Difference between revisions of "Aufgaben:Exercise 2.15: Block Error Probability with AWGN"

From LNTwww
 
(5 intermediate revisions by the same user not shown)
Line 2: Line 2:
  
 
[[File:P_ID2571__KC_A_2_15neu.png|right|frame|Incomplete table of results]]
 
[[File:P_ID2571__KC_A_2_15neu.png|right|frame|Incomplete table of results]]
Using the example of  $\rm RSC \, (7, \, 3, \, 5)_8$  with the parameters
+
Using the example of  $\rm RSC \, (7, \, 3, \, 5)_8$  with parameters
* $n = 7$  (number of code symbols),
+
* $n = 7$  $($number of code symbols$)$,
* $k =3$  (number of information symbols),
 
* $t = 2$  (correction capability).
 
  
 +
* $k =3$  $($number of information symbols$)$,
  
the calculation of the block error probability in  [[Channel_Coding/Error_Probability_and_Areas_of_Application#Block_error_probability_for_RSC_and_BDD|"Bounded Distance Decoding"]]  (BDD) shall be shown. The corresponding equation is:
+
* $t = 2$  $($correction capability$)$.
:$${\rm Pr(Block\:error)}  = {\rm Pr}(\underline{v} \ne \underline{u}) =
+
 
 +
 
 +
the calculation of the block error probability in  [[Channel_Coding/Error_Probability_and_Areas_of_Application#Block_error_probability_for_RSC_and_BDD|"Bounded Distance Decoding"]]  $\rm (BDD)$  shall be shown.  The corresponding equation is:
 +
:$${\rm Pr(block\:error)}  = {\rm Pr}(\underline{v} \ne \underline{u}) =
 
\sum_{f = t + 1}^{n} {n \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{n-f} \hspace{0.05cm}.$$
 
\sum_{f = t + 1}^{n} {n \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{n-f} \hspace{0.05cm}.$$
  
The calculation is performed for the  [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables#Exceedance_probability|"AWGN channel"
+
⇒   The calculation is performed for the  [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables#Exceedance_probability|"AWGN channel"
]] characterized by the parameter  $E_{\rm B}/N_0$ .
+
]]  characterized by the parameter  $E_{\rm B}/N_0$:
  
 
*The quotient  $E_{\rm B}/{N_0}$  can be expressed by the relation
 
*The quotient  $E_{\rm B}/{N_0}$  can be expressed by the relation
 
:$$\varepsilon = {\rm Q} \big (\sqrt{{2 \cdot R \cdot E_{\rm B}}/{N_0}} \big ) $$  
 
:$$\varepsilon = {\rm Q} \big (\sqrt{{2 \cdot R \cdot E_{\rm B}}/{N_0}} \big ) $$  
into the  [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Symmetric_Channel_.E2.80. 93_BSC|"BSC model"]]  where  $R$  denotes the code rate  $($here:  $R = 3/7)$  and  ${\rm Q}(x)$  indicates the  [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables#Exceedance_probability|"complementary Gaussian error integral"]] .
+
:into the  [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Symmetric_Channel_.E2.80. 93_BSC|"BSC model"]]  where  $R$  denotes the code rate  $($here:  $R = 3/7)$  and  ${\rm Q}(x)$  indicates the  [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables#Exceedance_probability|"complementary Gaussian error integral"]].
*But since in the considered code the symbols come from  $\rm GF(2^3)$ , the BSC model with parameter  $\varepsilon$  must also still be adapted to the task.  
+
 
*For the corruption probability of the  [[Channel_Coding/Error_Probability_and_Areas_of_Application#Block_error_probability_for_RSC_and_BDD|"$m$ BSC model"]]  applies, where here  $m = 3$  is to be set (three bits per code symbol):
+
*But since in the considered code the symbols come from  $\rm GF(2^3)$,  the BSC model with parameter  $\varepsilon$  must also still be adapted to the task.
 +
 +
*For the falsification probability of the  [[Channel_Coding/Error_Probability_and_Areas_of_Application#Block_error_probability_for_RSC_and_BDD|"''m''– BSC"  model]]  applies:   
 
:$$\varepsilon_{\rm S} = 1 - (1 - \varepsilon)^m  
 
:$$\varepsilon_{\rm S} = 1 - (1 - \varepsilon)^m  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
 +
:Here it is to be set   $m = 3$  $($three bits per code symbol$)$.
  
  
For some  $E_{\rm B}/N_0$ values the results are entered in the table above. The two rows with yellow background are briefly explained here:
+
⇒   For some  $E_{\rm B}/N_0$ values the results are entered in the table above.  The two rows with yellow background are briefly explained here:
* For  $10 \cdot \lg {E_{\rm B}/N_0} = 4 \ \rm dB$  we get  $\varepsilon \approx {\rm Q}(1.47) \approx 0.071$  and  $\varepsilon_{\rm S} \approx 0.2$. The block error probability here can most easily be calculated using the complement:
+
* For  $10 \cdot \lg {E_{\rm B}/N_0} = 4 \ \rm dB$  we get  $\varepsilon \approx {\rm Q}(1.47) \approx 0.071$  and  $\varepsilon_{\rm S} \approx 0.2$.   The block error probability here can most easily be calculated using the complement:
:$${\rm Pr(Block\:error)}  = 1 - \left [ {7 \choose 0} \cdot 0.8^7 + {7 \choose 1} \cdot 0.2 \cdot 0.8^6 + {7 \choose 2} \cdot 0.2^2 \cdot 0.8^5\right ]  
+
:$${\rm Pr(block\:error)}  = 1 - \left [ {7 \choose 0} \cdot 0.8^7 + {7 \choose 1} \cdot 0.2 \cdot 0.8^6 + {7 \choose 2} \cdot 0.2^2 \cdot 0.8^5\right ]  
 
\approx 0.148  \hspace{0.05cm}.$$
 
\approx 0.148  \hspace{0.05cm}.$$
* For  $10 \cdot \lg {E_{\rm B}/N_0} = 12 \ \rm dB$  one gets  $\varepsilon \approx 1.2 \cdot 10^{-4}$  and  $\varepsilon_{\rm S} \approx 3.5 \cdot 10^{-4}$. With this very small corruption probability, the  $f = 3$ term dominates, and we obtain:
+
 
:$${\rm Pr(Block\:error)}  \approx  {7 \choose 3} \cdot (3.5 \cdot 10^{-4})^3 \cdot (1- 3.5 \cdot 10^{-4})^4  
+
* For  $10 \cdot \lg {E_{\rm B}/N_0} = 12 \ \rm dB$  one gets  $\varepsilon \approx 1.2 \cdot 10^{-4}$  and  $\varepsilon_{\rm S} \approx 3.5 \cdot 10^{-4}$.  With this very small falsification probability,  the  $f = 3$  term dominates,  and we obtain:
 +
:$${\rm Pr(block\:error)}  \approx  {7 \choose 3} \cdot (3.5 \cdot 10^{-4})^3 \cdot (1- 3.5 \cdot 10^{-4})^4  
 
\approx 1.63 \cdot 10^{-9}  \hspace{0.05cm}.$$
 
\approx 1.63 \cdot 10^{-9}  \hspace{0.05cm}.$$
  
*You are to calculate the block error probabilities for the rows highlighted in red  $(10 \cdot \lg {E_{\rm B}/N_0} = 5 \ \rm dB, \ 8 \rm dB$,  $10 \ \rm dB)$  .
+
⇒   You are to calculate the block error probabilities for the rows highlighted in red   $(10 \cdot \lg {E_{\rm B}/N_0} = 5 \ \rm dB, \ 8 \rm dB$,  $10 \ \rm dB)$.
*The rows with blue background show some results of  [[Aufgaben:Exercise_2.15Z:_Block_Error_Probability_once_more|"Exercise 2.15Z"]]. There  ${\rm Pr}(\underline{v} ≠ \underline{u})$  is calculated for  $\varepsilon_{\rm S} = 10\%,  \ 1\%$  $0.1\%$.  
+
:*The rows with blue background show some results of  [[Aufgaben:Exercise_2.15Z:_Block_Error_Probability_once_more|"Exercise 2.15Z"]].  There  ${\rm Pr}(\underline{v} ≠ \underline{u})$  is calculated for  $\varepsilon_{\rm S} = 10\%,  \ 1\%$  $0.1\%$.  
*In subtasks '''(4)''' and '''(5)''' you are to establish the relationship between the size  $\varepsilon_{\rm S}$  and the AWGN parameter  $E_{\rm B}/N_0$  thus completing the above table.
+
:*In subtasks '''(4)''' and '''(5)''' you are to establish the relationship between the quantity  $\varepsilon_{\rm S}$  and the AWGN parameter  $E_{\rm B}/N_0$  thus completing the above table.
 
 
 
 
  
  
Line 42: Line 46:
  
  
 +
<u>Hints:</u>
 +
* The exercise belongs to the chapter&nbsp; [[Channel_Coding/Error_Probability_and_Areas_of_Application| "Error Probability and Application Areas"]].
  
Hints:
+
* We refer you here to the two interactive HTML5/JavaScript applets&nbsp;
* The exercise belongs to the chapter&nbsp; [[Channel_Coding/Error_Probability_and_Areas_of_Application| "Error Probability and Application Areas"]].
+
:*[[Applets:Complementary_Gaussian_Error_Functions|"Complementary Gaussian error functions"]],&nbsp; and&nbsp;  
* We refer you here to the two interactive applets&nbsp;
+
:*[[Applets:Binomial_and_Poisson_Distribution_(Applet)|"Binomial and Poisson Distribution"]].
::[[Applets:Complementary_Gaussian_Error_Functions|"Complementary Gaussian error functions"]]&nbsp; and&nbsp;  
 
::[[Applets:Binomial_and_Poisson_Distribution_(Applet)|"Binomial and Poisson Distribution"]].
 
  
  
Line 57: Line 61:
 
{What is the block error probability for&nbsp;  $10 \cdot \lg {E_{\rm B}/N_0} \hspace{0.15cm}\underline{= 5 \ \rm dB}$?
 
{What is the block error probability for&nbsp;  $10 \cdot \lg {E_{\rm B}/N_0} \hspace{0.15cm}\underline{= 5 \ \rm dB}$?
 
|type="{}"}
 
|type="{}"}
${\rm Pr(Block\:error)} \ = \ ${ 6.66 3% } $\ \cdot 10^{-2}$
+
${\rm Pr(block\:error)} \ = \ ${ 6.66 3% } $\ \cdot 10^{-2}$
  
 
{What is the block error probability for&nbsp; $10 \cdot \lg {E_{\rm B}/N_0} \hspace{0.15cm}\underline{= 8 \ \rm dB}$?
 
{What is the block error probability for&nbsp; $10 \cdot \lg {E_{\rm B}/N_0} \hspace{0.15cm}\underline{= 8 \ \rm dB}$?
 
|type="{}"}
 
|type="{}"}
${\rm Pr(Block\:error)} \ = \ ${ 8.63 3% } $\ \cdot 10^{-4}$
+
${\rm Pr(block\:error)} \ = \ ${ 8.63 3% } $\ \cdot 10^{-4}$
  
 
{What is the block error probability for&nbsp; $10 \cdot \lg {E_{\rm B}/N_0}\hspace{0.15cm}\underline{ = 10 \ \rm dB}$?
 
{What is the block error probability for&nbsp; $10 \cdot \lg {E_{\rm B}/N_0}\hspace{0.15cm}\underline{ = 10 \ \rm dB}$?
 
|type="{}"}
 
|type="{}"}
${\rm Pr(Block\:error)} \ = \ ${ 4.3 3% } $\ \cdot 10^{-6}$
+
${\rm Pr(block\:error)} \ = \ ${ 4.3 3% } $\ \cdot 10^{-6}$
  
{How is&nbsp; $\varepsilon_{\rm S} = 0.1$&nbsp; related to&nbsp; $10 \cdot \lg {E_{\rm B}/N_0}$&nbsp;? &nbsp; ''Note:'' &nbsp;Use the given applet to calculate&nbsp; ${\rm Q}(x)$.
+
{How is&nbsp; $\varepsilon_{\rm S} = 0.1$&nbsp; related to&nbsp; $10 \cdot \lg {E_{\rm B}/N_0}$&nbsp;? &nbsp; <u>Note:</u> &nbsp;Use the given applet to calculate&nbsp; ${\rm Q}(x)$.
 
|type="{}"}
 
|type="{}"}
 
$\varepsilon_{\rm S} = 10^{-1} \text{:} \hspace{0.4cm} 10 \cdot \lg {E_{\rm B}/N_0} \ = \ ${ 5.87 3% } $\ \rm dB$
 
$\varepsilon_{\rm S} = 10^{-1} \text{:} \hspace{0.4cm} 10 \cdot \lg {E_{\rm B}/N_0} \ = \ ${ 5.87 3% } $\ \rm dB$
  
{Find also the&nbsp; $E_{\rm B}/N_0$ values&nbsp; $($in&nbsp; $\rm dB)$&nbsp; for&nbsp; $\varepsilon_{\rm S} = 0.01$&nbsp; and&nbsp; $\varepsilon_{\rm S} = 0.001$. Complete the table...
+
{Find also the&nbsp; $E_{\rm B}/N_0$ values&nbsp; $($in&nbsp; $\rm dB)$&nbsp; for&nbsp; $\varepsilon_{\rm S} = 0.01$&nbsp; and&nbsp; $\varepsilon_{\rm S} = 0.001$. Complete the table.
 
|type="{}"}
 
|type="{}"}
 
$\varepsilon_{\rm S} = 10^{-2} \text{:} \hspace{0.4cm} 10 \cdot \lg {E_{\rm B}/N_0} \ = \ $ { 9.32 3% } $\ \rm dB$
 
$\varepsilon_{\rm S} = 10^{-2} \text{:} \hspace{0.4cm} 10 \cdot \lg {E_{\rm B}/N_0} \ = \ $ { 9.32 3% } $\ \rm dB$
Line 79: Line 83:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; From the table on the information page, the BSC parameter $\varepsilon = 0.0505$ can be read.  
+
'''(1)'''&nbsp; From the table on the information page,&nbsp;  the BSC parameter&nbsp; $\varepsilon = 0.0505$&nbsp; can be read.  
*This gives $\varepsilon_{\rm S}$ for the symbol corruption probability with $m = 3$:
+
*This gives&nbsp; $\varepsilon_{\rm S}$&nbsp; for the symbol error probability with&nbsp; $m = 3$:
 
:$$1 - \varepsilon_{\rm S} = (1 - 0.0505)^3 \approx 0.856  
 
:$$1 - \varepsilon_{\rm S} = (1 - 0.0505)^3 \approx 0.856  
 
\hspace{0.3cm}\Rightarrow  \hspace{0.3cm}
 
\hspace{0.3cm}\Rightarrow  \hspace{0.3cm}
Line 86: Line 90:
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*The fastest way to calculate the block error probability here is to use the formula  
+
*The fastest way to calculate the block error probability is here to use the formula  
:$${\rm Pr(Block\:error)}  \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 - {\rm Pr}(f=0) -  {\rm Pr}(f=1) - {\rm Pr}(f=2) = 1 - 1 \cdot 0.856^7 -  
+
:$${\rm Pr(block\:error)}  \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 - {\rm Pr}(f=0) -  {\rm Pr}(f=1) - {\rm Pr}(f=2) = 1 - 1 \cdot 0.856^7 -  
 
7 \cdot 0.144^1 \cdot 0.856^6 -  21 \cdot 0.144^2 \cdot 0.856^5$$
 
7 \cdot 0.144^1 \cdot 0.856^6 -  21 \cdot 0.144^2 \cdot 0.856^5$$
:$$\Rightarrow \hspace{0.3cm} {\rm Pr(Block\:error)}  \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Pr}(\underline{v} \ne \underline{u}) =1 - 0.3368 - 0.3965 - 0.2001 \hspace{0.15cm} \underline{=0.0666}  
+
:$$\Rightarrow \hspace{0.3cm} {\rm Pr(block\:error)}  \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Pr}(\underline{v} \ne \underline{u}) =1 - 0.3368 - 0.3965 - 0.2001 \hspace{0.15cm} \underline{=0.0666}  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; Following the same calculation procedure as in subtask '''(1)''', the following is obtained with $\varepsilon_{\rm S} \approx 0.03 \ \Rightarrow \ 1 - \varepsilon_{\rm S} = 0.97$:
+
'''(2)'''&nbsp; Following the same calculation procedure as in subtask&nbsp; '''(1)''',&nbsp; we obtain with&nbsp; $\varepsilon_{\rm S} \approx 0.03 \ \Rightarrow \ 1 - \varepsilon_{\rm S} = 0.97$:
:$${\rm Pr(Block\:error)}   
+
:$${\rm Pr(block\:error)}   
 
\hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 \hspace{-0.05cm}-\hspace{-0.05cm} 1 \cdot 0.97^7 \hspace{-0.05cm}-\hspace{-0.05cm}  
 
\hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 \hspace{-0.05cm}-\hspace{-0.05cm} 1 \cdot 0.97^7 \hspace{-0.05cm}-\hspace{-0.05cm}  
 
7 \cdot 0.03^1 \cdot 0.97^6 \hspace{-0.05cm}-\hspace{-0.05cm}  21 \cdot 0.03^2 \cdot 0.97^5 =1 \hspace{-0.05cm}-\hspace{-0.05cm} 0.8080 \hspace{-0.05cm}-\hspace{-0.05cm} 0.1749\hspace{-0.05cm}-\hspace{-0.05cm} 0.0162= 1 \hspace{-0.05cm}-\hspace{-0.05cm} 0.9991  = 9 \cdot 10^{-4}  
 
7 \cdot 0.03^1 \cdot 0.97^6 \hspace{-0.05cm}-\hspace{-0.05cm}  21 \cdot 0.03^2 \cdot 0.97^5 =1 \hspace{-0.05cm}-\hspace{-0.05cm} 0.8080 \hspace{-0.05cm}-\hspace{-0.05cm} 0.1749\hspace{-0.05cm}-\hspace{-0.05cm} 0.0162= 1 \hspace{-0.05cm}-\hspace{-0.05cm} 0.9991  = 9 \cdot 10^{-4}  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*You can see that here the difference between two numbers of almost the same size must be formed, so that the result could be affected by an error.  
+
*You can see that here the difference between two numbers of almost the same size must be formed,&nbsp; so that the result could be affected by an error.  
 +
 
 
*Therefore we still calculate the following quantities:
 
*Therefore we still calculate the following quantities:
 
:$${\rm Pr}(f=3) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  
 
:$${\rm Pr}(f=3) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  
Line 107: Line 112:
 
:$${\rm Pr}(f=5) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  
 
:$${\rm Pr}(f=5) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  
 
{7 \choose 5} \cdot \varepsilon_{\rm S}^5 \cdot (1 - \varepsilon_{\rm S})^2 = 21 \cdot 0.03^5 \cdot 0.97^2 = 0.005 \cdot 10^{-4}$$
 
{7 \choose 5} \cdot \varepsilon_{\rm S}^5 \cdot (1 - \varepsilon_{\rm S})^2 = 21 \cdot 0.03^5 \cdot 0.97^2 = 0.005 \cdot 10^{-4}$$
:$$\Rightarrow  \hspace{0.3cm} {\rm Pr(Blockfehler)} = {\rm Pr}(\underline{v} \ne \underline{u})  \approx {\rm Pr}(f=3) +  {\rm Pr}(f=4) + {\rm Pr}(f=5)  \hspace{0.15cm} \underline{=8.63 \cdot 10^{-4}} \hspace{0.05cm}.$$
+
:$$\Rightarrow  \hspace{0.3cm} {\rm Pr(block\:error)} = {\rm Pr}(\underline{v} \ne \underline{u})  \approx {\rm Pr}(f=3) +  {\rm Pr}(f=4) + {\rm Pr}(f=5)  \hspace{0.15cm} \underline{=8.63 \cdot 10^{-4}} \hspace{0.05cm}.$$
  
*The terms for $f = 6$ and $f = 7$ can be omitted here. They do not provide a relevant contribution.
+
*The terms for&nbsp; $f = 6$&nbsp; and&nbsp; $f = 7$&nbsp; can be omitted here.&nbsp; They do not provide a relevant contribution.
  
  
  
  
'''(3)'''&nbsp; Here $\varepsilon_{\rm S} = 0.005 \ \Rightarrow \ 1 - \varepsilon_{\rm S} = 0.995$ is already given in the table.  
+
'''(3)'''&nbsp; Here&nbsp; $\varepsilon_{\rm S} = 0.005 \ \Rightarrow \ 1 - \varepsilon_{\rm S} = 0.995$&nbsp; is already given in the table.  
*The (by far) dominant term in the calculation of the block error probability is ${\rm Pr}(f = 3)$:.
+
*The&nbsp; (by far)&nbsp; dominant term in the calculation of the block error probability is&nbsp; ${\rm Pr}(f = 3)$:
:$${\rm Pr(Blockfehler)} = {\rm Pr}(\underline{v} \ne \underline{u})  \approx {\rm Pr}(f=3) = {7 \choose 3} \cdot 0.005^3 \cdot 0.995^4  
+
:$${\rm Pr(block\:error)} = {\rm Pr}(\underline{v} \ne \underline{u})  \approx {\rm Pr}(f=3) = {7 \choose 3} \cdot 0.005^3 \cdot 0.995^4  
 
\hspace{0.15cm} \underline{\approx 4.3 \cdot 10^{-6}} \hspace{0.05cm}.$$
 
\hspace{0.15cm} \underline{\approx 4.3 \cdot 10^{-6}} \hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; For the BSC parameter $\varepsilon$ holds with $\varepsilon_{\rm S} = 0.1$:
+
'''(4)'''&nbsp; For the BSC parameter&nbsp; $\varepsilon$&nbsp; holds with&nbsp; $\varepsilon_{\rm S} = 0.1$:
 
:$$\varepsilon = 1 -(1 - \varepsilon_{\rm S})^{1/3} = 1 - 0.9^{1/3} \approx 0.0345  
 
:$$\varepsilon = 1 -(1 - \varepsilon_{\rm S})^{1/3} = 1 - 0.9^{1/3} \approx 0.0345  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*The relation between $\varepsilon$ and $E_{\rm B}/N_0$ is:
+
*The relation between&nbsp; $\varepsilon$&nbsp; and&nbsp; $E_{\rm B}/N_0$&nbsp; is:
 
:$$\varepsilon = {\rm Q}(x)\hspace{0.05cm}, \hspace{0.5cm} x = \sqrt{2 \cdot R \cdot E_{\rm B}/N_0}\hspace{0.05cm}.$$
 
:$$\varepsilon = {\rm Q}(x)\hspace{0.05cm}, \hspace{0.5cm} x = \sqrt{2 \cdot R \cdot E_{\rm B}/N_0}\hspace{0.05cm}.$$
  
*The inverse $x = {\rm Q}^{-1}(0.0345)$ is obtained with the applet [[Applets:QFunction|"Complementary Gaussian Error Functions"]] to $x = 1.82$.  
+
*The inverse&nbsp; $x = {\rm Q}^{-1}(0.0345)$&nbsp; is obtained with the applet&nbsp; [[Applets:QFunction|"Complementary Gaussian Error Functions"]]&nbsp; to&nbsp; $x = 1.82$.&nbsp; This further gives:
*This further gives:
 
 
:$$E_{\rm B}/N_0 = \frac{x^2}{2R} = \frac{1.82^2}{2R \cdot 3/7} \approx 3.864  
 
:$$E_{\rm B}/N_0 = \frac{x^2}{2R} = \frac{1.82^2}{2R \cdot 3/7} \approx 3.864  
 
\hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}
 
\hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}
Line 136: Line 140:
  
 
'''(5)'''&nbsp; After the same calculation one obtains
 
'''(5)'''&nbsp; After the same calculation one obtains
* für $\varepsilon_{\rm S} = 10^{-2} \ \Rightarrow \ \varepsilon \approx 0.33 \cdot 10^{-2} \ \Rightarrow \ x = {\rm Q}^{-1}(\varepsilon) = 2.71$
+
* for&nbsp; $\varepsilon_{\rm S} = 10^{-2} \ \Rightarrow \ \varepsilon \approx 0.33 \cdot 10^{-2} \ \Rightarrow \ x = {\rm Q}^{-1}(\varepsilon) = 2.71$
 
:$$E_{\rm B}/N_0 = \frac{x^2}{2R} = \frac{2.71^2}{2R \cdot 3/7} \approx 8.568  
 
:$$E_{\rm B}/N_0 = \frac{x^2}{2R} = \frac{2.71^2}{2R \cdot 3/7} \approx 8.568  
 
\hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}
 
\hspace{0.3cm}  \Rightarrow  \hspace{0.3cm}
Line 148: Line 152:
 
\hspace{0.15cm} \underline{\approx 11.3 \,\, {\rm dB}} \hspace{0.05cm}. $$
 
\hspace{0.15cm} \underline{\approx 11.3 \,\, {\rm dB}} \hspace{0.05cm}. $$
  
[[File:P_ID2572__KC_A_2_15e_neu.png|right|frame|Results for $rm RSC \, (7, \, 3, \, 5)_8$ decoding]]
+
[[File:EN_KC_A_2_15e.ng.png|right|frame|Results for $\rm RSC \, (7, \, 3, \, 5)_8$ decoding]]
<br><br><br><br><br><br><br><br><br><br>
+
 
The graph shows the course of the block error probability as a function of $10 \cdot \lg {E_{\rm B}/N_0}$ as well as the completely filled result table.  
+
The graph shows  
 +
*the course of the block error probability as function of $10 \cdot \lg {E_{\rm B}/N_0}$,
 +
 
 +
* and the completely filled result table.  
  
One can see the clearly less favorable (asymptotic) behavior of this short (green) code $\rm RSC \, (7, \, 5, \, 3)_8$ compared to the (red) comparison code $\rm RSC \, (255, \, 223, \, 33)_8$:
 
  
 +
One can see the clearly less favorable&nbsp; (asymptotic)&nbsp; behavior of the&nbsp; (green)&nbsp; code $\rm RSC \, (7, \, 5, \, 3)_8$ compared to the&nbsp; (red)&nbsp; comparison code $\rm RSC \, (255, \, 223, \, 33)_8$:
  
*For abscissa values smaller than $10 \ \rm dB$ the result is even worse than without coding.  
+
# For abscissa values smaller than&nbsp; $10 \ \rm dB$&nbsp; the result is even worse than without coding.  
*Therefore it should be pointed out again that this $\rm RSC \, (7, \, 3, \, 5)_8$ has little practical meaning.  
+
# It should be pointed out again that the&nbsp; $\rm RSC \, (7, \, 3, \, 5)_8$&nbsp; has only little practical meaning.  
*It was chosen for this exercise only to be able to demonstrate with reasonable effort the calculation of the block error probability for "Bounded Distance Decoding" (BDD).
+
# It was chosen for this exercise only to be able to demonstrate with reasonable effort the calculation of the block error probability for&nbsp; "Bounded Distance Decoding"&nbsp; $\rm (BDD)$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
[[Category:Channel Coding: Exercises|^2.6 Block Error Probability of RS Codes^]]
 
[[Category:Channel Coding: Exercises|^2.6 Block Error Probability of RS Codes^]]

Latest revision as of 18:12, 13 March 2023

Incomplete table of results

Using the example of  $\rm RSC \, (7, \, 3, \, 5)_8$  with parameters

  • $n = 7$  $($number of code symbols$)$,
  • $k =3$  $($number of information symbols$)$,
  • $t = 2$  $($correction capability$)$.


the calculation of the block error probability in  "Bounded Distance Decoding"  $\rm (BDD)$  shall be shown.  The corresponding equation is:

$${\rm Pr(block\:error)} = {\rm Pr}(\underline{v} \ne \underline{u}) = \sum_{f = t + 1}^{n} {n \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{n-f} \hspace{0.05cm}.$$

⇒   The calculation is performed for the  "AWGN channel"   characterized by the parameter  $E_{\rm B}/N_0$:

  • The quotient  $E_{\rm B}/{N_0}$  can be expressed by the relation
$$\varepsilon = {\rm Q} \big (\sqrt{{2 \cdot R \cdot E_{\rm B}}/{N_0}} \big ) $$
into the  "BSC model"  where  $R$  denotes the code rate  $($here:  $R = 3/7)$  and  ${\rm Q}(x)$  indicates the  "complementary Gaussian error integral".
  • But since in the considered code the symbols come from  $\rm GF(2^3)$,  the BSC model with parameter  $\varepsilon$  must also still be adapted to the task.
$$\varepsilon_{\rm S} = 1 - (1 - \varepsilon)^m \hspace{0.05cm}.$$
Here it is to be set  $m = 3$  $($three bits per code symbol$)$.


⇒   For some  $E_{\rm B}/N_0$ values the results are entered in the table above.  The two rows with yellow background are briefly explained here:

  • For  $10 \cdot \lg {E_{\rm B}/N_0} = 4 \ \rm dB$  we get  $\varepsilon \approx {\rm Q}(1.47) \approx 0.071$  and  $\varepsilon_{\rm S} \approx 0.2$.   The block error probability here can most easily be calculated using the complement:
$${\rm Pr(block\:error)} = 1 - \left [ {7 \choose 0} \cdot 0.8^7 + {7 \choose 1} \cdot 0.2 \cdot 0.8^6 + {7 \choose 2} \cdot 0.2^2 \cdot 0.8^5\right ] \approx 0.148 \hspace{0.05cm}.$$
  • For  $10 \cdot \lg {E_{\rm B}/N_0} = 12 \ \rm dB$  one gets  $\varepsilon \approx 1.2 \cdot 10^{-4}$  and  $\varepsilon_{\rm S} \approx 3.5 \cdot 10^{-4}$.  With this very small falsification probability,  the  $f = 3$  term dominates,  and we obtain:
$${\rm Pr(block\:error)} \approx {7 \choose 3} \cdot (3.5 \cdot 10^{-4})^3 \cdot (1- 3.5 \cdot 10^{-4})^4 \approx 1.63 \cdot 10^{-9} \hspace{0.05cm}.$$

⇒   You are to calculate the block error probabilities for the rows highlighted in red   $(10 \cdot \lg {E_{\rm B}/N_0} = 5 \ \rm dB, \ 8 \rm dB$,  $10 \ \rm dB)$.

  • The rows with blue background show some results of  "Exercise 2.15Z".  There  ${\rm Pr}(\underline{v} ≠ \underline{u})$  is calculated for  $\varepsilon_{\rm S} = 10\%,  \ 1\%$  $0.1\%$.
  • In subtasks (4) and (5) you are to establish the relationship between the quantity  $\varepsilon_{\rm S}$  and the AWGN parameter  $E_{\rm B}/N_0$  thus completing the above table.



Hints:

  • We refer you here to the two interactive HTML5/JavaScript applets 



Questions

1

What is the block error probability for  $10 \cdot \lg {E_{\rm B}/N_0} \hspace{0.15cm}\underline{= 5 \ \rm dB}$?

${\rm Pr(block\:error)} \ = \ $

$\ \cdot 10^{-2}$

2

What is the block error probability for  $10 \cdot \lg {E_{\rm B}/N_0} \hspace{0.15cm}\underline{= 8 \ \rm dB}$?

${\rm Pr(block\:error)} \ = \ $

$\ \cdot 10^{-4}$

3

What is the block error probability for  $10 \cdot \lg {E_{\rm B}/N_0}\hspace{0.15cm}\underline{ = 10 \ \rm dB}$?

${\rm Pr(block\:error)} \ = \ $

$\ \cdot 10^{-6}$

4

How is  $\varepsilon_{\rm S} = 0.1$  related to  $10 \cdot \lg {E_{\rm B}/N_0}$ ?   Note:  Use the given applet to calculate  ${\rm Q}(x)$.

$\varepsilon_{\rm S} = 10^{-1} \text{:} \hspace{0.4cm} 10 \cdot \lg {E_{\rm B}/N_0} \ = \ $

$\ \rm dB$

5

Find also the  $E_{\rm B}/N_0$ values  $($in  $\rm dB)$  for  $\varepsilon_{\rm S} = 0.01$  and  $\varepsilon_{\rm S} = 0.001$. Complete the table.

$\varepsilon_{\rm S} = 10^{-2} \text{:} \hspace{0.4cm} 10 \cdot \lg {E_{\rm B}/N_0} \ = \ $

$\ \rm dB$
$\varepsilon_{\rm S} = 10^{-3} \text{:} \hspace{0.4cm} 10 \cdot \lg {E_{\rm B}/N_0} \ = \ $

$\ \rm dB$


Solution

(1)  From the table on the information page,  the BSC parameter  $\varepsilon = 0.0505$  can be read.

  • This gives  $\varepsilon_{\rm S}$  for the symbol error probability with  $m = 3$:
$$1 - \varepsilon_{\rm S} = (1 - 0.0505)^3 \approx 0.856 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \varepsilon_{\rm S} \approx 0.144 \hspace{0.05cm}.$$
  • The fastest way to calculate the block error probability is here to use the formula
$${\rm Pr(block\:error)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 - {\rm Pr}(f=0) - {\rm Pr}(f=1) - {\rm Pr}(f=2) = 1 - 1 \cdot 0.856^7 - 7 \cdot 0.144^1 \cdot 0.856^6 - 21 \cdot 0.144^2 \cdot 0.856^5$$
$$\Rightarrow \hspace{0.3cm} {\rm Pr(block\:error)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Pr}(\underline{v} \ne \underline{u}) =1 - 0.3368 - 0.3965 - 0.2001 \hspace{0.15cm} \underline{=0.0666} \hspace{0.05cm}.$$


(2)  Following the same calculation procedure as in subtask  (1),  we obtain with  $\varepsilon_{\rm S} \approx 0.03 \ \Rightarrow \ 1 - \varepsilon_{\rm S} = 0.97$:

$${\rm Pr(block\:error)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 \hspace{-0.05cm}-\hspace{-0.05cm} 1 \cdot 0.97^7 \hspace{-0.05cm}-\hspace{-0.05cm} 7 \cdot 0.03^1 \cdot 0.97^6 \hspace{-0.05cm}-\hspace{-0.05cm} 21 \cdot 0.03^2 \cdot 0.97^5 =1 \hspace{-0.05cm}-\hspace{-0.05cm} 0.8080 \hspace{-0.05cm}-\hspace{-0.05cm} 0.1749\hspace{-0.05cm}-\hspace{-0.05cm} 0.0162= 1 \hspace{-0.05cm}-\hspace{-0.05cm} 0.9991 = 9 \cdot 10^{-4} \hspace{0.05cm}.$$
  • You can see that here the difference between two numbers of almost the same size must be formed,  so that the result could be affected by an error.
  • Therefore we still calculate the following quantities:
$${\rm Pr}(f=3) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {7 \choose 3} \cdot \varepsilon_{\rm S}^3 \cdot (1 - \varepsilon_{\rm S})^4 = 35 \cdot 0.03^3 \cdot 0.97^4 = 8.366 \cdot 10^{-4}\hspace{0.05cm},$$
$${\rm Pr}(f=4) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {7 \choose 4} \cdot \varepsilon_{\rm S}^4 \cdot (1 - \varepsilon_{\rm S})^3 = 35 \cdot 0.03^4 \cdot 0.97^3 = 0.259 \cdot 10^{-4}\hspace{0.05cm},$$
$${\rm Pr}(f=5) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {7 \choose 5} \cdot \varepsilon_{\rm S}^5 \cdot (1 - \varepsilon_{\rm S})^2 = 21 \cdot 0.03^5 \cdot 0.97^2 = 0.005 \cdot 10^{-4}$$
$$\Rightarrow \hspace{0.3cm} {\rm Pr(block\:error)} = {\rm Pr}(\underline{v} \ne \underline{u}) \approx {\rm Pr}(f=3) + {\rm Pr}(f=4) + {\rm Pr}(f=5) \hspace{0.15cm} \underline{=8.63 \cdot 10^{-4}} \hspace{0.05cm}.$$
  • The terms for  $f = 6$  and  $f = 7$  can be omitted here.  They do not provide a relevant contribution.



(3)  Here  $\varepsilon_{\rm S} = 0.005 \ \Rightarrow \ 1 - \varepsilon_{\rm S} = 0.995$  is already given in the table.

  • The  (by far)  dominant term in the calculation of the block error probability is  ${\rm Pr}(f = 3)$:
$${\rm Pr(block\:error)} = {\rm Pr}(\underline{v} \ne \underline{u}) \approx {\rm Pr}(f=3) = {7 \choose 3} \cdot 0.005^3 \cdot 0.995^4 \hspace{0.15cm} \underline{\approx 4.3 \cdot 10^{-6}} \hspace{0.05cm}.$$


(4)  For the BSC parameter  $\varepsilon$  holds with  $\varepsilon_{\rm S} = 0.1$:

$$\varepsilon = 1 -(1 - \varepsilon_{\rm S})^{1/3} = 1 - 0.9^{1/3} \approx 0.0345 \hspace{0.05cm}.$$
  • The relation between  $\varepsilon$  and  $E_{\rm B}/N_0$  is:
$$\varepsilon = {\rm Q}(x)\hspace{0.05cm}, \hspace{0.5cm} x = \sqrt{2 \cdot R \cdot E_{\rm B}/N_0}\hspace{0.05cm}.$$
$$E_{\rm B}/N_0 = \frac{x^2}{2R} = \frac{1.82^2}{2R \cdot 3/7} \approx 3.864 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.15cm}(E_{\rm B}/N_0) \hspace{0.15cm} \underline{\approx 5.87 \,\, {\rm dB}} \hspace{0.05cm}. $$


(5)  After the same calculation one obtains

  • for  $\varepsilon_{\rm S} = 10^{-2} \ \Rightarrow \ \varepsilon \approx 0.33 \cdot 10^{-2} \ \Rightarrow \ x = {\rm Q}^{-1}(\varepsilon) = 2.71$
$$E_{\rm B}/N_0 = \frac{x^2}{2R} = \frac{2.71^2}{2R \cdot 3/7} \approx 8.568 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.15cm}(E_{\rm B}/N_0) \hspace{0.15cm} \underline{\approx 9.32 \,\, {\rm dB}} \hspace{0.05cm}, $$
  • for $\varepsilon_{\rm S} = 10^{-3} \ \Rightarrow \ \varepsilon \approx 0.33 \cdot 10^{-3} \ \Rightarrow \ x = {\rm Q}^{-1}(\varepsilon) = 3.4$:
$$E_{\rm B}/N_0 = \frac{x^2}{2R} = \frac{3.4^2}{2R \cdot 3/7} \approx 13.487 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.15cm}(E_{\rm B}/N_0) \hspace{0.15cm} \underline{\approx 11.3 \,\, {\rm dB}} \hspace{0.05cm}. $$
Results for $\rm RSC \, (7, \, 3, \, 5)_8$ decoding

The graph shows

  • the course of the block error probability as function of $10 \cdot \lg {E_{\rm B}/N_0}$,
  • and the completely filled result table.


One can see the clearly less favorable  (asymptotic)  behavior of the  (green)  code $\rm RSC \, (7, \, 5, \, 3)_8$ compared to the  (red)  comparison code $\rm RSC \, (255, \, 223, \, 33)_8$:

  1. For abscissa values smaller than  $10 \ \rm dB$  the result is even worse than without coding.
  2. It should be pointed out again that the  $\rm RSC \, (7, \, 3, \, 5)_8$  has only little practical meaning.
  3. It was chosen for this exercise only to be able to demonstrate with reasonable effort the calculation of the block error probability for  "Bounded Distance Decoding"  $\rm (BDD)$.