Difference between revisions of "Aufgaben:Exercise 2.1: Two-Dimensional Impulse Response"

From LNTwww
Line 2: Line 2:
 
{{quiz-Header|Buchseite=Mobile Kommunikation/Allgemeine Beschreibung zeitvarianter Systeme}}
 
{{quiz-Header|Buchseite=Mobile Kommunikation/Allgemeine Beschreibung zeitvarianter Systeme}}
  
[[File:P_ID2144__Mob_A_2_1.png|right|frame|Zweidimensionale Impulsantwort]]
+
[[File:P_ID2144__Mob_A_2_1.png|right|frame|Two-dimensional impulse response]]
Es soll die zweidimensionale Impulsantwort
+
It is supposed to determine the two-dimensional impulse response
:$$h(\tau,\hspace{0.05cm}t) = \sum_{m = 1}^{M} z_m(t) \cdot {\rm \delta} (\tau - \tau_m)$$
+
$$h(\dew,\hspace{0.05cm}t) = \sum_{m = 1}^{M} z_m(t) \cdot {\rm \delta} (\tau - \tau_m)$$
  
gemäß der nebenstehenden Grafik analysiert werden. Die beiden Achsen sind zeitdiskret:
+
can be analyzed according to the adjoining diagram. The two axes are time-discrete:
* $\tau$&nbsp; kennzeichnet die&nbsp; <i>Verzögerungszeit</i>&nbsp; und kann im Beispiel Werte zwischen&nbsp; $0$&nbsp; und&nbsp; $6 \ {\rm &micro; s}$&nbsp; annehmen.
+
* $\tau$&nbsp; indicates the&nbsp; <i>delay time</i>&nbsp; and can take values between&nbsp; $0$&nbsp; and&nbsp; $6 \ {\rm &micro; s}$&nbsp; in the example.
* Die ''absolute Zeit''&nbsp; $t$&nbsp; macht Aussagen über die Häufigkeit der Momentaufnahmen und charakterisiert die Zeitvarianz. Es gilt&nbsp; $t = n \cdot T$, wobei&nbsp; $T \gg \tau_{\rm max}$&nbsp; gelten soll.
+
* The ''absolute time''&nbsp; $t$&nbsp; makes statements about the frequency of snapshots and characterizes the time variance. It holds&nbsp; $t = n \cdot T$, where&nbsp; $T \gg \tau_{\rm max}$&nbsp; should hold.
  
  
Die Pfeile in der Grafik markieren verschiedene Diracfunktionen mit den Impulsgewichten&nbsp; $1$&nbsp; (rot),&nbsp; $1/2$&nbsp; (blau) und&nbsp; $1/4$&nbsp; (grün). Das bedeutet, dass hier auch die Verzögerungszeit&nbsp; $\tau$&nbsp; zeitdiskret ist.  
+
The arrows in the graphic mark different Dirac functions with the impulse weights&nbsp; $1$&nbsp; (red),&nbsp; $1/2$&nbsp; (blue) and&nbsp; $1/4$&nbsp; (green). This means that the delay time&nbsp; $\tau$&nbsp; is also time-discrete here.  
  
Bei den Messungen der Impulsantworten zu verschiedenen Zeiten&nbsp; $t$&nbsp; im Sekundenabstand betrug die Auflösung der&nbsp; $\tau$&ndash;Achse&nbsp; $2$&nbsp; Mikrosekunden $(\Delta \tau = 2 \ \rm &micro; s)$. Genauer wurden die Echos nicht lokalisiert.
+
When measuring the impulse responses at different times&nbsp; $t$&nbsp; at second intervals, the resolution of the&nbsp; $\tau$&ndash;axis&nbsp; $2$&nbsp; microseconds $(\delta \tau = 2 \ \rm &micro; s)$. The echoes were not localized more precisely.
  
Weiter wird in dieser Aufgabe noch auf folgende Größen Bezug genommen:
+
In this task the following quantities are also referred to:
* die <i>zeitvariante Übertragungsfunktion</i>&nbsp; entsprechend der Definition
+
* the <i>time variant transfer function</i>&nbsp; according to the definition
 
:$$H(f,\hspace{0.05cm} t)
 
:$$H(f,\hspace{0.05cm} t)
  \hspace{0.2cm}  \stackrel {f,\hspace{0.05cm}\tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} h(\tau,\hspace{0.05cm}t)   
+
  \hspace{0.2cm}  \stackrel {f,\hspace{0.05cm}{\a6}{\bullet}{\bullet\!-\!-\!-\!-\!-\!\circ} \hspace{0.2cm} h(\dew,\hspace{0.05cm}t)   
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
  
* die Näherung der <i>Kohärenzbandbreite</i>&nbsp; als Kehrwert der maximalen Ausdehnung von&nbsp; $h(\tau, t)$:
+
* the approximation of the <i>coherence bandwidth</i>&nbsp; as the reciprocal of the maximum extension of&nbsp; $h(\tau, t)$:
:$$B_{\rm K} \hspace{0.01cm}' = \frac{1}{\tau_{\rm max} - \tau_{\rm min}}   
+
:$$B_{\rm K} \hspace{0.01cm}' = \frac{1}{\frac_{\rm max} - \dew_{\rm min}}   
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Line 30: Line 30:
  
  
''Hinweise:''
+
''Notes:''
* Die Aufgabe gehört zum Themengebiet des Kapitels&nbsp; [[Mobile_Kommunikation/Allgemeine_Beschreibung_zeitvarianter_Systeme| Allgemeine Beschreibung zeitvarianter Systeme]].
+
* The task belongs to the topic of the chapter&nbsp; [[Mobile_Communication/General_Description_time_variant_Systems| General Description of Time Variant Systems]].
* Genauere Informationen zu verschiedene Definitionen für die Kohärenzbandbreite finden Sie im Kapitel&nbsp; [[Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell| Das GWSSUS&ndash;Kanalmodell]], insbesondere in der Musterlösung zur&nbsp; [[Aufgaben:2.7_Koh%C3%A4renzbandbreite|Aufgabe 2.7Z]].
+
* More detailed information on various definitions for the coherence bandwidth can be found in chapter&nbsp; [[Mobile_Communications/The_GWSSUS%E2%80%93Channel Model|The GWSSUS&ndash;Channel Model]], especially in the sample solution for the&nbsp; [[Tasks:2.7_Coh%C3%A4limit Bandwidth|Task 2.7Z]].
* Anzumerken ist, dass es sich hier um eine konstruierte Aufgabe handelt. Entsprechend obiger Grafik ändert sich die 2D&ndash;Impulsantwort während der Zeitspanne&nbsp; $T$&nbsp; gravierend. Deshalb ist&nbsp; $T$&nbsp; hier als sehr groß zu interpretieren, zum Beispiel eine Stunde.  
+
* It should be noted that this is a constructed task. According to the above graphic, the 2D&ndash;impulse response changes significantly during the time span&nbsp; $T$&nbsp; seriously. Therefore&nbsp; $T$&nbsp; is to be interpreted here as very large, for example one hour.  
*Im Mobilfunk ändert sich&nbsp; $h(\tau, t)$&nbsp; unter Berücksichtigung des Dopplereffektes im Millisekundenbereich, doch sind die Änderungen während dieser Zeit eher moderat.
+
*In mobile radio,&nbsp; $h(\tau, t)$&nbsp; changes in the millisecond range taking into account the Doppler effect, but the changes during this time are rather moderate.
 
   
 
   
  
  
  
===Fragebogen===
+
===Questionnaire==
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Einschränkung bedeutet die Angabe&nbsp; $\Delta \tau = 2 \rm &micro; s$&nbsp; für die maximale Bandbreite&nbsp; $B_{\rm max}$&nbsp; des zu untersuchenden Nachrichtensignals?
+
{What restriction does the specification&nbsp; $\Delta \tau = 2 \rm &micro; s$&nbsp; for the maximum bandwidth&nbsp; $B_{\rm max}$&nbsp; of the message signal to be examined?
 
|type="{}"}
 
|type="{}"}
$B_{\rm max} \ = \ ${ 500 3% } $\ \rm kHz$
+
$B_{\rm max} \ = \ ${ 500 3% } $\ \ \rm kHz$
  
{Zu welcher Zeit&nbsp; $t_2$&nbsp; ist der Kanal ideal, gekennzeichnet durch&nbsp; $H(f, t_{\rm 2}) = 1$?
+
{At what time&nbsp; $t_2$&nbsp; is the channel ideal, characterized by&nbsp; $H(f, t_{\rm 2}) = 1$?
 
|type="{}"}
 
|type="{}"}
 
$t_{\rm 2} \ = \ ${ 0. } $\ \cdot T$
 
$t_{\rm 2} \ = \ ${ 0. } $\ \cdot T$
  
{Ab welcher Zeit&nbsp; $t_{\rm 3}$&nbsp; führt dieser Kanal zu Verzerrungen?
+
{From what time&nbsp; $t_{\rm 3}$&nbsp; does this channel cause distortion?
 
|type="{}"}
 
|type="{}"}
 
$t_{\rm 3} \ = \ ${ 3 3% } $\ \cdot T$
 
$t_{\rm 3} \ = \ ${ 3 3% } $\ \cdot T$
  
{Berechnen Sie die Kohärenzbandbreite für&nbsp; $t = 3T$,&nbsp; $t = 4T$&nbsp; und&nbsp; $t = 5T$:
+
{Calculate the coherence bandwidth for&nbsp; $t = 3T$,&nbsp; $t = 4T$&nbsp; and&nbsp; $t = 5T$:
 
|type="{}"}
 
|type="{}"}
$t = 3T \text{:} \hspace{0.4cm} B_{\rm K} \hspace{0.01cm}' \ = \ ${ 250 3% } $\ \rm kHz$
+
$t = 3T \text{:} \hspace{0.4cm} B_{\rm K} \hspace{0.01cm}' \ = \ ${ 250 3% } $\ \ \rm kHz$
$t = 4T \text{:} \hspace{0.4cm} B_{\rm K} \hspace{0.01cm}' \ = \ ${ 250 3% } $\ \rm kHz$
+
$t = 4T \text{:} \hspace{0.4cm} B_{\rm K} \hspace{0.01cm}' \ = \ ${ 250 3% } $\ \ \rm kHz$
$t = 5T \text{:} \hspace{0.4cm} B_{\rm K} \hspace{0.01cm}' \ = \ ${ 166.7 3% } $\ \rm kHz$
+
$t = 5T \text{:} \hspace{0.4cm} B_{\rm K} \hspace{0.01cm}' \ = \ ${ 166.7 3% } $\ \ \rm kHz$
  
{Ab welcher Zeit&nbsp; $t_{\rm 5}$&nbsp; könnte man diesen Kanal als zeitinvariant betrachten?
+
{From what time&nbsp; $t_{\rm 5}$&nbsp; could this channel be considered as time invariant?
 
|type="{}"}
 
|type="{}"}
 
$t_{\rm 5} \ = \ ${ 5 3% } $\ \cdot T$
 
$t_{\rm 5} \ = \ ${ 5 3% } $\ \cdot T$
  
{Für welchen der genannten&nbsp; $T$&ndash;Werte macht das Arbeiten mit der&nbsp; $\rm 2D$&ndash;Impulsantwort Sinn?
+
{For which of the mentioned&nbsp; $T$&ndash;values does working with the&nbsp; $\rm 2D$&ndash;impulse response make sense?
 
|type="[]"}
 
|type="[]"}
- Eine (langsame) Kanaländerung erfolgt etwa nach&nbsp; $T = 1 \ \rm &micro; s$.
+
- A (slow) channel change occurs approximately after&nbsp; $T = 1 \ \rm &micro; s$.
+ Eine (langsame) Kanaländerung erfolgt etwa nach&nbsp; $T = 1 \ \rm s$.
+
+ A (slow) channel change takes place approximately after&nbsp; $T = 1 \ \rm s$.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Sample solution===
{{ML-Kopf}}
+
{{{ML-Kopf}}
'''(1)'''&nbsp; Das im äquivalenten Tiefpassbereich beschriebene Nachrichtensignal darf keine größere Bandbreite als $B_{\rm max} = 1/\Delta \tau \ \underline {= 500 \ \rm kHz}$ aufweisen.  
+
'''(1)'''&nbsp; The message signal described in the equivalent low-pass band shall not have a bandwidth greater than $B_{\rm max} = 1/\delta \tau \ \underline {= 500 \ \rm kHz}$.  
*Diese mathematische (zweiseitige) Bandbreite des Tiefpass&ndash;Signals ist gleichzeitig die maximale physikalische (einseitige) Bandbreite des zugehörigen Bandpass&ndash;Signals.
+
*This mathematical (two-sided) bandwidth of the low pass&ndash;signal is also the maximum physical (one-sided) bandwidth of the corresponding bandpass&ndash;signal.
  
  
  
'''(2)'''&nbsp; $H(f, t_{\rm 2}) = 1$ bedeutet im Zeitbereich $h(\tau, t_{\rm 2}) = \delta(\tau)$.  
+
'''(2)'''&nbsp; $H(f, t_{\rm 2}) = 1$ means in the time domain $h(\tau, t_{\rm 2}) = \delta(\tau)$.  
*Nur dann ist der Kanal ideal.  
+
*Only then the channel is ideal.  
*Man erkennt aus der Grafik, dass dies nur für den Zeitpunkt $t_{\rm 2} \ \underline {= 0}$ zutrifft.
+
*You can see from the graphic that this only applies to the time $t_{\rm 2} \ \underline {= 0}$.
  
 +
'''(3)'''&nbsp; Distortions occur if at time $t$ the impulse response is composed of two or more Dirac functions &nbsp; &#8658; &nbsp; $t &#8805; t_{\rm 3} \ \ \underline {\a6}$3T
 +
*At time $t = T$ the signal $s(t)$ is delayed only by $2 \ \rm &micro; s$.
 +
*At $t = 2T$ the amplitude is additionally reduced by $50 \%$ ($6 \ \ \rm dB$ loss).
  
  
'''(3)'''&nbsp; Verzerrungen treten dann auf, wenn sich zum Zeitpunkt $t$ die Impulsantwort aus zwei oder mehr Diracfunktionen zusammensetzt &nbsp; &#8658; &nbsp; $t &#8805; t_{\rm 3} \ \underline {= 3T}$.
 
*Zum Zeitpunkt $t = T$ wird das Signal $s(t)$ nur um $2 \ \rm &micro; s$ verzögert.
 
*Bei $t = 2T$ wird zusätzlich noch die Amplitude um $50 \%$  reduziert ($6 \ \rm dB$ Verlust).
 
  
 
+
'''(4)'''&nbsp; At time $t = 3T$ the two Dirac functions occur at $\tau_{\rm min} = 0$ and $\tau_{\rm max} = 4 \ \rm &micro; s$.  
 
+
*The (simple approximation for the) coherence bandwidth is the reciprocal of this
'''(4)'''&nbsp; Zum Zeitpunkt $t = 3T$ treten die beiden Diracfunktionen bei $\tau_{\rm min} = 0$ und $\tau_{\rm max} = 4 \ \rm &micro; s$ auf.  
+
$$B_{\rm K}\hspace{0.01cm}' = \frac{1}{4\,\,{\,}{\rm &micro; s} \hspace{0.25cm} \underline{ = 250\,\,\,{\rm kHz}}  
*Die (einfache Näherung für die) Kohärenzbandbreite ist der Kehrwert hiervon:
 
:$$B_{\rm K}\hspace{0.01cm}' = \frac{1}{4\,\,{\rm &micro; s} } \hspace{0.25cm} \underline{ = 250\,\,{\rm kHz}}  
 
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*Da auch zum Zeitpunkt $t = 4T$ die Diracfunktionen um $4 \ \rm &micro; s$ auseinanderliegen, erhält man hier ebenfalls $B_{\rm K} \hspace{0.01cm}' = \underline {250 \ \rm kHz}$.  
+
*As even at the time $t = 4T$ the Dirac functions are $4 \ \rm &micro; s$ apart, you also get $B_{\rm K} here \hspace{0.01cm}' = \underline {250 \ \rm kHz}$.  
*Bei $t = 5T$ hat die Impulsantwort eine Ausdehnung von $6 \ \rm &micro; s \ \Rightarrow \ {\it B}_{\rm K} \hspace{0.01cm}' \ \underline {\approx 166.7 \ \rm kHz}$.  
+
*At $t = 5T$ the impulse response has an extension of $6 \ \ \rm &micro; s \ \ \Rightarrow \ {\it B}_{\rm K} \hspace{0.01cm}' \ \underline {\approx 166.7 \ \rm kHz}$.  
  
  
  
'''(5)'''&nbsp; Die Impulsantworten sind zu den Zeiten $5T$, $6T$ und $7T$ identisch und bestehen jeweils aus 3 Diracs.  
+
'''(5)'''&nbsp; The impulse responses are identical at the times $5T$, $6T$ and $7T$ and consist of 3 diracs each.  
*Unter der Annahme, dass sich diesbezüglich für $t &#8805; 8T$ nichts ändert, erhält man $t_{\rm 5} \ \underline {= 5T}$.
+
* Assuming that nothing changes in this respect for $t &#8805; 8T$, you get $t_{\rm 5} \ \ \underline {= 5T}$.
  
  
  
'''(6)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>:
+
'''(6)'''&nbsp; Correct is the <u>solution 2</u>:
*Die zeitliche Veränderung der Impulsantwort, deren Dynamik durch den Parameter $T$ ausgedrückt wird, muss langsam sein im Vergleich zur maximalen Ausdehnung von $h(\tau, t)$, die in dieser Aufgabe gleich $\tau_{\rm max} = 6 \ \rm &micro; s$ beträgt: &nbsp;  
+
*The temporal change of the impulse response, whose dynamics is expressed by the parameter $T$, must be slow in comparison to the maximum expansion of $h(\tau, t)$, which in this task equals $\tau_{\rm max} = 6 \ \rm &micro; s$: &e.g;  
:$$T \gg \tau_{\rm max}.$$  
+
$$T \gg \dew_{\rm max}.$$  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
 
  
  
 
[[Category:Exercises for Mobile Communications|^2.1 Description of Time-Variant Systems^]]
 
[[Category:Exercises for Mobile Communications|^2.1 Description of Time-Variant Systems^]]

Revision as of 14:07, 15 April 2020

Two-dimensional impulse response

It is supposed to determine the two-dimensional impulse response $$h(\dew,\hspace{0.05cm}t) = \sum_{m = 1}^{M} z_m(t) \cdot {\rm \delta} (\tau - \tau_m)$$

can be analyzed according to the adjoining diagram. The two axes are time-discrete:

  • $\tau$  indicates the  delay time  and can take values between  $0$  and  $6 \ {\rm µ s}$  in the example.
  • The absolute time  $t$  makes statements about the frequency of snapshots and characterizes the time variance. It holds  $t = n \cdot T$, where  $T \gg \tau_{\rm max}$  should hold.


The arrows in the graphic mark different Dirac functions with the impulse weights  $1$  (red),  $1/2$  (blue) and  $1/4$  (green). This means that the delay time  $\tau$  is also time-discrete here.

When measuring the impulse responses at different times  $t$  at second intervals, the resolution of the  $\tau$–axis  $2$  microseconds $(\delta \tau = 2 \ \rm µ s)$. The echoes were not localized more precisely.

In this task the following quantities are also referred to:

  • the time variant transfer function  according to the definition
$$H(f,\hspace{0.05cm} t) \hspace{0.2cm} \stackrel {f,\hspace{0.05cm}{\a6}{\bullet}{\bullet\!-\!-\!-\!-\!-\!\circ} \hspace{0.2cm} h(\dew,\hspace{0.05cm}t) \hspace{0.05cm},$$
  • the approximation of the coherence bandwidth  as the reciprocal of the maximum extension of  $h(\tau, t)$:
$$B_{\rm K} \hspace{0.01cm}' = \frac{1}{\frac_{\rm max} - \dew_{\rm min}} \hspace{0.05cm}.$$




Notes:

  • The task belongs to the topic of the chapter  General Description of Time Variant Systems.
  • More detailed information on various definitions for the coherence bandwidth can be found in chapter  The GWSSUS–Channel Model, especially in the sample solution for the  Task 2.7Z.
  • It should be noted that this is a constructed task. According to the above graphic, the 2D–impulse response changes significantly during the time span  $T$  seriously. Therefore  $T$  is to be interpreted here as very large, for example one hour.
  • In mobile radio,  $h(\tau, t)$  changes in the millisecond range taking into account the Doppler effect, but the changes during this time are rather moderate.



=Questionnaire

1

What restriction does the specification  $\Delta \tau = 2 \rm µ s$  for the maximum bandwidth  $B_{\rm max}$  of the message signal to be examined?

$B_{\rm max} \ = \ $

$\ \ \rm kHz$

2

At what time  $t_2$  is the channel ideal, characterized by  $H(f, t_{\rm 2}) = 1$?

$t_{\rm 2} \ = \ $

$\ \cdot T$

3

From what time  $t_{\rm 3}$  does this channel cause distortion?

$t_{\rm 3} \ = \ $

$\ \cdot T$

4

Calculate the coherence bandwidth for  $t = 3T$,  $t = 4T$  and  $t = 5T$:

$t = 3T \text{:} \hspace{0.4cm} B_{\rm K} \hspace{0.01cm}' \ = \ $

$\ \ \rm kHz$
$t = 4T \text{:} \hspace{0.4cm} B_{\rm K} \hspace{0.01cm}' \ = \ $

$\ \ \rm kHz$
$t = 5T \text{:} \hspace{0.4cm} B_{\rm K} \hspace{0.01cm}' \ = \ $

$\ \ \rm kHz$

5

From what time  $t_{\rm 5}$  could this channel be considered as time invariant?

$t_{\rm 5} \ = \ $

$\ \cdot T$

6

For which of the mentioned  $T$–values does working with the  $\rm 2D$–impulse response make sense?

A (slow) channel change occurs approximately after  $T = 1 \ \rm µ s$.
A (slow) channel change takes place approximately after  $T = 1 \ \rm s$.


Sample solution

{

(1)  The message signal described in the equivalent low-pass band shall not have a bandwidth greater than $B_{\rm max} = 1/\delta \tau \ \underline {= 500 \ \rm kHz}$.

  • This mathematical (two-sided) bandwidth of the low pass–signal is also the maximum physical (one-sided) bandwidth of the corresponding bandpass–signal.


(2)  $H(f, t_{\rm 2}) = 1$ means in the time domain $h(\tau, t_{\rm 2}) = \delta(\tau)$.

  • Only then the channel is ideal.
  • You can see from the graphic that this only applies to the time $t_{\rm 2} \ \underline {= 0}$.

(3)  Distortions occur if at time $t$ the impulse response is composed of two or more Dirac functions   ⇒   $t ≥ t_{\rm 3} \ \ \underline {\a6}$3T

  • At time $t = T$ the signal $s(t)$ is delayed only by $2 \ \rm µ s$.
  • At $t = 2T$ the amplitude is additionally reduced by $50 \%$ ($6 \ \ \rm dB$ loss).


(4)  At time $t = 3T$ the two Dirac functions occur at $\tau_{\rm min} = 0$ and $\tau_{\rm max} = 4 \ \rm µ s$.

  • The (simple approximation for the) coherence bandwidth is the reciprocal of this

$$B_{\rm K}\hspace{0.01cm}' = \frac{1}{4\,\,{\,}{\rm µ s} \hspace{0.25cm} \underline{ = 250\,\,\,{\rm kHz}} \hspace{0.05cm}.$$

  • As even at the time $t = 4T$ the Dirac functions are $4 \ \rm µ s$ apart, you also get $B_{\rm K} here \hspace{0.01cm}' = \underline {250 \ \rm kHz}$.
  • At $t = 5T$ the impulse response has an extension of $6 \ \ \rm µ s \ \ \Rightarrow \ {\it B}_{\rm K} \hspace{0.01cm}' \ \underline {\approx 166.7 \ \rm kHz}$.


(5)  The impulse responses are identical at the times $5T$, $6T$ and $7T$ and consist of 3 diracs each.

  • Assuming that nothing changes in this respect for $t ≥ 8T$, you get $t_{\rm 5} \ \ \underline {= 5T}$.


(6)  Correct is the solution 2:

  • The temporal change of the impulse response, whose dynamics is expressed by the parameter $T$, must be slow in comparison to the maximum expansion of $h(\tau, t)$, which in this task equals $\tau_{\rm max} = 6 \ \rm µ s$: &e.g;

$$T \gg \dew_{\rm max}.$$