+ Mit &nbsp;$r = 1$&nbsp; würde &nbsp;$h(t)$&nbsp; schneller abklingen.
+
+ $h(t)$&nbsp; would decay faster with &nbsp;$r = 1$&nbsp;.
  
  
{Welche Aussagen treffen für die Impulantwort des Cosinus–Rolloff–Tiefpasses zu, wenn &nbsp;$r = 0.2$&nbsp; vorausgesetzt wird?
+
{Which statements are true for the impulse response of the raised-cosine low-pass filter if &nbsp;$r = 0.2$&nbsp; is assumed?
 
|type="[]"}
 
|type="[]"}
+ $h(t)$&nbsp; besitzt Nullstellen bei&nbsp; $±\hspace{0.03cm}n · Δt \ (n = 1, 2, \text{...})$.
+
+ $h(t)$&nbsp; has zeros at&nbsp; $±\hspace{0.03cm}n · Δt \ (n = 1, 2, \text{...})$.
+ $h(t)$&nbsp; besitzt zusätzliche Nullstellen zu anderen Zeiten.
+
+ $h(t)$&nbsp; has additional zeros at other times.
- Mit &nbsp;$r = 0$&nbsp; würde &nbsp;$h(t)$&nbsp; schneller abklingen.
+
- $h(t)$&nbsp; would decay faster with &nbsp;$r = 0$&nbsp;.
+ Mit &nbsp;$r = 1$&nbsp; würde &nbsp;$h(t)$&nbsp; schneller abklingen.
+
+ $h(t)$&nbsp; would decay faster with &nbsp;$r = 1$&nbsp;.
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>:
+
'''(1)'''&nbsp; <u>Approach 2</u> is correct:
*Bei beiden Tiefpässen ist das Integral über &nbsp;$H(f)$&nbsp; gleich &nbsp;$f_1 + f_2$.  
+
*For both low-pass filters, the integral over&nbsp;$H(f)$&nbsp; is equal to&nbsp;$f_1 + f_2$.  
*Wegen &nbsp;$H(f = 0 = 1)$&nbsp; stimmt somit der <u>Lösungsvorschlag 2</u>: &nbsp; $\Delta f = f_1 + f_2.$
+
*Thus, due to&nbsp;$H(f = 0 = 1)$&nbsp; <u>Approach 2</u> is correct: &nbsp; $\Delta f = f_1 + f_2.$
  
  
  
'''(2)'''&nbsp; Setzt man die unter&nbsp; '''(1)'''&nbsp; gefundene Beziehung in die Definitionsgleichung des Rolloff&ndash;Faktors ein, so erhält man
+
'''(2)'''&nbsp; Substituting the relation found in&nbsp; '''(1)'''&nbsp; into the defining equation of the roll-off factor the following is obtained:
 
:$${f_2 - f_1}  = r \cdot \Delta f =  {2\,\rm
 
:$${f_2 - f_1}  = r \cdot \Delta f =  {2\,\rm
 
  kHz}, \hspace{0.5cm} {f_2 + f_1}  = {10\,\rm
 
  kHz}, \hspace{0.5cm} {f_2 + f_1}  = {10\,\rm
 
  kHz}.$$
 
  kHz}.$$
  
*Durch Addition bzw. Subtraktion beider Gleichungen ergeben sich die so genannten &bdquo;Eckfrequenzen&rdquo; zu
+
*By addition or subtraction of both equations the so-called "corner frequencies" result in
 
:$$f_1 \underline{= 4 \ \rm kHz},$$  
 
:$$f_1 \underline{= 4 \ \rm kHz},$$  
 
:$$f_2 \underline{= 6 \ \rm kHz}.$$
 
:$$f_2 \underline{= 6 \ \rm kHz}.$$
  
  
'''(3)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 4</u>:
+
'''(3)'''&nbsp; <u>Suggestions 1 and 4</u> are correct:
*Die erste &nbsp;$\rm si$&ndash;Funktion von &nbsp;$h_{\rm TTP}(t)$&nbsp; führt zu Nullstellen im Abstand &nbsp;$\Delta t$&nbsp; (siehe auch Gleichung auf der Angabenseite).  
+
*The first&nbsp;$\rm sinc$&ndash;function of&nbsp;$h_{\rm TTP}(t)$&nbsp; causes zeros at an interval of&nbsp;$\Delta t$&nbsp; (see also the equation on the information page).  
*Die zweite &nbsp;$\rm si$&ndash;Funktion bewirkt Nullstellen bei Vielfachen von &nbsp;$5 &middot; \Delta t$.  
+
*The second &nbsp;$\rm sinc$&ndash;function causes zeros at multiples of&nbsp;$5 &middot; \Delta t$.  
*Da diese exakt mit den Nullstellen der ersten &nbsp;$\rm si$&ndash;Funktion zusammenfallen, gibt es keine zusätzlichen Nullstellen.
+
*There are no additional zeros since these coincide exactly with the zeros of the first &nbsp;$\rm sinc$&ndash;function.
*Der Sonderfall &nbsp;$r = 0$&nbsp; entspricht dem idealen rechteckförmigen Tiefpass mit $\rm si$&ndash;förmiger Impulsantwort. Diese klingt extrem langsam ab.  
+
*The special case&nbsp;$r = 0$&nbsp; corresponds to the ideal rectangular low-pass filter with &nbsp;$\rm sinc$&ndash;shaped impulse response. This decays extremely slowly.  
*Die &nbsp;$\rm si^2$&ndash;förmige Impulsantwort des Dreiecktiefpasses&nbsp; $($Sonderfall für &nbsp;$r = 1)$&nbsp; fällt asymptotisch mit &nbsp;$1/t^2$, also schneller als mit &nbsp;$r = 0.2$.
+
*The &nbsp;$\rm si^2$&ndash;shaped impulse response of the triangular low-pass filter&nbsp; $($special case for&nbsp;$r = 1)$&nbsp; decays asymptotically with &nbsp;$1/t^2$, i.e. faster than with&nbsp;$r = 0.2$.
  
  
'''(4)'''&nbsp; Richtig sind hier die <u>Vorschläge 1, 2 und 4</u>:
+
'''(4)'''&nbsp; <u>Suggestions 1, 2 and 4</u> are correct here:
*Die Impulsantwort &nbsp;$h_{\rm CRTP}(t)$&nbsp; des Cosinus-Rolloff-Tiefpasses hat aufgrund der si&ndash;Funktion ebenfalls Nullstellen im Abstand &nbsp;$\Delta t$.  
+
*The impulse response&nbsp;$h_{\rm CRTP}(t)$&nbsp; of the raised-cosine low-pass filter also has zeros at an interval of&nbsp;$\Delta t$ due to the &nbsp;$\rm sinc$&ndash;function.  
*Die Cosinusfunktion hat Nullstellen zu folgenden Zeitpunkten:
+
*The cosine function has zeros at the following times:
 
:$${\cos(\pi \cdot r \cdot {t}/{ \Delta t}  )}  =  0 \hspace{0.3cm}\Rightarrow  \hspace{0.3cm}r \cdot {t}/{ \Delta t} = \pm
 
:$${\cos(\pi \cdot r \cdot {t}/{ \Delta t}  )}  =  0 \hspace{0.3cm}\Rightarrow  \hspace{0.3cm}r \cdot {t}/{ \Delta t} = \pm
 
0.5, \pm 1.5, \pm 2.5, \text{...}  \hspace{0.3cm} \Rightarrow  \hspace{0.3cm} {t}/{ \Delta t} = \pm
 
0.5, \pm 1.5, \pm 2.5, \text{...}  \hspace{0.3cm} \Rightarrow  \hspace{0.3cm} {t}/{ \Delta t} = \pm
Line 106: Line 106:
 
:$$\Rightarrow  \hspace{0.3cm} {t}/{ \Delta t} = \pm
 
:$$\Rightarrow  \hspace{0.3cm} {t}/{ \Delta t} = \pm
 
2.5, \pm 7.5, \pm 12.5, \text{...}. $$
 
2.5, \pm 7.5, \pm 12.5, \text{...}. $$
*Die Nullstelle des Zählers bei &nbsp;$t / \Delta t = 2.5$&nbsp; wird allerdings durch den ebenfalls verschwindenden Nenner zunichte gemacht.  
+
*However, the zero of the numerator at&nbsp;$t / \Delta t = 2.5$&nbsp; is nullified by the denominator which also vanishes.  
*Die weiteren Nullstellen bei &nbsp;$7.5, 12.5,\text{...} $&nbsp; bleiben dagegen bestehen.
+
*By contrast, the other zeros at&nbsp;$7.5, 12.5,\text{...} $&nbsp; remain.
*Auch hier führt &nbsp;$r = 0$&nbsp; zum Rechtecktiefpass und damit zur &nbsp;$\rm si$&ndash;förmigen Impulsantwort.  
+
*Here, &nbsp;$r = 0$&nbsp; also results in the rectangular low-pass filter and thus in the&nbsp;$\rm sinc$&ndash;shaped impulse response.  
*Dagegen klingt die Impulsantwort des Cosinus&ndash;Quadrat&ndash;Tiefpasses&nbsp; $($Sonderfall für &nbsp;$r = 1)$&nbsp; extrem schnell ab.  
+
*In contrast, the impulse response of the cosine-square low-pass filter&nbsp; $($special case for &nbsp;$r = 1)$&nbsp; decays extremely fast.  
*Dieser wird in der&nbsp; [[Aufgaben:1.8Z_Cosinus-Quadrat-Tiefpass|Aufgabe 1.8Z]]&nbsp; eingehend untersucht.
+
*This is studied in detail in&nbsp; [[Aufgaben:Exercise_1.8Z:_Cosine-Square_Low-Pass|Exercise 1.8Z]]&nbsp;.
  
  
Line 117: Line 117:
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^1.3 Einige systemtheoretische Tiefpassfunktionen^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^1.3 Some Low-Pass Functions in Systems Theory^]]

Latest revision as of 16:19, 7 October 2021

Trapezoidal low-pass filter (red) and raised-cosine low-pass filter (green)

Two low-pass filters with variable edge steepnesses are compared with each other. For frequencies $|f| ≤ f_1$ ,  $H(f) = 1$  holds in both cases. In contrast, all frequencies $|f| ≥ f_2$  are suppressed entirely.

In the range $f_1 ≤ |f| ≤ f_2$  the frequency responses are defined by the following equations:

  • Trapezoidal low-pass filter  $\rm (TLP)$:
$$H(f) = \frac{f_2 - |f|}{f_2 - f_1} ,$$
  • Raised-cosine low-pass filter  $\rm (RCLP)$:
$$H(f) = \cos^2 \left(\frac{|f|- f_1}{f_2 - f_1} \cdot\frac{\pi}{2} \right).$$

Alternative system parameters for both low-pass filters are

  • the equivalent bandwidth $Δf$ defined by the equal-area rectangle, and also
  • the roll-off factor (in frequency domain):
$$r=\frac{f_2 - f_1}{f_2 + f_1} .$$

Throughout the task, $Δf = 10 \ \rm kHz$  and  $r = 0.2$ hold true.

The impulse responses are with the equivalent impulse duration $Δt = 1/Δf = 0.1 \ \rm ms$:

$$h_{\rm TTP}(t) = \frac{1}{\Delta t} \cdot {\rm si}(\pi \cdot \frac{t}{\Delta t} )\cdot {\rm si}(\pi \cdot r \cdot \frac{t}{\Delta t} ),$$
$$h_{\rm CRTP}(t) = \frac{1}{\Delta t} \cdot {\rm si}(\pi \cdot \frac{t}{\Delta t} )\cdot \frac {\cos(\pi \cdot r \cdot t / \Delta t )}{1 - (2 \cdot r \cdot t/\Delta t )^2}.$$





Please note:


Questions

1

What is the equation for the equivalent bandwidth $Δf$?  It holds that

$Δf = f_2 - f_1$,
$Δf = f_1 + f_2$,
$Δf = (f_2 + f_1)/2$.

2

Determine the low-pass filter parameters $f_1$  and $f_2$  for  $Δf = 10 \ \rm kHz$  and  $r = 0.2$.

$f_1 \ = \ $

$\ \rm kHz$
$f_2 \ = \ $

$\ \rm kHz$

3

Which statements are true for the impulse response of the trapezoidal low-pass filter if  $r = 0.2$  is assumed?

$h(t)$  has zeros at  $±\hspace{0.03cm}n · Δt \ (n = 1, 2, \text{...})$.
$h(t)$  has additional zeros at other times.
$h(t)$  would decay faster with  $r = 0$ .
$h(t)$  would decay faster with  $r = 1$ .

4

Which statements are true for the impulse response of the raised-cosine low-pass filter if  $r = 0.2$  is assumed?

$h(t)$  has zeros at  $±\hspace{0.03cm}n · Δt \ (n = 1, 2, \text{...})$.
$h(t)$  has additional zeros at other times.
$h(t)$  would decay faster with  $r = 0$ .
$h(t)$  would decay faster with  $r = 1$ .


Solution

(1)  Approach 2 is correct:

  • For both low-pass filters, the integral over $H(f)$  is equal to $f_1 + f_2$.
  • Thus, due to $H(f = 0 = 1)$  Approach 2 is correct:   $\Delta f = f_1 + f_2.$


(2)  Substituting the relation found in  (1)  into the defining equation of the roll-off factor the following is obtained:

$${f_2 - f_1} = r \cdot \Delta f = {2\,\rm kHz}, \hspace{0.5cm} {f_2 + f_1} = {10\,\rm kHz}.$$
  • By addition or subtraction of both equations the so-called "corner frequencies" result in
$$f_1 \underline{= 4 \ \rm kHz},$$
$$f_2 \underline{= 6 \ \rm kHz}.$$


(3)  Suggestions 1 and 4 are correct:

  • The first $\rm sinc$–function of $h_{\rm TTP}(t)$  causes zeros at an interval of $\Delta t$  (see also the equation on the information page).
  • The second  $\rm sinc$–function causes zeros at multiples of $5 · \Delta t$.
  • There are no additional zeros since these coincide exactly with the zeros of the first  $\rm sinc$–function.
  • The special case $r = 0$  corresponds to the ideal rectangular low-pass filter with  $\rm sinc$–shaped impulse response. This decays extremely slowly.
  • The  $\rm si^2$–shaped impulse response of the triangular low-pass filter  $($special case for $r = 1)$  decays asymptotically with  $1/t^2$, i.e. faster than with $r = 0.2$.


(4)  Suggestions 1, 2 and 4 are correct here:

  • The impulse response $h_{\rm CRTP}(t)$  of the raised-cosine low-pass filter also has zeros at an interval of $\Delta t$ due to the  $\rm sinc$–function.
  • The cosine function has zeros at the following times:
$${\cos(\pi \cdot r \cdot {t}/{ \Delta t} )} = 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}r \cdot {t}/{ \Delta t} = \pm 0.5, \pm 1.5, \pm 2.5, \text{...} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {t}/{ \Delta t} = \pm 2.5, \pm 7.5, \pm 12.5, ... $$
$$\Rightarrow \hspace{0.3cm} {t}/{ \Delta t} = \pm 2.5, \pm 7.5, \pm 12.5, \text{...}. $$
  • However, the zero of the numerator at $t / \Delta t = 2.5$  is nullified by the denominator which also vanishes.
  • By contrast, the other zeros at $7.5, 12.5,\text{...} $  remain.
  • Here,  $r = 0$  also results in the rectangular low-pass filter and thus in the $\rm sinc$–shaped impulse response.
  • In contrast, the impulse response of the cosine-square low-pass filter  $($special case for  $r = 1)$  decays extremely fast.
  • This is studied in detail in  Exercise 1.8Z .