Difference between revisions of "Aufgaben:Exercise 2.2Z: Power Consideration"

From LNTwww
m (Text replacement - "Category:Aufgaben zu Modulationsverfahren" to "Category:Modulation Methods: Exercises")
 
(16 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Zweiseitenband-Amplitudenmodulation
+
{{quiz-Header|Buchseite=Modulation_Methods/Double-Sideband_Amplitude_Modulation
 
}}
 
}}
  
[[File:P_ID991__Mod_Z_2_2.png|right|frame|Analytisches Signal – Linienspektrum ]]
+
[[File:P_ID991__Mod_Z_2_2.png|right|frame|Analytical signal - Line spectrum]]
Wir betrachten zwei harmonische Schwingungen
+
Let us consider two harmonic oscillations
 
:$$ s_1(t)  = A_1 \cdot \cos(\omega_{\rm 1} \cdot t ) \hspace{0.05cm},$$  
 
:$$ s_1(t)  = A_1 \cdot \cos(\omega_{\rm 1} \cdot t ) \hspace{0.05cm},$$  
 
:$$s_2(t)  =  A_2 \cdot \cos(\omega_{\rm 2} \cdot t + \phi) \hspace{0.05cm},$$
 
:$$s_2(t)  =  A_2 \cdot \cos(\omega_{\rm 2} \cdot t + \phi) \hspace{0.05cm},$$
wobei für die Frequenzen   $f_2 ≥ f_1$  gelten soll.  
+
where   $f_2 ≥ f_1$  should hold for the frequencies.  
  
Die Grafik zeigt das Spektrum des analytischen Signals  $s_+(t)$, das sich additiv aus den beiden Anteilen  $s_{1+}(t)$  und  $s_ {2+}(t)$  zusammensetzt.
+
*The graph on the right  shows the spectrum of the analytical signal  $s_+(t)$, which is additively composed of the two components  $s_{1+}(t)$  and  $s_ {2+}(t)$ .
  
Unter der Sendeleistung  $P_{\rm S}$  soll hier der quadratische Mittelwert des Signals  $s(t)$  verstanden werden, gemittelt über eine möglichst große Messdauer:
+
*Here,  the transmission power  $P_{\rm S}$  should be understood as the second order moment of the signal  $s(t)$,  averaged over the largest measurement period possible:
 
:$$P_{\rm S} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {s^2(t) }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$
 
:$$P_{\rm S} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {s^2(t) }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$
Beschreibt  $s(t)$  einen Spannungsverlauf, so besitzt  $P_{\rm S}$  nach dieser Definition die Einheit  $\rm V^2$  und bezieht sich auf den Widerstand  $R = 1 \ \rm Ω$.  Die Division durch  $R$  liefert die physikalische Leistung in  $\rm W$.
+
*According to this definition:  If  $s(t)$ describes a voltage waveform,  $P_{\rm S}$  has unit   $\rm V^2$  and refers to resistance  $R = 1 \ \rm Ω$.   
 +
*Dividing by $R$  gives the physical power in   $\rm W$.
  
  
Line 19: Line 20:
  
  
 
+
Hints:  
 
+
*This exercise belongs to the chapter  [[Modulation_Methods/Double-Sideband_Amplitude_Modulation|Double-Sideband Amplitude Modulation]].
''Hinweise:''
+
*Reference is also made to the chapter   [[Modulation_Methods/Quality_Criteria|Quality Criteria]].
*Die Aufgabe gehört zum  Kapitel  [[Modulation_Methods/Zweiseitenband-Amplitudenmodulation|Zweiseitenband-Amplitudenmodulation]].
+
*Use the numerical values  $A_1 = 2\ \rm  V$,  $A_2 = 1 \ \rm V$,  and  $R = 50 \ \rm Ω$.
*Bezug genommen wird auch auf das Kapitel   [[Modulation_Methods/Qualitätskriterien|Qualitätskriterien]].
 
*Verwenden Sie die Zahlenwerte  $A_1 = 2\ \rm  V$,  $A_2 = 1 \ \rm V$  und  $R = 50 \ \rm Ω$.
 
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie die Leistung des Cosinussignals &nbsp;$s_1(t)$.
+
{Calculate the power of the cosine signal &nbsp;$s_1(t)$.
 
|type="{}"}
 
|type="{}"}
 
$P_1 \ = \ $ { 2 3% } $\ \rm V^{ 2 }$
 
$P_1 \ = \ $ { 2 3% } $\ \rm V^{ 2 }$
  
{Es gelte &nbsp;$R = 50 \ \rm Ω$.&nbsp; Wie groß ist die physikalische Leistung des Signals  &nbsp;$s_1(t)$?  
+
{Let&nbsp; $R = 50 \ \rm Ω$.&nbsp; What is the physical power of the signal &nbsp;$s_1(t)$?  
 
|type="{}"}
 
|type="{}"}
 
$P_1 \ = \ $ { 40 3% } $\ \text{mW}$
 
$P_1 \ = \ $ { 40 3% } $\ \text{mW}$
  
{Wie groß ist die Leistung der phasenverschobenen Schwingung &nbsp;$s_2(t)$?
+
{What is the power of the phase-shifted oscillation &nbsp;$s_2(t)$?
 
|type="{}"}
 
|type="{}"}
 
$P_2  \ = \ $ { 0.5 3% } $\ \rm V^{ 2 }$
 
$P_2  \ = \ $ { 0.5 3% } $\ \rm V^{ 2 }$
  
{Wie groß ist die Leistung des Summensignals &nbsp;$s(t)$&nbsp; unter der Bedingung &nbsp;$f_2 ≠ f_1$?
+
{What is the power of the sum signal &nbsp;$s(t)$&nbsp; when &nbsp;$f_2 ≠ f_1$?
 
|type="{}"}
 
|type="{}"}
 
$P_{\rm S} \ = \ $ { 2.5 3% } $\ \rm V^{ 2 }$
 
$P_{\rm S} \ = \ $ { 2.5 3% } $\ \rm V^{ 2 }$
  
{Welche Leistung erhält man für &nbsp;$f_2 = f_1$&nbsp; mit &nbsp;$ϕ = 0$, &nbsp;$ϕ = 90^\circ$&nbsp; und &nbsp;$ϕ = 180^\circ$?
+
{What power is obtained for&nbsp;$f_2 = f_1$&nbsp; with &nbsp;$ϕ = 0$, &nbsp;$ϕ = 90^\circ$&nbsp; and &nbsp;$ϕ = 180^\circ$?
 
|type="{}"}
 
|type="{}"}
 
$ϕ = 0\text{:}\hspace{0.3cm}  P_{\rm S} \ = \ $ { 4.5 3% }$\ \rm V^{ 2 }$
 
$ϕ = 0\text{:}\hspace{0.3cm}  P_{\rm S} \ = \ $ { 4.5 3% }$\ \rm V^{ 2 }$
Line 55: Line 54:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Entsprechend den Gleichungen auf der Angabenseite gilt:
+
'''(1)'''&nbsp; According to the equations specified on the exercise page:
 
:$$P_{\rm 1} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {A_1^2 \cdot \cos^2(\omega_{\rm 1} t + \phi_1) }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$
 
:$$P_{\rm 1} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {A_1^2 \cdot \cos^2(\omega_{\rm 1} t + \phi_1) }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$
*Zur allgemeineren Berechnung ist die Phase&nbsp; $ϕ_1$&nbsp; berücksichtigt, die hier eigentlich Null ist.&nbsp; Mit der Gleichung $\cos^{2}(α) = 0.5 · (1 + \cos(2α))$&nbsp; ergibt sich:
+
*For more general calculation,&nbsp; we consider the phase&nbsp; $ϕ_1$,&nbsp; which is actually zero here.&nbsp; Using the equation&nbsp; $\cos^{2}(α) = 0.5 · (1 + \cos(2α))$,&nbsp; we get:
 
:$$ P_{\rm 1} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {\frac{A_1^2}{2}}\hspace{0.1cm}{\rm d}t + \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {\frac{A_1^2}{2}\cdot \cos(2\omega_{\rm 1} t + 2\phi_1)}\hspace{0.1cm}{\rm d}t\hspace{0.05cm}.$$  
 
:$$ P_{\rm 1} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {\frac{A_1^2}{2}}\hspace{0.1cm}{\rm d}t + \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {\frac{A_1^2}{2}\cdot \cos(2\omega_{\rm 1} t + 2\phi_1)}\hspace{0.1cm}{\rm d}t\hspace{0.05cm}.$$  
*Der zweite Term liefert aufgrund der Integration über die Cosinusfunktion, der Division durch&nbsp; $T_{\rm M}$&nbsp; und dem anschließenden Grenzübergang unabhängig von der Phase&nbsp; $ϕ_1$&nbsp; keinen Beitrag. Damit erhält man:
+
*Regardless of the phase&nbsp; $ϕ_1$,&nbsp; the second term does not contribute to the division by&nbsp; $T_{\rm M}$&nbsp; and subsequent boundary transition due to integration over the cosine function.&nbsp; Thus,&nbsp; we get:
 
:$$P_{\rm 1} = \frac{A_1^2}{2} = \frac{(2\,{\rm V})^2}{2} \hspace{0.15cm}\underline {= 2\,{\rm V}^2}\hspace{0.05cm}.$$
 
:$$P_{\rm 1} = \frac{A_1^2}{2} = \frac{(2\,{\rm V})^2}{2} \hspace{0.15cm}\underline {= 2\,{\rm V}^2}\hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; Mit&nbsp; $R = 50\ \rm  Ω$&nbsp; erhält man für die „unnormierte” Leistung:
+
'''(2)'''&nbsp; With&nbsp; $R = 50\ \rm  Ω$,&nbsp; we get the&nbsp; "unnormalized"&nbsp; power:
 
:$$P_{\rm 1} = \frac{2\,{\rm V}^2}{50\,{\rm \Omega}} \hspace{0.15cm}\underline {= 40\,{\rm mW}}\hspace{0.05cm}.$$
 
:$$P_{\rm 1} = \frac{2\,{\rm V}^2}{50\,{\rm \Omega}} \hspace{0.15cm}\underline {= 40\,{\rm mW}}\hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Bereits in der Musterlösung zur Teilaufgabe&nbsp; '''(1)'''&nbsp; wurde gezeigt, dass die Phase keinen Einfluss auf die Leistung hat.&nbsp; Daraus folgt:
+
'''(3)'''&nbsp; It has already been shown in the solution to subtask&nbsp; '''(1)'''&nbsp; that the phase has no influence on the power.&nbsp; It follows that:
 
:$$P_{\rm 2} = \frac{A_2^2}{2} \hspace{0.15cm}\underline {= 0.5\,{\rm V}^2}\hspace{0.05cm}.$$
 
:$$P_{\rm 2} = \frac{A_2^2}{2} \hspace{0.15cm}\underline {= 0.5\,{\rm V}^2}\hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; Zur Leistungsberechnung muss über $s^{2}(t)$ gemittelt werden, wobei gilt:
+
'''(4)'''&nbsp;To calculate this power,&nbsp; we have to average over $s^{2}(t)$,&nbsp; where:
 
:$$s^2(t) = s_1^2(t) + s_2^2(t) + 2 \cdot s_1(t) \cdot s_2(t).$$
 
:$$s^2(t) = s_1^2(t) + s_2^2(t) + 2 \cdot s_1(t) \cdot s_2(t).$$
*Aufgrund der Division durch die Messdauer&nbsp; $T_{\rm M}$&nbsp; und des erforderlichen Grenzübergangs liefert der letzte Term unabhängig von der Phase&nbsp; $ϕ$&nbsp; keinen Beitrag.&nbsp; Deshalb:
+
*Due to the division by the measurement duration&nbsp; $T_{\rm M}$&nbsp; and the required boundary transition,&nbsp; the last term does not contribute regardless of the phase &nbsp; $ϕ$&nbsp;.&nbsp; Thus:
 
:$$P_{\rm S} = P_{\rm 1} + P_{\rm 2} \hspace{0.15cm}\underline {= 2.5\,{\rm V}^2}\hspace{0.05cm}.$$
 
:$$P_{\rm S} = P_{\rm 1} + P_{\rm 2} \hspace{0.15cm}\underline {= 2.5\,{\rm V}^2}\hspace{0.05cm}.$$
  
  
  
'''(5)'''&nbsp; Mit&nbsp; $f_2 = f_1$&nbsp; lautet das Spektrum des analytischen Signals:
+
'''(5)'''&nbsp; When&nbsp; $f_2 = f_1$,&nbsp; the spectrum of the analytical signal is:
 
:$$S_+(f) = (A_{\rm 1} + A_{\rm 2} \cdot {\rm e}^{{\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm} \phi})\cdot \delta (f - f_1) \hspace{0.05cm}.$$
 
:$$S_+(f) = (A_{\rm 1} + A_{\rm 2} \cdot {\rm e}^{{\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm} \phi})\cdot \delta (f - f_1) \hspace{0.05cm}.$$
*Somit ergibt sich das Signal
+
*This results in the signal:
 
:$$s(t) = A_3 \cdot \cos(\omega_{\rm 1} t + \phi_3) \hspace{0.05cm},$$
 
:$$s(t) = A_3 \cdot \cos(\omega_{\rm 1} t + \phi_3) \hspace{0.05cm},$$
:dessen Phase&nbsp; $ϕ_3$&nbsp; für die Leistungsberechnung keine Rolle spielt.&nbsp; Die Amplitude dieses Signals ist
+
:whose phase&nbsp; $ϕ_3$&nbsp; does not matter for the power calculation. The amplitude of this signal is
 
:$$A_3  =  \sqrt{ \left(A_1 + A_2 \cdot \cos(\phi)\right)^2 + A_2^2 \cdot \sin^2(\phi)} =
 
:$$A_3  =  \sqrt{ \left(A_1 + A_2 \cdot \cos(\phi)\right)^2 + A_2^2 \cdot \sin^2(\phi)} =
 
\sqrt{ A_1^2 + A_2^2 + 2 \cdot A_1 \cdot A_2 \cdot \cos(\phi)}\hspace{0.05cm}.$$
 
\sqrt{ A_1^2 + A_2^2 + 2 \cdot A_1 \cdot A_2 \cdot \cos(\phi)}\hspace{0.05cm}.$$
*Für&nbsp; $ϕ = 0$&nbsp; addieren sich die Amplituden skalar:
+
*For&nbsp; $ϕ = 0$,&nbsp; the sum of the amplitudes is scalar:
 
:$$A_3 = \sqrt{ A_1^2 + A_2^2 + 2 \cdot A_1 \cdot A_2 } = A_1 + A_2 = 3\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} \hspace{0.15cm}\underline {= 4.5\,{\rm V}^2}\hspace{0.05cm}.$$
 
:$$A_3 = \sqrt{ A_1^2 + A_2^2 + 2 \cdot A_1 \cdot A_2 } = A_1 + A_2 = 3\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} \hspace{0.15cm}\underline {= 4.5\,{\rm V}^2}\hspace{0.05cm}.$$
*Dagegen addieren sich die Amplituden für&nbsp; $ϕ = 90^\circ$&nbsp; vektoriell&nbsp; &rArr; &nbsp; gleiches Ergebnis wie in der Teilaufgabe&nbsp; '''(4)''':
+
*On the other hand,&nbsp; the amplitudes for&nbsp; $ϕ = 90^\circ$&nbsp; are added as vectors&nbsp; &rArr; &nbsp; same result as in subtask&nbsp; '''(4)''':
 
:$$ A_3 = \sqrt{ A_1^2 + A_2^2 } = \sqrt{5}\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} = \frac{5\,{\rm V}^2}{2}\hspace{0.15cm}\underline {= 2.5\,{\rm V}^2}\hspace{0.05cm}.$$
 
:$$ A_3 = \sqrt{ A_1^2 + A_2^2 } = \sqrt{5}\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} = \frac{5\,{\rm V}^2}{2}\hspace{0.15cm}\underline {= 2.5\,{\rm V}^2}\hspace{0.05cm}.$$
*Für&nbsp; $ϕ = 180^\circ$&nbsp; überlagern sich die Cosinusschwingungen destruktiv:
+
*For&nbsp; $ϕ = 180^\circ$,&nbsp; the cosine oscillations overlap destructively:
 
:$$A_3 = A_1 - A_2 = 1\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} \hspace{0.15cm}\underline {= 0.5\,{\rm V}^2}\hspace{0.05cm}.$$
 
:$$A_3 = A_1 - A_2 = 1\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} \hspace{0.15cm}\underline {= 0.5\,{\rm V}^2}\hspace{0.05cm}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 97: Line 96:
  
  
[[Category:Modulation Methods: Exercises|^2.1 ZSB-Amplitudenmodulation^]]
+
[[Category:Modulation Methods: Exercises|^2.1 Double Sideband Amplitude Modulation^]]

Latest revision as of 17:34, 24 March 2022

Analytical signal - Line spectrum

Let us consider two harmonic oscillations

$$ s_1(t) = A_1 \cdot \cos(\omega_{\rm 1} \cdot t ) \hspace{0.05cm},$$
$$s_2(t) = A_2 \cdot \cos(\omega_{\rm 2} \cdot t + \phi) \hspace{0.05cm},$$

where  $f_2 ≥ f_1$  should hold for the frequencies.

  • The graph on the right shows the spectrum of the analytical signal  $s_+(t)$, which is additively composed of the two components  $s_{1+}(t)$  and  $s_ {2+}(t)$ .
  • Here,  the transmission power  $P_{\rm S}$  should be understood as the second order moment of the signal  $s(t)$,  averaged over the largest measurement period possible:
$$P_{\rm S} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {s^2(t) }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$
  • According to this definition:  If  $s(t)$ describes a voltage waveform,  $P_{\rm S}$  has unit   $\rm V^2$  and refers to resistance  $R = 1 \ \rm Ω$. 
  • Dividing by $R$  gives the physical power in   $\rm W$.



Hints:



Questions

1

Calculate the power of the cosine signal  $s_1(t)$.

$P_1 \ = \ $

$\ \rm V^{ 2 }$

2

Let  $R = 50 \ \rm Ω$.  What is the physical power of the signal  $s_1(t)$?

$P_1 \ = \ $

$\ \text{mW}$

3

What is the power of the phase-shifted oscillation  $s_2(t)$?

$P_2 \ = \ $

$\ \rm V^{ 2 }$

4

What is the power of the sum signal  $s(t)$  when  $f_2 ≠ f_1$?

$P_{\rm S} \ = \ $

$\ \rm V^{ 2 }$

5

What power is obtained for $f_2 = f_1$  with  $ϕ = 0$,  $ϕ = 90^\circ$  and  $ϕ = 180^\circ$?

$ϕ = 0\text{:}\hspace{0.3cm} P_{\rm S} \ = \ $

$\ \rm V^{ 2 }$
$ϕ = 90^\circ\text{:}\hspace{0.3cm} P_{\rm S} \ = \ $

$\ \rm V^{ 2 }$
$ϕ = 180^\circ\text{:}\hspace{0.3cm} P_{\rm S} \ = \ $

$\ \rm V^{ 2 }$


Solution

(1)  According to the equations specified on the exercise page:

$$P_{\rm 1} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {A_1^2 \cdot \cos^2(\omega_{\rm 1} t + \phi_1) }\hspace{0.1cm}{\rm d}t \hspace{0.05cm}.$$
  • For more general calculation,  we consider the phase  $ϕ_1$,  which is actually zero here.  Using the equation  $\cos^{2}(α) = 0.5 · (1 + \cos(2α))$,  we get:
$$ P_{\rm 1} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {\frac{A_1^2}{2}}\hspace{0.1cm}{\rm d}t + \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int_{0}^{ T_{\rm M}} {\frac{A_1^2}{2}\cdot \cos(2\omega_{\rm 1} t + 2\phi_1)}\hspace{0.1cm}{\rm d}t\hspace{0.05cm}.$$
  • Regardless of the phase  $ϕ_1$,  the second term does not contribute to the division by  $T_{\rm M}$  and subsequent boundary transition due to integration over the cosine function.  Thus,  we get:
$$P_{\rm 1} = \frac{A_1^2}{2} = \frac{(2\,{\rm V})^2}{2} \hspace{0.15cm}\underline {= 2\,{\rm V}^2}\hspace{0.05cm}.$$


(2)  With  $R = 50\ \rm Ω$,  we get the  "unnormalized"  power:

$$P_{\rm 1} = \frac{2\,{\rm V}^2}{50\,{\rm \Omega}} \hspace{0.15cm}\underline {= 40\,{\rm mW}}\hspace{0.05cm}.$$


(3)  It has already been shown in the solution to subtask  (1)  that the phase has no influence on the power.  It follows that:

$$P_{\rm 2} = \frac{A_2^2}{2} \hspace{0.15cm}\underline {= 0.5\,{\rm V}^2}\hspace{0.05cm}.$$


(4) To calculate this power,  we have to average over $s^{2}(t)$,  where:

$$s^2(t) = s_1^2(t) + s_2^2(t) + 2 \cdot s_1(t) \cdot s_2(t).$$
  • Due to the division by the measurement duration  $T_{\rm M}$  and the required boundary transition,  the last term does not contribute regardless of the phase   $ϕ$ .  Thus:
$$P_{\rm S} = P_{\rm 1} + P_{\rm 2} \hspace{0.15cm}\underline {= 2.5\,{\rm V}^2}\hspace{0.05cm}.$$


(5)  When  $f_2 = f_1$,  the spectrum of the analytical signal is:

$$S_+(f) = (A_{\rm 1} + A_{\rm 2} \cdot {\rm e}^{{\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm} \phi})\cdot \delta (f - f_1) \hspace{0.05cm}.$$
  • This results in the signal:
$$s(t) = A_3 \cdot \cos(\omega_{\rm 1} t + \phi_3) \hspace{0.05cm},$$
whose phase  $ϕ_3$  does not matter for the power calculation. The amplitude of this signal is
$$A_3 = \sqrt{ \left(A_1 + A_2 \cdot \cos(\phi)\right)^2 + A_2^2 \cdot \sin^2(\phi)} = \sqrt{ A_1^2 + A_2^2 + 2 \cdot A_1 \cdot A_2 \cdot \cos(\phi)}\hspace{0.05cm}.$$
  • For  $ϕ = 0$,  the sum of the amplitudes is scalar:
$$A_3 = \sqrt{ A_1^2 + A_2^2 + 2 \cdot A_1 \cdot A_2 } = A_1 + A_2 = 3\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} \hspace{0.15cm}\underline {= 4.5\,{\rm V}^2}\hspace{0.05cm}.$$
  • On the other hand,  the amplitudes for  $ϕ = 90^\circ$  are added as vectors  ⇒   same result as in subtask  (4):
$$ A_3 = \sqrt{ A_1^2 + A_2^2 } = \sqrt{5}\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} = \frac{5\,{\rm V}^2}{2}\hspace{0.15cm}\underline {= 2.5\,{\rm V}^2}\hspace{0.05cm}.$$
  • For  $ϕ = 180^\circ$,  the cosine oscillations overlap destructively:
$$A_3 = A_1 - A_2 = 1\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm S} \hspace{0.15cm}\underline {= 0.5\,{\rm V}^2}\hspace{0.05cm}.$$