Difference between revisions of "Aufgaben:Exercise 2.08: Generator Polynomials for Reed-Solomon"

From LNTwww
 
(31 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Definition und Eigenschaften von Reed–Solomon–Codes}}
+
{{quiz-Header|Buchseite=Channel_Coding/Definition_and_Properties_of_Reed-Solomon_Codes}}
  
[[File:P_ID2525__KC_A_2_8.png|right|frame|Vier Generatormatrizen, drei davon beschreiben Reed–Solomon–Codes]]
+
[[File:P_ID2525__KC_A_2_8.png|right|frame|Four generator matrices, three of which describe Reed-Solomon codes]]
In der [[Aufgaben:2.07_Reed%E2%80%93Solomon%E2%80%93Code_(7,_3,_5)(Base_8)|Aufgabe A2.7]] sollten Sie die Codeworte des $\rm RSC \, (7, \, 3, \, 5)_8$ über ein Polynom ermitteln. Man kann aber das Codewort $\underline{c}$ auch aus dem Informationswort $\underline{u}$ und der Generatormatrix $\mathbf{G}$ gemäß der folgenden Gleichung bestimmen:
+
In the  [[Aufgaben:Exercise_2.07:_Reed-Solomon_Code_(7,_3,_5)_to_Base_8|"Exercise 2.7"]]  you should determine the code words of the  $\rm RSC \, (7, \, 3, \, 5)_8$  via a polynomial.  However,  you can also determine the code word  $\underline{c}$   from the information word  $\underline{u}$  and the generator matrix  $\mathbf{G}$  according to the following equation:
 
:$$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}}
 
:$$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Zwei der vorgegebenen Generatormatrizen beschreiben den $\rm RSC \, (7, \, 3, \, 5)_8$. In der Teilaufgabe (1) ist explizit gefragt, welche. Eine weitere Generatormatrix gehört zum $\rm RSC \, (7, \, 5, \, 3)_8$, der in der Teilaufgabe (3) betrachtet wird.
+
*Two of these generator matrices describe the  $\rm RSC \, (7, \, 3, \, 5)_8$.  In the subtask  '''(1)'''  is explicitly asked which.
 +
 +
*Another generator matrix belongs to  $\rm RSC \, (7, \, 5, \, 3)_8$,  which is considered in subtask  '''(3)'''.
  
''Hinweise:''
 
* Die Aufgabe gehört zum Themengebiet des Kapitels [[Kanalcodierung/Definition_und_Eigenschaften_von_Reed%E2%80%93Solomon%E2%80%93Codes| Definition und Eigenschaften von Reed–Solomon–Codes]].
 
* Wichtige Informationen zu den Reed–Solomon–Codes finden Sie auch in der Angabe zur [[Aufgaben:2.07_Reed%E2%80%93Solomon%E2%80%93Code_(7,_3,_5)(Base_8)| Aufgabe A2.7]].
 
  
  
  
  
 +
Hints:
 +
* This exercise belongs to the chapter  [[Channel_Coding/Definition_and_Properties_of_Reed-Solomon_Codes| "Definition and Properties of Reed-Solomon Codes"]].
  
===Fragebogen===
+
* Important information about Reed–Solomon codes can also be found in  [[Aufgaben:Exercise_2.07:_Reed-Solomon_Code_(7,_3,_5)_to_Base_8| "Exercise 2.7"]].
 +
 
 +
 
 +
 
 +
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der Generatorpolynome beschreiben den $\rm RSC \, (7, \, 3, \, 5)_8$?
+
{Which of the generator polynomials describe the&nbsp; $\rm RSC \, (7, \, 3, \, 5)_8$?
 
|type="[]"}
 
|type="[]"}
- $\mathbf{G}_{\rm A}$,
+
- the matrix&nbsp; $\mathbf{G}_{\rm A}$,
+ $\mathbf{G}_{\rm B}$,
+
+ the matrix&nbsp; $\mathbf{G}_{\rm B}$,
+ $\mathbf{G}_{\rm C}$,
+
+ the matrix&nbsp; $\mathbf{G}_{\rm C}$,
- $\mathbf{G}_{\rm D}$.
+
- the matrix&nbsp; $\mathbf{G}_{\rm D}$.
  
{Die Informationsfolge beginnt mit $\alpha^4, \, 1, \, \alpha^3, \, 0, \, \alpha^6$. Bestimmen Sie das erste Codewort für den $\rm RSC \, (7, \, 3, \, 5)_8$.
+
{The information sequence starts with&nbsp; $\alpha^4, \, 1, \, \alpha^3, \, 0, \, \alpha^6$.&nbsp; Determine the first code word for the&nbsp; $\rm RSC \, (7, \, 3, \, 5)_8$.
 
|type="[]"}
 
|type="[]"}
+ Es gilt $c_0 = \alpha^2$,
+
+ It holds&nbsp; $c_0 = \alpha^2$,
+ Es gilt $c_1 = \alpha^3$,
+
+ It holds&nbsp; $c_1 = \alpha^3$,
- Es gilt $c_6 = 0$.
+
- It holds&nbsp; $c_6 = 0$.
  
{Wie lautet bei gleicher Informationsfolge das Codewort für den $\rm RSC \, (7, \, 5, \, 3)_8$?
+
{What is the code word for the&nbsp; $\rm RSC \, (7, \, 5, \, 3)_8$ given the same sequence of information?
 
|type="[]"}
 
|type="[]"}
+ Es gilt $c_0 = 1$,
+
+ It holds&nbsp; $c_0 = 1$,
+ Es gilt $c_1 = 0$,
+
+ It holds&nbsp; $c_1 = 0$,
+ Es gilt $c_6 = \alpha^6$.
+
+ It holds&nbsp; $c_6 = \alpha^6$.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2 und 3</u> &nbsp;&8658;&nbsp; Matrizen $\mathbf{G}_{\rm B}$ und $\mathbf{G}_{\rm C}$, wobei in der Matrix $\mathbf{G}_{\rm C}$ bereits die erlaubten Umformungen $\alpha^8 = \alpha, \ \alpha^{10} = \alpha^3$ und $\alpha^{12} = \alpha^5$ berücksichtigt wurden. Die Matrix $\mathbf{G}_{\rm A}$ gilt für den $(7, \, 5, \, 3)$&ndash;Hamming&ndash;Code und $\mathbf{G}_{\rm D}$ gehört zum $\rm RSC \, (7, \, 5, \, 3)_8$. Siehe hierzu Teilaufgabe (3).
+
'''(1)'''&nbsp; Correct are the&nbsp; <u>solutions 2 and 3</u> &nbsp; &#8658; &nbsp; matrices&nbsp; $\mathbf{G}_{\rm B}$&nbsp; and&nbsp; $\mathbf{G}_{\rm C}$.
 +
*In the matrix&nbsp; $\mathbf{G}_{\rm C}$&nbsp; the allowed transformations&nbsp; $\alpha^8 = \alpha, \ \alpha^{10} = \alpha^3$&nbsp; and&nbsp; $\alpha^{12} = \alpha^5$&nbsp; have already been considered.
 +
 +
*The matrix&nbsp; $\mathbf{G}_{\rm A}$&nbsp; holds for the&nbsp; $(7, \, 5, \, 3)$&nbsp; Hamming code and&nbsp; $\mathbf{G}_{\rm D}$&nbsp; belongs to the&nbsp; $\rm RSC \, (7, \, 5, \, 3)_8$.&nbsp; See subtask&nbsp; '''(3)'''&nbsp; for more details.
 +
 
  
  
'''(2)'''&nbsp; Beim $\rm RSC \, (7, \, 3, \, 5)_8$ werden in jedem Codierschritt $k = 3$ Informationssymbole verarbeitet, im Codierschritt 1 die Symbole $\alpha^4, \ 1$ und $\alpha^3$. Mit der Generatormatrix $\mathbf{G}_{\rm C}$ gilt somit:
+
'''(2)'''&nbsp; In the&nbsp; $\rm RSC \, (7, \, 3, \, 5)_8$,&nbsp;  in each coding step are processed&nbsp;  $k = 3$&nbsp; information symbols, &nbsp; <br>in coding step 1 according to the specification the symbols&nbsp; $\alpha^4, \ 1$ and $\alpha^3$.  
 +
 
 +
*With the generator matrix $\mathbf{G}_{\rm C}$ thus holds:
 
:$$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}}_{\rm C} =
 
:$$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}}_{\rm C} =
 
\begin{pmatrix}
 
\begin{pmatrix}
Line 53: Line 66:
 
1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5}
 
1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5}
 
\end{pmatrix}\hspace{0.05cm}. $$
 
\end{pmatrix}\hspace{0.05cm}. $$
 
+
[[File:EN_KC_Z_2_5_neu.png|right|frame|$\rm GF(2^3)$&nbsp; representation as powers, polynomials, vectors]]
[[File:P_ID2584__KC_T_2_5_Darstellung.png|right|frame|]] Damit ergibt sich entsprechend der nebenstehenden Tabelle:
+
:$$c_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \alpha^{4}\cdot 1  + 1 \cdot 1 +  \alpha^{3}\cdot 1 =$$
+
*This results according to the adjacent auxiliary table:
:$$\ = \ \hspace{-0.15cm}
+
:$$c_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \alpha^{4}\cdot 1  + 1 \cdot 1 +  \alpha^{3}\cdot 1 =
 
(110) + (001) + (011)= (100) = \alpha^{2} \hspace{0.05cm},$$
 
(110) + (001) + (011)= (100) = \alpha^{2} \hspace{0.05cm},$$
:$$c_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \alpha^{4}\cdot 1 + 1 \cdot \alpha + \alpha^{3}\cdot \alpha^{2}= $$
+
:$$c_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \alpha^{4}\cdot 1 + 1 \cdot \alpha + \alpha^{3}\cdot \alpha^{2}=  
:$$\ = \ \hspace{-0.15cm}
 
 
  (110)  + (010) + (110) = (011) = \alpha^{3} \hspace{0.05cm},$$
 
  (110)  + (010) + (110) = (011) = \alpha^{3} \hspace{0.05cm},$$
:$$c_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}    \alpha^{4}\cdot 1 + 1 \cdot \alpha^{2} + \alpha^{3}\cdot \alpha^{4}=$$
+
:$$c_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}    \alpha^{4}\cdot 1 + 1 \cdot \alpha^{2} + \alpha^{3}\cdot \alpha^{4}=
:$$\ = \ \hspace{-0.15cm}
 
 
  (110) + (100) + (001) = (011) = \alpha^{3} \hspace{0.05cm},$$
 
  (110) + (100) + (001) = (011) = \alpha^{3} \hspace{0.05cm},$$
:$$c_3 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \alpha^{4}\cdot 1 + 1 \cdot \alpha^{3} + \alpha^{3}\cdot \alpha^{6}=$$
+
:$$c_3 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \alpha^{4}\cdot 1 + 1 \cdot \alpha^{3} + \alpha^{3}\cdot \alpha^{6}=$
:$$\ = \ \hspace{-0.15cm}
 
 
  (110) + (011) + (100) = (001) = 1 \hspace{0.05cm},$$
 
  (110) + (011) + (100) = (001) = 1 \hspace{0.05cm},$$
 
:$$c_4 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}    \alpha^{4}\cdot 1 + 1 \cdot \alpha^{4} + \alpha^{3}\cdot \alpha^{1}
 
:$$c_4 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}    \alpha^{4}\cdot 1 + 1 \cdot \alpha^{4} + \alpha^{3}\cdot \alpha^{1}
 
  = \alpha^{4} \hspace{0.05cm},$$
 
  = \alpha^{4} \hspace{0.05cm},$$
:$$c_5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}    \alpha^{4}\cdot 1 + 1 \cdot \alpha^{5} + \alpha^{3}\cdot \alpha^{3}=$$
+
:$$c_5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}    \alpha^{4}\cdot 1 + 1 \cdot \alpha^{5} + \alpha^{3}\cdot \alpha^{3}=
:$$\ = \ \hspace{-0.15cm}
 
 
  (110) + (111) + (101) =  (100) = \alpha^{2} \hspace{0.05cm},$$
 
  (110) + (111) + (101) =  (100) = \alpha^{2} \hspace{0.05cm},$$
:$$c_6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \alpha^{4}\cdot 1 + 1 \cdot \alpha^{6} + \alpha^{3}\cdot \alpha^{5}=$$
+
:$$c_6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \alpha^{4}\cdot 1 + 1 \cdot \alpha^{6} + \alpha^{3}\cdot \alpha^{5}=
:$$\ = \ \hspace{-0.15cm}
 
 
  (\alpha^{2} + \alpha) + (\alpha^2 +1) + \alpha = 1 \hspace{0.05cm}.$$
 
  (\alpha^{2} + \alpha) + (\alpha^2 +1) + \alpha = 1 \hspace{0.05cm}.$$
  
Man erhält das genau gleiche Ergebnis wie in der Teilaufgabe (4) von [[Aufgaben:2.07_Reed%E2%80%93Solomon%E2%80%93Code_(7,_3,_5)(Base_8)|Aufgabe A2.7]]. Richtig sind die <u>Lösungsvorschläge 1 und 2</u>. Es gilt nicht $c_6 = 0$, sondern $c_6 = 1$.
+
*You get exactly the same result as in subtask&nbsp; '''(4)'''&nbsp; of&nbsp; [[Aufgaben:Exercise_2.07:_Reed-Solomon_Code_(7,_3,_5)_to_Base_8|"Exercise 2.7"]].&nbsp; Correct are the&nbsp; <u>solutions 1 and 2</u>.  
 +
*So it is not&nbsp; $c_6 = 0$,&nbsp; but $c_6 = 1$.
  
  
'''(3)'''&nbsp; Beim $\rm RSC \, (7, \, 5, \, 3)_8$ ist nun das Informationswort $\underline{u} = (u_0, \, u_1, \, u_2, \, u_3, \, u_4)$ zu berücksichtigen. Mit der Generatormatrix $\mathbf{G}_{\rm D}$ erhält man somit:
+
 
 +
'''(3)'''&nbsp; At the&nbsp; $\rm RSC \, (7, \, 5, \, 3)_8$,&nbsp; the information word&nbsp; $\underline{u} = (u_0, \, u_1, \, u_2, \, u_3, \, u_4)$&nbsp; must be considered.  
 +
*With the generator matrix&nbsp; $\mathbf{G}_{\rm D}$&nbsp; one obtains:
 
:$$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}}_{\rm D} =
 
:$$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}}_{\rm D} =
 
\begin{pmatrix}
 
\begin{pmatrix}
Line 92: Line 103:
 
\end{pmatrix}\hspace{0.05cm}. $$
 
\end{pmatrix}\hspace{0.05cm}. $$
  
Daraus folgt:
+
*From this it follows:
:$$c_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \alpha^{4}\cdot 1  + 1 \cdot 1 +  \alpha^{3}\cdot 1  + 0 \cdot 1 +  \alpha^{6}\cdot 1=$$
+
:$$c_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \alpha^{4}\cdot 1  + 1 \cdot 1 +  \alpha^{3}\cdot 1  + 0 \cdot 1 +  \alpha^{6}\cdot 1= (110) + (001) + (011) + (000) +  (101) = (001) = 1 \hspace{0.05cm},$$
:$$\ = \ \hspace{-0.15cm} (110) + (001) + (011) + (000) +  (101) = (001) = 1 \hspace{0.05cm},$$
 
 
:$$c_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \left [ \alpha^{4}\cdot 1 + 1 \cdot \alpha + \alpha^{3}\cdot \alpha^{2} \right ] + 0 \cdot \alpha^{3} +  \alpha^{6}\cdot \alpha^{4}=  \left [ \alpha^{3} \right ] + \alpha^{3} = 0 \hspace{0.05cm}.$$
 
:$$c_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \left [ \alpha^{4}\cdot 1 + 1 \cdot \alpha + \alpha^{3}\cdot \alpha^{2} \right ] + 0 \cdot \alpha^{3} +  \alpha^{6}\cdot \alpha^{4}=  \left [ \alpha^{3} \right ] + \alpha^{3} = 0 \hspace{0.05cm}.$$
  
Hierbei ist berücksichtigt, dass der Klammerausdruck $[ \ ... \ ]$ genau dem Ergebnis $c_1$ der Teilaufgabe (2) entspricht. Entsprechendes wird bei den folgenden Berechnungen ebenfalls berücksichtigt:
+
*This takes into account that the bracket expression&nbsp; $[ \ \text{...} \ ]$&nbsp; corresponds exactly to the result&nbsp; $c_1$&nbsp; of subtask&nbsp; '''(2)'''.
 +
 
 +
*Corresponding is also considered in the following calculations:
 
:$$c_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}    \left [ \alpha^{3} \right ] + \alpha^{6}\cdot \alpha^{1}=
 
:$$c_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}    \left [ \alpha^{3} \right ] + \alpha^{6}\cdot \alpha^{1}=
 
\left [ \alpha^{3} \right ] + \alpha^{7} =
 
\left [ \alpha^{3} \right ] + \alpha^{7} =
Line 113: Line 125:
 
  =  (001) + (100) = (101) = \alpha^{6} \hspace{0.05cm}.$$
 
  =  (001) + (100) = (101) = \alpha^{6} \hspace{0.05cm}.$$
  
Das heißt: <u>Alle Lösungsvorschläge</u> sind richtig.
+
*This means:&nbsp; <u>All proposed solutions</u>&nbsp; are correct.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Kanalcodierung|^2.3 Definition und Eigenschaften von Reed–Solomon–Codes^]]
+
[[Category:Channel Coding: Exercises|^2.3 Reed–Solomon Codes^]]

Latest revision as of 16:11, 10 October 2022

Four generator matrices, three of which describe Reed-Solomon codes

In the  "Exercise 2.7"  you should determine the code words of the  $\rm RSC \, (7, \, 3, \, 5)_8$  via a polynomial.  However,  you can also determine the code word  $\underline{c}$   from the information word  $\underline{u}$  and the generator matrix  $\mathbf{G}$  according to the following equation:

$$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}} \hspace{0.05cm}.$$
  • Two of these generator matrices describe the  $\rm RSC \, (7, \, 3, \, 5)_8$.  In the subtask  (1)  is explicitly asked which.
  • Another generator matrix belongs to  $\rm RSC \, (7, \, 5, \, 3)_8$,  which is considered in subtask  (3).



Hints:

  • Important information about Reed–Solomon codes can also be found in  "Exercise 2.7".



Questions

1

Which of the generator polynomials describe the  $\rm RSC \, (7, \, 3, \, 5)_8$?

the matrix  $\mathbf{G}_{\rm A}$,
the matrix  $\mathbf{G}_{\rm B}$,
the matrix  $\mathbf{G}_{\rm C}$,
the matrix  $\mathbf{G}_{\rm D}$.

2

The information sequence starts with  $\alpha^4, \, 1, \, \alpha^3, \, 0, \, \alpha^6$.  Determine the first code word for the  $\rm RSC \, (7, \, 3, \, 5)_8$.

It holds  $c_0 = \alpha^2$,
It holds  $c_1 = \alpha^3$,
It holds  $c_6 = 0$.

3

What is the code word for the  $\rm RSC \, (7, \, 5, \, 3)_8$ given the same sequence of information?

It holds  $c_0 = 1$,
It holds  $c_1 = 0$,
It holds  $c_6 = \alpha^6$.


Solution

(1)  Correct are the  solutions 2 and 3   ⇒   matrices  $\mathbf{G}_{\rm B}$  and  $\mathbf{G}_{\rm C}$.

  • In the matrix  $\mathbf{G}_{\rm C}$  the allowed transformations  $\alpha^8 = \alpha, \ \alpha^{10} = \alpha^3$  and  $\alpha^{12} = \alpha^5$  have already been considered.
  • The matrix  $\mathbf{G}_{\rm A}$  holds for the  $(7, \, 5, \, 3)$  Hamming code and  $\mathbf{G}_{\rm D}$  belongs to the  $\rm RSC \, (7, \, 5, \, 3)_8$.  See subtask  (3)  for more details.


(2)  In the  $\rm RSC \, (7, \, 3, \, 5)_8$,  in each coding step are processed  $k = 3$  information symbols,  
in coding step 1 according to the specification the symbols  $\alpha^4, \ 1$ and $\alpha^3$.

  • With the generator matrix $\mathbf{G}_{\rm C}$ thus holds:
$$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}}_{\rm C} = \begin{pmatrix} \alpha^4 & 1 & \alpha^3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1\\ 1 & \alpha^1 & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5} \end{pmatrix}\hspace{0.05cm}. $$
$\rm GF(2^3)$  representation as powers, polynomials, vectors
  • This results according to the adjacent auxiliary table:
$$c_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot 1 + \alpha^{3}\cdot 1 = (110) + (001) + (011)= (100) = \alpha^{2} \hspace{0.05cm},$$
$$c_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha + \alpha^{3}\cdot \alpha^{2}= (110) + (010) + (110) = (011) = \alpha^{3} \hspace{0.05cm},$$
$$c_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha^{2} + \alpha^{3}\cdot \alpha^{4}= (110) + (100) + (001) = (011) = \alpha^{3} \hspace{0.05cm},$$
$$c_3 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha^{3} + \alpha^{3}\cdot \alpha^{6}=$ (110) + (011) + (100) = (001) = 1 \hspace{0.05cm},$$
$$c_4 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha^{4} + \alpha^{3}\cdot \alpha^{1} = \alpha^{4} \hspace{0.05cm},$$
$$c_5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha^{5} + \alpha^{3}\cdot \alpha^{3}= (110) + (111) + (101) = (100) = \alpha^{2} \hspace{0.05cm},$$
$$c_6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha^{6} + \alpha^{3}\cdot \alpha^{5}= (\alpha^{2} + \alpha) + (\alpha^2 +1) + \alpha = 1 \hspace{0.05cm}.$$
  • You get exactly the same result as in subtask  (4)  of  "Exercise 2.7".  Correct are the  solutions 1 and 2.
  • So it is not  $c_6 = 0$,  but $c_6 = 1$.


(3)  At the  $\rm RSC \, (7, \, 5, \, 3)_8$,  the information word  $\underline{u} = (u_0, \, u_1, \, u_2, \, u_3, \, u_4)$  must be considered.

  • With the generator matrix  $\mathbf{G}_{\rm D}$  one obtains:
$$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}}_{\rm D} = \begin{pmatrix} \alpha^4 & 1 & \alpha^3 & 0 & \alpha^6 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1\\ 1 & \alpha^1 & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5}\\ 1 & \alpha^3 & \alpha^6 & \alpha^2 & \alpha^5 & \alpha^{1} & \alpha^{4}\\ 1 & \alpha^4 & \alpha^1 & \alpha^5 & \alpha^2 & \alpha^{6} & \alpha^{3} \end{pmatrix}\hspace{0.05cm}. $$
  • From this it follows:
$$c_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot 1 + \alpha^{3}\cdot 1 + 0 \cdot 1 + \alpha^{6}\cdot 1= (110) + (001) + (011) + (000) + (101) = (001) = 1 \hspace{0.05cm},$$
$$c_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ \alpha^{4}\cdot 1 + 1 \cdot \alpha + \alpha^{3}\cdot \alpha^{2} \right ] + 0 \cdot \alpha^{3} + \alpha^{6}\cdot \alpha^{4}= \left [ \alpha^{3} \right ] + \alpha^{3} = 0 \hspace{0.05cm}.$$
  • This takes into account that the bracket expression  $[ \ \text{...} \ ]$  corresponds exactly to the result  $c_1$  of subtask  (2).
  • Corresponding is also considered in the following calculations:
$$c_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ \alpha^{3} \right ] + \alpha^{6}\cdot \alpha^{1}= \left [ \alpha^{3} \right ] + \alpha^{7} = (011) + (001) = (010) = \alpha^{1} \hspace{0.05cm},$$
$$c_3 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ 1 \right ] + \alpha^{6}\cdot \alpha^{5}= \left [ 1 \right ] + \alpha^{4}= (001) + (110) = (111) = \alpha^{5} \hspace{0.05cm},$$
$$c_4 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ \alpha^{4} \right ] + \alpha^{6}\cdot \alpha^{2}= \left [ \alpha^{4} \right ] + \alpha^{1} = (110) + (010) = (100) = \alpha^{2} \hspace{0.05cm},$$
$$c_5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ \alpha^{2} \right ] + \alpha^{6}\cdot \alpha^{6}= \left [ \alpha^{2} \right ] + \alpha^{5} = (100) + (111) = (011) = \alpha^{3} \hspace{0.05cm},$$
$$c_6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ 1 \right ] + \alpha^{6}\cdot \alpha^{3}= \left [ 1 \right ] + \alpha^{2} = (001) + (100) = (101) = \alpha^{6} \hspace{0.05cm}.$$
  • This means:  All proposed solutions  are correct.