Difference between revisions of "Aufgaben:Exercise 2.15: Block Error Probability with AWGN"

From LNTwww
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Fehlerwahrscheinlichkeit und Anwendungsgebiete}}
+
{{quiz-Header|Buchseite=Channel_Coding/Error_Probability_and_Areas_of_Application}}
  
[[File:P_ID2571__KC_A_2_15neu.png|right|frame|Unvollständige Ergebnistabelle]]
+
[[File:P_ID2571__KC_A_2_15neu.png|right|frame|Incomplete table of results]]
Am Beispiel des  $\rm RSC \, (7, \, 3, \, 5)_8$  mit den Parametern
+
Using the example of  $\rm RSC \, (7, \, 3, \, 5)_8$  with the parameters
* $n = 7$  (Anzahl der Codesymbole),
+
* $n = 7$  (number of code symbols),
* $k =3$  (Anzahl der Informationssymbole),
+
* $k =3$  (number of information symbols),
* $t = 2$  (Korrekturfähigkeit)
+
* $t = 2$  (correction capability).
  
  
soll die Berechnung der Blockfehlerwahrscheinlichkeit beim  [[Channel_Coding/Fehlerwahrscheinlichkeit_und_Anwendungsgebiete#Blockfehlerwahrscheinlichkeit_f.C3.BCr_RSC_und_BDD|Bounded Distance Decoding]]  (BDD) gezeigt werden. Die entsprechende Gleichung lautet:
+
the calculation of the block error probability in  [[Channel_Coding/Error_Probability_and_Areas_of_Application#Block_error_probability_for_RSC_and_BDD|"Bounded Distance Decoding"]]  (BDD) shall be shown. The corresponding equation is:
:$${\rm Pr(Blockfehler)}  = {\rm Pr}(\underline{v} \ne \underline{u}) =
+
:$${\rm Pr(Block\:error)}  = {\rm Pr}(\underline{v} \ne \underline{u}) =
 
\sum_{f = t + 1}^{n} {n \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{n-f} \hspace{0.05cm}.$$
 
\sum_{f = t + 1}^{n} {n \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{n-f} \hspace{0.05cm}.$$
  
Die Berechnung erfolgt für den  [[Channel_Coding/Signal_classification#AWGN.E2.80.93Kanal_bei_bin.C3.A4rem_Eingang|AWGN–Kanal]], der durch den Parameter  $E_{\rm B}/N_0$  gekennzeichnet ist.  
+
The calculation is performed for the  [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables#Exceedance_probability|"AWGN channel"
 +
]] characterized by the parameter  $E_{\rm B}/N_0$ .  
  
*Der Quotient  $E_{\rm B}/{N_0}$  lässt sich über die Beziehung
+
*The quotient  $E_{\rm B}/{N_0}$  can be expressed by the relation
 
:$$\varepsilon = {\rm Q} \big (\sqrt{{2 \cdot R \cdot E_{\rm B}}/{N_0}} \big ) $$  
 
:$$\varepsilon = {\rm Q} \big (\sqrt{{2 \cdot R \cdot E_{\rm B}}/{N_0}} \big ) $$  
in das  [[Channel_Coding/Signal_classification#Binary_Symmetric_Channel_.E2.80.93_BSC|BSC–Modell]]  überführen, wobei  $R$  die Coderate bezeichnet  $($hier:  $R = 3/7)$  und  ${\rm Q}(x)$  das  [[Theory_of_Stochastic_Signals/Gaußverteilte_Zufallsgrößen#.C3.9Cberschreitungswahrscheinlichkeit|komplementäre Gaußsche Fehlerintegral]]  angibt.  
+
into the  [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Symmetric_Channel_.E2.80. 93_BSC|"BSC model"]]  where  $R$  denotes the code rate  $($here:  $R = 3/7)$  and  ${\rm Q}(x)$  indicates the  [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables#Exceedance_probability|"complementary Gaussian error integral"]] .
*Da aber beim betrachteten Code die Symbole aus  $\rm GF(2^3)$  entstammen, muss das BSC–Modell mit Parameter  $\varepsilon$  ebenfalls noch an die Aufgabenstellung adaptiert werden.  
+
*But since in the considered code the symbols come from  $\rm GF(2^3)$ , the BSC model with parameter  $\varepsilon$  must also still be adapted to the task.  
*Für die Verfälschungwahrscheinlichkeit des  [[Channel_Coding/Fehlerwahrscheinlichkeit_und_Anwendungsgebiete#Blockfehlerwahrscheinlichkeit_f.C3.BCr_RSC_und_BDD|$m$–BSC–Modells]]  gilt, wobei hier  $m = 3$  zu setzen ist (drei Bit pro Codesymbol):
+
*For the corruption probability of the  [[Channel_Coding/Error_Probability_and_Areas_of_Application#Block_error_probability_for_RSC_and_BDD|"$m$ BSC model"]]  applies, where here  $m = 3$  is to be set (three bits per code symbol):
 
:$$\varepsilon_{\rm S} = 1 - (1 - \varepsilon)^m  
 
:$$\varepsilon_{\rm S} = 1 - (1 - \varepsilon)^m  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
  
Für einige  $E_{\rm B}/N_0$–Werte sind die Ergebnisse in obiger Tabelle eingetragen. Die beiden gelb hinterlegten Zeilen werden hier kurz erläutert:
+
For some  $E_{\rm B}/N_0$ values the results are entered in the table above. The two rows with yellow background are briefly explained here:
* Für  $10 \cdot \lg {E_{\rm B}/N_0} = 4 \ \rm dB$  ergibt sich  $\varepsilon \approx {\rm Q}(1.47) \approx 0.071$  und  $\varepsilon_{\rm S} \approx 0.2$. Die Blockfehlerwahrscheinlichkeit kann hier am einfachsten über das Komplement berechnet werden:
+
* For  $10 \cdot \lg {E_{\rm B}/N_0} = 4 \ \rm dB$  we get  $\varepsilon \approx {\rm Q}(1.47) \approx 0.071$  and  $\varepsilon_{\rm S} \approx 0.2$. The block error probability here can most easily be calculated using the complement:
:$${\rm Pr(Blockfehler)}  = 1 - \left [ {7 \choose 0} \cdot 0.8^7 + {7 \choose 1} \cdot 0.2 \cdot 0.8^6 + {7 \choose 2} \cdot 0.2^2 \cdot 0.8^5\right ]  
+
:$${\rm Pr(Block\:error)}  = 1 - \left [ {7 \choose 0} \cdot 0.8^7 + {7 \choose 1} \cdot 0.2 \cdot 0.8^6 + {7 \choose 2} \cdot 0.2^2 \cdot 0.8^5\right ]  
 
\approx 0.148  \hspace{0.05cm}.$$
 
\approx 0.148  \hspace{0.05cm}.$$
* Für  $10 \cdot \lg {E_{\rm B}/N_0} = 12 \ \rm dB$  erhält man  $\varepsilon \approx 1.2 \cdot 10^{-4}$  und  $\varepsilon_{\rm S} \approx 3.5 \cdot 10^{-4}$. Mit dieser sehr kleinen Verfälschungswahrscheinlichkeit dominiert der  $f = 3$–Term, und man erhält:
+
* For  $10 \cdot \lg {E_{\rm B}/N_0} = 12 \ \rm dB$  one gets  $\varepsilon \approx 1.2 \cdot 10^{-4}$  and  $\varepsilon_{\rm S} \approx 3.5 \cdot 10^{-4}$. With this very small corruption probability, the  $f = 3$ term dominates, and we obtain:
:$${\rm Pr(Blockfehler)}  \approx  {7 \choose 3} \cdot (3.5 \cdot 10^{-4})^3 \cdot (1- 3.5 \cdot 10^{-4})^4  
+
:$${\rm Pr(Block\:error)}  \approx  {7 \choose 3} \cdot (3.5 \cdot 10^{-4})^3 \cdot (1- 3.5 \cdot 10^{-4})^4  
 
\approx 1.63 \cdot 10^{-9}  \hspace{0.05cm}.$$
 
\approx 1.63 \cdot 10^{-9}  \hspace{0.05cm}.$$
  
*Sie sollen für die rot hinterlegten Zeilen  $(10 \cdot \lg {E_{\rm B}/N_0} = 5 \ \rm dB, \ 8 \ dB$,  $10 \ \rm dB)$  die Blockfehlerwahrscheinlichkeiten berechnen.
+
*You are to calculate the block error probabilities for the rows highlighted in red  $(10 \cdot \lg {E_{\rm B}/N_0} = 5 \ \rm dB, \ 8 \rm dB$,  $10 \ \rm dB)$  .
*Die blau hinterlegten Zeilen zeigen einige Ergebnisse der  [[Aufgaben:Aufgabe_2.15Z:_Nochmals_RS-Blockfehlerwahrscheinlichkeit|Aufgabe 2.15Z]]. Dort wird  ${\rm Pr}(\underline{v} ≠ \underline{u})$  für  $\varepsilon_{\rm S} = 10\%,  \ 1\%$  $0.1\%$ berechnet.  
+
*The rows with blue background show some results of  [[Aufgaben:Exercise_2.15Z:_Block_Error_Probability_once_more|"Exercise 2.15Z"]]. There  ${\rm Pr}(\underline{v} ≠ \underline{u})$  is calculated for  $\varepsilon_{\rm S} = 10\%,  \ 1\%$  $0.1\%$.  
*In den Teilaufgaben '''(4)''' und '''(5)''' sollen Sie den Zusammenhang zwischen der Größe  $\varepsilon_{\rm S}$  und dem AWGN–Parameter  $E_{\rm B}/N_0$  herstellen und somit die obige Tabelle vervollständigen.
+
*In subtasks '''(4)''' and '''(5)''' you are to establish the relationship between the size  $\varepsilon_{\rm S}$  and the AWGN parameter  $E_{\rm B}/N_0$  thus completing the above table.
  
  
Line 42: Line 43:
  
  
''Hinweise:''
+
Hints:
* Die Aufgabe gehört zum Kapitel  [[Channel_Coding/Fehlerwahrscheinlichkeit_und_Anwendungsgebiete| Fehlerwahrscheinlichkeit und Anwendungsgebiete]].
+
* The exercise belongs to the chapter  [[Channel_Coding/Error_Probability_and_Areas_of_Application| "Error Probability and Application Areas"]].
* Wir verweisen Sie hier auf die beiden  interaktive Applets 
+
* We refer you here to the two interactive applets 
::[[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|Komplementäre Gaußsche Fehlerfunktionen]]  und   
+
::[[Applets:Complementary_Gaussian_Error_Functions|"Complementary Gaussian error functions"]]  and   
::[[Applets:Binomial-_und_Poissonverteilung_(Applet)|Binomial- und Poissonverteilung]].
+
::[[Applets:Binomial_and_Poisson_Distribution_(Applet)|"Binomial and Poisson Distribution"]].
  
  
Line 52: Line 53:
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß ist die Blockfehlerwahrscheinlichkeit für&nbsp;  $10 \cdot \lg {E_{\rm B}/N_0} \hspace{0.15cm}\underline{= 5 \ \rm dB}$?
+
{What is the block error probability for&nbsp;  $10 \cdot \lg {E_{\rm B}/N_0} \hspace{0.15cm}\underline{= 5 \ \rm dB}$?
 
|type="{}"}
 
|type="{}"}
${\rm Pr(Blockfehler)} \ = \ ${ 6.66 3% } $\ \cdot 10^{-2}$
+
${\rm Pr(Block\:error)} \ = \ ${ 6.66 3% } $\ \cdot 10^{-2}$
  
{Wie groß ist die Blockfehlerwahrscheinlichkeit für&nbsp; $10 \cdot \lg {E_{\rm B}/N_0} \hspace{0.15cm}\underline{= 8 \ \rm dB}$?
+
{What is the block error probability for&nbsp; $10 \cdot \lg {E_{\rm B}/N_0} \hspace{0.15cm}\underline{= 8 \ \rm dB}$?
 
|type="{}"}
 
|type="{}"}
${\rm Pr(Blockfehler)} \ = \ ${ 8.63 3% } $\ \cdot 10^{-4}$
+
${\rm Pr(Block\:error)} \ = \ ${ 8.63 3% } $\ \cdot 10^{-4}$
  
{Wie groß ist die Blockfehlerwahrscheinlichkeit für&nbsp; $10 \cdot \lg {E_{\rm B}/N_0}\hspace{0.15cm}\underline{ = 10 \ \rm dB}$?
+
{What is the block error probability for&nbsp; $10 \cdot \lg {E_{\rm B}/N_0}\hspace{0.15cm}\underline{ = 10 \ \rm dB}$?
 
|type="{}"}
 
|type="{}"}
${\rm Pr(Blockfehler)} \ = \ ${ 4.3 3% } $\ \cdot 10^{-6}$
+
${\rm Pr(Block\:error)} \ = \ ${ 4.3 3% } $\ \cdot 10^{-6}$
  
{Wie hängt&nbsp; $\varepsilon_{\rm S} = 0.1$&nbsp; mit&nbsp; $10 \cdot \lg {E_{\rm B}/N_0}$&nbsp; zusammen? &nbsp; ''Hinweis:'' &nbsp;Verwenden Sie das angegebene Applet zur Berechnung von&nbsp; ${\rm Q}(x)$.
+
{How is&nbsp; $\varepsilon_{\rm S} = 0.1$&nbsp; related to&nbsp; $10 \cdot \lg {E_{\rm B}/N_0}$&nbsp;? &nbsp; ''Note:'' &nbsp;Use the given applet to calculate&nbsp; ${\rm Q}(x)$.
 
|type="{}"}
 
|type="{}"}
 
$\varepsilon_{\rm S} = 10^{-1} \text{:} \hspace{0.4cm} 10 \cdot \lg {E_{\rm B}/N_0} \ = \ ${ 5.87 3% } $\ \rm dB$
 
$\varepsilon_{\rm S} = 10^{-1} \text{:} \hspace{0.4cm} 10 \cdot \lg {E_{\rm B}/N_0} \ = \ ${ 5.87 3% } $\ \rm dB$
  
{Ermitteln Sie auch die&nbsp; $E_{\rm B}/N_0$&ndash;Werte&nbsp; $($in&nbsp; $\rm dB)$&nbsp; für&nbsp; $\varepsilon_{\rm S} = 0.01$&nbsp; und&nbsp; $\varepsilon_{\rm S} = 0.001$. Vervollständigen Sie die Tabelle.
+
{Find also the&nbsp; $E_{\rm B}/N_0$ values&nbsp; $($in&nbsp; $\rm dB)$&nbsp; for&nbsp; $\varepsilon_{\rm S} = 0.01$&nbsp; and&nbsp; $\varepsilon_{\rm S} = 0.001$. Complete the table...
 
|type="{}"}
 
|type="{}"}
 
$\varepsilon_{\rm S} = 10^{-2} \text{:} \hspace{0.4cm} 10 \cdot \lg {E_{\rm B}/N_0} \ = \ $ { 9.32 3% } $\ \rm dB$
 
$\varepsilon_{\rm S} = 10^{-2} \text{:} \hspace{0.4cm} 10 \cdot \lg {E_{\rm B}/N_0} \ = \ $ { 9.32 3% } $\ \rm dB$
Line 76: Line 77:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Aus der Tabelle auf der Angabenseite kann der BSC&ndash;Parameter $\varepsilon = 0.0505$ abgelesen werden.  
+
'''(1)'''&nbsp; From the table on the information page, the BSC parameter $\varepsilon = 0.0505$ can be read.  
*Damit erhält man für die Symbolverfälschungswahrscheinlichkeit $\varepsilon_{\rm S}$ mit $m = 3$:
+
*This gives $\varepsilon_{\rm S}$ for the symbol corruption probability with $m = 3$:
 
:$$1 - \varepsilon_{\rm S} = (1 - 0.0505)^3 \approx 0.856  
 
:$$1 - \varepsilon_{\rm S} = (1 - 0.0505)^3 \approx 0.856  
 
\hspace{0.3cm}\Rightarrow  \hspace{0.3cm}
 
\hspace{0.3cm}\Rightarrow  \hspace{0.3cm}
Line 85: Line 86:
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*Der schnellste Weg zur Berechnung der Blockfehlerwahrscheinlichkeit führt hier über die Formel
+
*The fastest way to calculate the block error probability here is to use the formula
:$${\rm Pr(Blockfehler)}  \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 - {\rm Pr}(f=0) -  {\rm Pr}(f=1) - {\rm Pr}(f=2) = 1 - 1 \cdot 0.856^7 -  
+
:$${\rm Pr(Block\:error)}  \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 - {\rm Pr}(f=0) -  {\rm Pr}(f=1) - {\rm Pr}(f=2) = 1 - 1 \cdot 0.856^7 -  
 
7 \cdot 0.144^1 \cdot 0.856^6 -  21 \cdot 0.144^2 \cdot 0.856^5$$
 
7 \cdot 0.144^1 \cdot 0.856^6 -  21 \cdot 0.144^2 \cdot 0.856^5$$
:$$\Rightarrow \hspace{0.3cm} {\rm Pr(Blockfehler)}  \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Pr}(\underline{v} \ne \underline{u}) =1 - 0.3368 - 0.3965 - 0.2001 \hspace{0.15cm} \underline{=0.0666}  
+
:$$\Rightarrow \hspace{0.3cm} {\rm Pr(Block\:error)}  \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Pr}(\underline{v} \ne \underline{u}) =1 - 0.3368 - 0.3965 - 0.2001 \hspace{0.15cm} \underline{=0.0666}  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; Nach gleichem Rechengang wie in Teilaufgabe '''(1)''' ergibt sich mit $\varepsilon_{\rm S} \approx 0.03 \ \Rightarrow \ 1 - \varepsilon_{\rm S} = 0.97$:
+
'''(2)'''&nbsp; Following the same calculation procedure as in subtask '''(1)''', the following is obtained with $\varepsilon_{\rm S} \approx 0.03 \ \Rightarrow \ 1 - \varepsilon_{\rm S} = 0.97$:
:$${\rm Pr(Blockfehler)}   
+
:$${\rm Pr(Block\:error)}   
 
\hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 \hspace{-0.05cm}-\hspace{-0.05cm} 1 \cdot 0.97^7 \hspace{-0.05cm}-\hspace{-0.05cm}  
 
\hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 \hspace{-0.05cm}-\hspace{-0.05cm} 1 \cdot 0.97^7 \hspace{-0.05cm}-\hspace{-0.05cm}  
 
7 \cdot 0.03^1 \cdot 0.97^6 \hspace{-0.05cm}-\hspace{-0.05cm}  21 \cdot 0.03^2 \cdot 0.97^5 =1 \hspace{-0.05cm}-\hspace{-0.05cm} 0.8080 \hspace{-0.05cm}-\hspace{-0.05cm} 0.1749\hspace{-0.05cm}-\hspace{-0.05cm} 0.0162= 1 \hspace{-0.05cm}-\hspace{-0.05cm} 0.9991  = 9 \cdot 10^{-4}  
 
7 \cdot 0.03^1 \cdot 0.97^6 \hspace{-0.05cm}-\hspace{-0.05cm}  21 \cdot 0.03^2 \cdot 0.97^5 =1 \hspace{-0.05cm}-\hspace{-0.05cm} 0.8080 \hspace{-0.05cm}-\hspace{-0.05cm} 0.1749\hspace{-0.05cm}-\hspace{-0.05cm} 0.0162= 1 \hspace{-0.05cm}-\hspace{-0.05cm} 0.9991  = 9 \cdot 10^{-4}  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*Man sieht, dass hier die Differenz zwischen zwei fast gleich großen Zahlen gebildet werden muss, so dass das Ergebnis mit einem Fehler behaftet sein könnte.  
+
*You can see that here the difference between two numbers of almost the same size must be formed, so that the result could be affected by an error.  
*Deshalb berechnen wir noch folgende Größen:
+
*Therefore we still calculate the following quantities:
 
:$${\rm Pr}(f=3) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  
 
:$${\rm Pr}(f=3) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  
 
{7 \choose 3} \cdot \varepsilon_{\rm S}^3 \cdot (1 - \varepsilon_{\rm S})^4 = 35 \cdot 0.03^3 \cdot 0.97^4 = 8.366 \cdot 10^{-4}\hspace{0.05cm},$$
 
{7 \choose 3} \cdot \varepsilon_{\rm S}^3 \cdot (1 - \varepsilon_{\rm S})^4 = 35 \cdot 0.03^3 \cdot 0.97^4 = 8.366 \cdot 10^{-4}\hspace{0.05cm},$$
Line 108: Line 109:
 
:$$\Rightarrow  \hspace{0.3cm} {\rm Pr(Blockfehler)} = {\rm Pr}(\underline{v} \ne \underline{u})  \approx {\rm Pr}(f=3) +  {\rm Pr}(f=4) + {\rm Pr}(f=5)  \hspace{0.15cm} \underline{=8.63 \cdot 10^{-4}} \hspace{0.05cm}.$$
 
:$$\Rightarrow  \hspace{0.3cm} {\rm Pr(Blockfehler)} = {\rm Pr}(\underline{v} \ne \underline{u})  \approx {\rm Pr}(f=3) +  {\rm Pr}(f=4) + {\rm Pr}(f=5)  \hspace{0.15cm} \underline{=8.63 \cdot 10^{-4}} \hspace{0.05cm}.$$
  
*Auf die Terme für $f = 6$ und $f = 7$ kann hier verzichtet werden. Sie liefern keinen relevanten Beitrag.
+
*The terms for $f = 6$ and $f = 7$ can be omitted here. They do not provide a relevant contribution.
  
  
  
  
'''(3)'''&nbsp; Hier ist bereits $\varepsilon_{\rm S} = 0.005 \ \Rightarrow \ 1 - \varepsilon_{\rm S} = 0.995$ in der Tabelle vorgegeben.  
+
'''(3)'''&nbsp; Here $\varepsilon_{\rm S} = 0.005 \ \Rightarrow \ 1 - \varepsilon_{\rm S} = 0.995$ is already given in the table.  
*Der (weitaus) dominierende Term bei der Berechnung der Blockfehlerwahrscheinlichkeit ist ${\rm Pr}(f = 3)$:
+
*The (by far) dominant term in the calculation of the block error probability is ${\rm Pr}(f = 3)$:.
 
:$${\rm Pr(Blockfehler)} = {\rm Pr}(\underline{v} \ne \underline{u})  \approx {\rm Pr}(f=3) = {7 \choose 3} \cdot 0.005^3 \cdot 0.995^4  
 
:$${\rm Pr(Blockfehler)} = {\rm Pr}(\underline{v} \ne \underline{u})  \approx {\rm Pr}(f=3) = {7 \choose 3} \cdot 0.005^3 \cdot 0.995^4  
 
\hspace{0.15cm} \underline{\approx 4.3 \cdot 10^{-6}} \hspace{0.05cm}.$$
 
\hspace{0.15cm} \underline{\approx 4.3 \cdot 10^{-6}} \hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; Für den BSC&ndash;Parameter $\varepsilon$ gilt mit $\varepsilon_{\rm S} = 0.1$:
+
'''(4)'''&nbsp; For the BSC parameter $\varepsilon$ holds with $\varepsilon_{\rm S} = 0.1$:
 
:$$\varepsilon = 1 -(1 - \varepsilon_{\rm S})^{1/3} = 1 - 0.9^{1/3} \approx 0.0345  
 
:$$\varepsilon = 1 -(1 - \varepsilon_{\rm S})^{1/3} = 1 - 0.9^{1/3} \approx 0.0345  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*Der Zusammenhang zwischen $\varepsilon$ und $E_{\rm B}/N_0$ lautet:
+
*The relation between $\varepsilon$ and $E_{\rm B}/N_0$ is:
 
:$$\varepsilon = {\rm Q}(x)\hspace{0.05cm}, \hspace{0.5cm} x = \sqrt{2 \cdot R \cdot E_{\rm B}/N_0}\hspace{0.05cm}.$$
 
:$$\varepsilon = {\rm Q}(x)\hspace{0.05cm}, \hspace{0.5cm} x = \sqrt{2 \cdot R \cdot E_{\rm B}/N_0}\hspace{0.05cm}.$$
  
*Die Inverse $x = {\rm Q}^{-1}(0.0345)$ ergibt sich mit dem Applet  [[Applets:QFunction|Komplementäre Gaußsche Fehlerfunktionen]] zu $x = 1.82$.  
+
*The inverse $x = {\rm Q}^{-1}(0.0345)$ is obtained with the applet [[Applets:QFunction|"Complementary Gaussian Error Functions"]] to $x = 1.82$.  
*Damit erhält man weiter:
+
*This further gives:
 
:$$E_{\rm B}/N_0 = \frac{x^2}{2R} = \frac{1.82^2}{2R \cdot 3/7} \approx 3.864  
 
:$$E_{\rm B}/N_0 = \frac{x^2}{2R} = \frac{1.82^2}{2R \cdot 3/7} \approx 3.864  
 
\hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}
 
\hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}
Line 134: Line 135:
  
  
'''(5)'''&nbsp; Nach gleicher Rechnung erhält man
+
'''(5)'''&nbsp; After the same calculation one obtains
 
* für $\varepsilon_{\rm S} = 10^{-2} \ \Rightarrow \ \varepsilon \approx 0.33 \cdot 10^{-2} \ \Rightarrow \ x = {\rm Q}^{-1}(\varepsilon) = 2.71$
 
* für $\varepsilon_{\rm S} = 10^{-2} \ \Rightarrow \ \varepsilon \approx 0.33 \cdot 10^{-2} \ \Rightarrow \ x = {\rm Q}^{-1}(\varepsilon) = 2.71$
 
:$$E_{\rm B}/N_0 = \frac{x^2}{2R} = \frac{2.71^2}{2R \cdot 3/7} \approx 8.568  
 
:$$E_{\rm B}/N_0 = \frac{x^2}{2R} = \frac{2.71^2}{2R \cdot 3/7} \approx 8.568  
Line 141: Line 142:
 
\hspace{0.15cm} \underline{\approx 9.32 \,\, {\rm dB}} \hspace{0.05cm}, $$
 
\hspace{0.15cm} \underline{\approx 9.32 \,\, {\rm dB}} \hspace{0.05cm}, $$
  
* für $\varepsilon_{\rm S} = 10^{-3} \ \Rightarrow \ \varepsilon \approx 0.33 \cdot 10^{-3} \ \Rightarrow \ x = {\rm Q}^{-1}(\varepsilon) = 3.4$:
+
* for $\varepsilon_{\rm S} = 10^{-3} \ \Rightarrow \ \varepsilon \approx 0.33 \cdot 10^{-3} \ \Rightarrow \ x = {\rm Q}^{-1}(\varepsilon) = 3.4$:
 
:$$E_{\rm B}/N_0 = \frac{x^2}{2R} = \frac{3.4^2}{2R \cdot 3/7} \approx 13.487  
 
:$$E_{\rm B}/N_0 = \frac{x^2}{2R} = \frac{3.4^2}{2R \cdot 3/7} \approx 13.487  
 
\hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}
 
\hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}
Line 147: Line 148:
 
\hspace{0.15cm} \underline{\approx 11.3 \,\, {\rm dB}} \hspace{0.05cm}. $$
 
\hspace{0.15cm} \underline{\approx 11.3 \,\, {\rm dB}} \hspace{0.05cm}. $$
  
[[File:P_ID2572__KC_A_2_15e_neu.png|right|frame|Ergebnisse zur $\rm RSC \, (7, \, 3, \, 5)_8$–Decodierung]]
+
[[File:P_ID2572__KC_A_2_15e_neu.png|right|frame|Results for $rm RSC \, (7, \, 3, \, 5)_8$ decoding]]
 
<br><br><br><br><br><br><br><br><br><br>
 
<br><br><br><br><br><br><br><br><br><br>
Die Grafik zeigt den Verlauf der Blockfehlerwahrscheinlichkeit in Abhängigkeit von $10 \cdot \lg {E_{\rm B}/N_0}$ sowie die vollständig ausgefüllte Ergebnistabelle.  
+
The graph shows the course of the block error probability as a function of $10 \cdot \lg {E_{\rm B}/N_0}$ as well as the completely filled result table.  
  
Man erkennt das deutlich ungünstigere (asymptotische) Verhalten dieses kurzen (grünen) Codes $\rm RSC \, (7, \, 5, \, 3)_8$ gegenüber dem (roten) Vergleichscode $\rm RSC \, (255, \, 223, \, 33)_8$:
+
One can see the clearly less favorable (asymptotic) behavior of this short (green) code $\rm RSC \, (7, \, 5, \, 3)_8$ compared to the (red) comparison code $\rm RSC \, (255, \, 223, \, 33)_8$:
  
  
*Für Abszissenwerte kleiner als $10 \ \rm dB$ ergibt sich sogar ein schlechteres Ergebnis als ohne Codierung.  
+
*For abscissa values smaller than $10 \ \rm dB$ the result is even worse than without coding.  
*Deshalb soll hier nochmals darauf hingewiesen werden, dass dieser $\rm RSC \, (7, \, 3, \, 5)_8$ wenig praktische Bedeutung hat.  
+
*Therefore it should be pointed out again that this $\rm RSC \, (7, \, 3, \, 5)_8$ has little practical meaning.  
*Er wurde für diese Aufgabe nur deshalb ausgewählt, um mit vertretbarem Aufwand die Berechnung der Blockfehlerwahrscheinlichkeit bei ''Bounded Distance Decoding'' (BDD) demonstrieren zu können.
+
*It was chosen for this exercise only to be able to demonstrate with reasonable effort the calculation of the block error probability for "Bounded Distance Decoding" (BDD).
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
[[Category:Channel Coding: Exercises|^2.6 Block Error Probability of RS Codes^]]
 
[[Category:Channel Coding: Exercises|^2.6 Block Error Probability of RS Codes^]]

Revision as of 22:12, 14 September 2022

Incomplete table of results

Using the example of  $\rm RSC \, (7, \, 3, \, 5)_8$  with the parameters

  • $n = 7$  (number of code symbols),
  • $k =3$  (number of information symbols),
  • $t = 2$  (correction capability).


the calculation of the block error probability in  "Bounded Distance Decoding"  (BDD) shall be shown. The corresponding equation is:

$${\rm Pr(Block\:error)} = {\rm Pr}(\underline{v} \ne \underline{u}) = \sum_{f = t + 1}^{n} {n \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{n-f} \hspace{0.05cm}.$$

The calculation is performed for the  "AWGN channel" characterized by the parameter  $E_{\rm B}/N_0$ .

  • The quotient  $E_{\rm B}/{N_0}$  can be expressed by the relation
$$\varepsilon = {\rm Q} \big (\sqrt{{2 \cdot R \cdot E_{\rm B}}/{N_0}} \big ) $$

into the  "BSC model"  where  $R$  denotes the code rate  $($here:  $R = 3/7)$  and  ${\rm Q}(x)$  indicates the  "complementary Gaussian error integral" .

  • But since in the considered code the symbols come from  $\rm GF(2^3)$ , the BSC model with parameter  $\varepsilon$  must also still be adapted to the task.
  • For the corruption probability of the  "$m$ BSC model"  applies, where here  $m = 3$  is to be set (three bits per code symbol):
$$\varepsilon_{\rm S} = 1 - (1 - \varepsilon)^m \hspace{0.05cm}.$$


For some  $E_{\rm B}/N_0$ values the results are entered in the table above. The two rows with yellow background are briefly explained here:

  • For  $10 \cdot \lg {E_{\rm B}/N_0} = 4 \ \rm dB$  we get  $\varepsilon \approx {\rm Q}(1.47) \approx 0.071$  and  $\varepsilon_{\rm S} \approx 0.2$. The block error probability here can most easily be calculated using the complement:
$${\rm Pr(Block\:error)} = 1 - \left [ {7 \choose 0} \cdot 0.8^7 + {7 \choose 1} \cdot 0.2 \cdot 0.8^6 + {7 \choose 2} \cdot 0.2^2 \cdot 0.8^5\right ] \approx 0.148 \hspace{0.05cm}.$$
  • For  $10 \cdot \lg {E_{\rm B}/N_0} = 12 \ \rm dB$  one gets  $\varepsilon \approx 1.2 \cdot 10^{-4}$  and  $\varepsilon_{\rm S} \approx 3.5 \cdot 10^{-4}$. With this very small corruption probability, the  $f = 3$ term dominates, and we obtain:
$${\rm Pr(Block\:error)} \approx {7 \choose 3} \cdot (3.5 \cdot 10^{-4})^3 \cdot (1- 3.5 \cdot 10^{-4})^4 \approx 1.63 \cdot 10^{-9} \hspace{0.05cm}.$$
  • You are to calculate the block error probabilities for the rows highlighted in red  $(10 \cdot \lg {E_{\rm B}/N_0} = 5 \ \rm dB, \ 8 \rm dB$,  $10 \ \rm dB)$  .
  • The rows with blue background show some results of  "Exercise 2.15Z". There  ${\rm Pr}(\underline{v} ≠ \underline{u})$  is calculated for  $\varepsilon_{\rm S} = 10\%,  \ 1\%$  $0.1\%$.
  • In subtasks (4) and (5) you are to establish the relationship between the size  $\varepsilon_{\rm S}$  and the AWGN parameter  $E_{\rm B}/N_0$  thus completing the above table.





Hints:

"Complementary Gaussian error functions"  and 
"Binomial and Poisson Distribution".



Questions

1

What is the block error probability for  $10 \cdot \lg {E_{\rm B}/N_0} \hspace{0.15cm}\underline{= 5 \ \rm dB}$?

${\rm Pr(Block\:error)} \ = \ $

$\ \cdot 10^{-2}$

2

What is the block error probability for  $10 \cdot \lg {E_{\rm B}/N_0} \hspace{0.15cm}\underline{= 8 \ \rm dB}$?

${\rm Pr(Block\:error)} \ = \ $

$\ \cdot 10^{-4}$

3

What is the block error probability for  $10 \cdot \lg {E_{\rm B}/N_0}\hspace{0.15cm}\underline{ = 10 \ \rm dB}$?

${\rm Pr(Block\:error)} \ = \ $

$\ \cdot 10^{-6}$

4

How is  $\varepsilon_{\rm S} = 0.1$  related to  $10 \cdot \lg {E_{\rm B}/N_0}$ ?   Note:  Use the given applet to calculate  ${\rm Q}(x)$.

$\varepsilon_{\rm S} = 10^{-1} \text{:} \hspace{0.4cm} 10 \cdot \lg {E_{\rm B}/N_0} \ = \ $

$\ \rm dB$

5

Find also the  $E_{\rm B}/N_0$ values  $($in  $\rm dB)$  for  $\varepsilon_{\rm S} = 0.01$  and  $\varepsilon_{\rm S} = 0.001$. Complete the table...

$\varepsilon_{\rm S} = 10^{-2} \text{:} \hspace{0.4cm} 10 \cdot \lg {E_{\rm B}/N_0} \ = \ $

$\ \rm dB$
$\varepsilon_{\rm S} = 10^{-3} \text{:} \hspace{0.4cm} 10 \cdot \lg {E_{\rm B}/N_0} \ = \ $

$\ \rm dB$


Solution

(1)  From the table on the information page, the BSC parameter $\varepsilon = 0.0505$ can be read.

  • This gives $\varepsilon_{\rm S}$ for the symbol corruption probability with $m = 3$:
$$1 - \varepsilon_{\rm S} = (1 - 0.0505)^3 \approx 0.856 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \varepsilon_{\rm S} \approx 0.144 \hspace{0.05cm}.$$
  • The fastest way to calculate the block error probability here is to use the formula
$${\rm Pr(Block\:error)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 - {\rm Pr}(f=0) - {\rm Pr}(f=1) - {\rm Pr}(f=2) = 1 - 1 \cdot 0.856^7 - 7 \cdot 0.144^1 \cdot 0.856^6 - 21 \cdot 0.144^2 \cdot 0.856^5$$
$$\Rightarrow \hspace{0.3cm} {\rm Pr(Block\:error)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Pr}(\underline{v} \ne \underline{u}) =1 - 0.3368 - 0.3965 - 0.2001 \hspace{0.15cm} \underline{=0.0666} \hspace{0.05cm}.$$


(2)  Following the same calculation procedure as in subtask (1), the following is obtained with $\varepsilon_{\rm S} \approx 0.03 \ \Rightarrow \ 1 - \varepsilon_{\rm S} = 0.97$:

$${\rm Pr(Block\:error)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 \hspace{-0.05cm}-\hspace{-0.05cm} 1 \cdot 0.97^7 \hspace{-0.05cm}-\hspace{-0.05cm} 7 \cdot 0.03^1 \cdot 0.97^6 \hspace{-0.05cm}-\hspace{-0.05cm} 21 \cdot 0.03^2 \cdot 0.97^5 =1 \hspace{-0.05cm}-\hspace{-0.05cm} 0.8080 \hspace{-0.05cm}-\hspace{-0.05cm} 0.1749\hspace{-0.05cm}-\hspace{-0.05cm} 0.0162= 1 \hspace{-0.05cm}-\hspace{-0.05cm} 0.9991 = 9 \cdot 10^{-4} \hspace{0.05cm}.$$
  • You can see that here the difference between two numbers of almost the same size must be formed, so that the result could be affected by an error.
  • Therefore we still calculate the following quantities:
$${\rm Pr}(f=3) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {7 \choose 3} \cdot \varepsilon_{\rm S}^3 \cdot (1 - \varepsilon_{\rm S})^4 = 35 \cdot 0.03^3 \cdot 0.97^4 = 8.366 \cdot 10^{-4}\hspace{0.05cm},$$
$${\rm Pr}(f=4) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {7 \choose 4} \cdot \varepsilon_{\rm S}^4 \cdot (1 - \varepsilon_{\rm S})^3 = 35 \cdot 0.03^4 \cdot 0.97^3 = 0.259 \cdot 10^{-4}\hspace{0.05cm},$$
$${\rm Pr}(f=5) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {7 \choose 5} \cdot \varepsilon_{\rm S}^5 \cdot (1 - \varepsilon_{\rm S})^2 = 21 \cdot 0.03^5 \cdot 0.97^2 = 0.005 \cdot 10^{-4}$$
$$\Rightarrow \hspace{0.3cm} {\rm Pr(Blockfehler)} = {\rm Pr}(\underline{v} \ne \underline{u}) \approx {\rm Pr}(f=3) + {\rm Pr}(f=4) + {\rm Pr}(f=5) \hspace{0.15cm} \underline{=8.63 \cdot 10^{-4}} \hspace{0.05cm}.$$
  • The terms for $f = 6$ and $f = 7$ can be omitted here. They do not provide a relevant contribution.



(3)  Here $\varepsilon_{\rm S} = 0.005 \ \Rightarrow \ 1 - \varepsilon_{\rm S} = 0.995$ is already given in the table.

  • The (by far) dominant term in the calculation of the block error probability is ${\rm Pr}(f = 3)$:.
$${\rm Pr(Blockfehler)} = {\rm Pr}(\underline{v} \ne \underline{u}) \approx {\rm Pr}(f=3) = {7 \choose 3} \cdot 0.005^3 \cdot 0.995^4 \hspace{0.15cm} \underline{\approx 4.3 \cdot 10^{-6}} \hspace{0.05cm}.$$


(4)  For the BSC parameter $\varepsilon$ holds with $\varepsilon_{\rm S} = 0.1$:

$$\varepsilon = 1 -(1 - \varepsilon_{\rm S})^{1/3} = 1 - 0.9^{1/3} \approx 0.0345 \hspace{0.05cm}.$$
  • The relation between $\varepsilon$ and $E_{\rm B}/N_0$ is:
$$\varepsilon = {\rm Q}(x)\hspace{0.05cm}, \hspace{0.5cm} x = \sqrt{2 \cdot R \cdot E_{\rm B}/N_0}\hspace{0.05cm}.$$
$$E_{\rm B}/N_0 = \frac{x^2}{2R} = \frac{1.82^2}{2R \cdot 3/7} \approx 3.864 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.15cm}(E_{\rm B}/N_0) \hspace{0.15cm} \underline{\approx 5.87 \,\, {\rm dB}} \hspace{0.05cm}. $$


(5)  After the same calculation one obtains

  • für $\varepsilon_{\rm S} = 10^{-2} \ \Rightarrow \ \varepsilon \approx 0.33 \cdot 10^{-2} \ \Rightarrow \ x = {\rm Q}^{-1}(\varepsilon) = 2.71$
$$E_{\rm B}/N_0 = \frac{x^2}{2R} = \frac{2.71^2}{2R \cdot 3/7} \approx 8.568 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.15cm}(E_{\rm B}/N_0) \hspace{0.15cm} \underline{\approx 9.32 \,\, {\rm dB}} \hspace{0.05cm}, $$
  • for $\varepsilon_{\rm S} = 10^{-3} \ \Rightarrow \ \varepsilon \approx 0.33 \cdot 10^{-3} \ \Rightarrow \ x = {\rm Q}^{-1}(\varepsilon) = 3.4$:
$$E_{\rm B}/N_0 = \frac{x^2}{2R} = \frac{3.4^2}{2R \cdot 3/7} \approx 13.487 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.15cm}(E_{\rm B}/N_0) \hspace{0.15cm} \underline{\approx 11.3 \,\, {\rm dB}} \hspace{0.05cm}. $$
Results for $rm RSC \, (7, \, 3, \, 5)_8$ decoding











The graph shows the course of the block error probability as a function of $10 \cdot \lg {E_{\rm B}/N_0}$ as well as the completely filled result table.

One can see the clearly less favorable (asymptotic) behavior of this short (green) code $\rm RSC \, (7, \, 5, \, 3)_8$ compared to the (red) comparison code $\rm RSC \, (255, \, 223, \, 33)_8$:


  • For abscissa values smaller than $10 \ \rm dB$ the result is even worse than without coding.
  • Therefore it should be pointed out again that this $\rm RSC \, (7, \, 3, \, 5)_8$ has little practical meaning.
  • It was chosen for this exercise only to be able to demonstrate with reasonable effort the calculation of the block error probability for "Bounded Distance Decoding" (BDD).