Difference between revisions of "Aufgaben:Exercise 2.4: Distortion Factor and Distortion Power"

From LNTwww
m (Text replacement - "”" to """)
 
(27 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Nichtlineare Verzerrungen
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Nonlinear_Distortion
 
}}
 
}}
  
[[File:P_ID897__LZI_A_2_4.png|right|frame|Zur Bedeutung des Klirrfaktors]]
+
[[File:P_ID897__LZI_A_2_4.png|right|frame|Given input and output signals]]
Zum Test eines Nachrichtenübertragungssystems wird an seinen Eingang ein Cosinussignal
+
A cosine signal
 
:$$x_1(t) =  A_x  \cdot \cos(\omega_0 t)$$
 
:$$x_1(t) =  A_x  \cdot \cos(\omega_0 t)$$
  
mit der Amplitude  $A_x = 1 \ \rm V$  angelegt. Am Systemausgang tritt dann das folgende Signal auf:
+
with the amplitude  $A_x = 1 \ \rm V$  is applied to the input of a communication system to test it.  
 +
 
 +
Then, the following signal occurs at the system output:
 
:$$y_1(t) = {0.992 \,\rm V}  \cdot \cos(\omega_0 t) - {0.062 \,\rm
 
:$$y_1(t) = {0.992 \,\rm V}  \cdot \cos(\omega_0 t) - {0.062 \,\rm
 
V} \cdot \cos(2\omega_0 t)+ \hspace{0.05cm}\text{...}$$
 
V} \cdot \cos(2\omega_0 t)+ \hspace{0.05cm}\text{...}$$
  
In der oberen Grafik sind die Signale  $x_1(t)$  und  $y_1(t)$  dargestellt. Oberwellen mit Amplituden kleiner als  $10 \ \rm mV$  sind hierbei nicht berücksichtigt.
+
In the upper graph the signals  $x_1(t)$  and  $y_1(t)$  are shown. Harmonics with amplitudes  $\lt 10 \ \rm mV$  are not considered here.
  
  
Das untere Bild zeigt das Eingangssignal  $x_2(t)$  mit der Ampiltude  $A_x = 2 \ \rm V$  sowie das dazugehörige Ausgangssignal, wiederum ohne Oberwellen kleiner als  $10 \ \rm mV$:
+
The bottom image shows the input signal  $x_2(t)$  with the ampiltude  $A_x = 2 \ \rm V$  and the corresponding output signal, again without harmonics smaller than  $10 \ \rm mV$:
 
:$$y_2(t) \hspace{-0.05cm}=\hspace{-0.05cm}{1.938 \,\rm V}  \cdot \cos(\omega_0 t)\hspace{-0.05cm} -\hspace{-0.05cm} {0.234
 
:$$y_2(t) \hspace{-0.05cm}=\hspace{-0.05cm}{1.938 \,\rm V}  \cdot \cos(\omega_0 t)\hspace{-0.05cm} -\hspace{-0.05cm} {0.234
 
\,\rm V} \cdot \cos(2\omega_0 t) \hspace{-0.05cm}+\hspace{-0.05cm}  {0.058 \,\rm V} \cdot
 
\,\rm V} \cdot \cos(2\omega_0 t) \hspace{-0.05cm}+\hspace{-0.05cm}  {0.058 \,\rm V} \cdot
Line 20: Line 22:
 
\hspace{0.05cm}\text{...}$$
 
\hspace{0.05cm}\text{...}$$
  
Es ist offensichtlich, dass die Indizes "1" bzw. "2" jeweils die normierte Amplitude des Eingangssignals kennzeichnen.
+
It is obvious that the indices  "1"  and  "2"  respectively denote the normalized amplitude of the input signal.
  
Das System soll anhand des im Abschnitt   [[Linear_and_Time_Invariant_Systems/Klassifizierung_der_Verzerrungen#Quantitatives_Ma.C3.9F_f.C3.BCr_die_Signalverzerrungen| Quantitatives Maß für die Signalverzerrungen]]  definierten Signal–zu–Verzerrungs–Leistungsverhältnisses
+
The system is supposed to be analyzed based on the signal–to–distortion–power ratio
 
:$$\rho_{\rm V} = { P_{x}}/{P_{\rm V}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}  10 \cdot \lg \hspace{0.1cm}\rho_{\rm V} =
 
:$$\rho_{\rm V} = { P_{x}}/{P_{\rm V}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}  10 \cdot \lg \hspace{0.1cm}\rho_{\rm V} =
  10 \cdot \lg \hspace{0.1cm}{ P_{x}}/{P_{\rm V}}\hspace{0.3cm}  \left( {\rm in \hspace{0.15cm} dB} \right)$$
+
  10 \cdot \lg \hspace{0.1cm}{ P_{x}}/{P_{\rm V}}\hspace{0.3cm}  \left( {\rm in \hspace{0.15cm} dB} \right)$$  
 
+
defined in the section [[Linear_and_Time_Invariant_Systems/Classification_of_the_Distortions#Quantitative_measure_for_the_signal_distortions| Quantitative measure for the signal distortions]]  and the distortion factor  $K$ :
sowie des Klirrfaktors  $K$  analysiert werden:
+
* $P_x$  denotes the power of the input signal.
* $P_x$  bezeichnet die Leistung des Eingangssignals.
+
* The distortion power  (German:  "Verrzerrungsleistung"   ⇒   "V")  $P_{\rm V}$  represents the power  (the root mean square)  of the difference signal  $\varepsilon(t) = y(t) - x(t)$ .
* Die  Verzerrungsleistung  $P_{\rm V}$  gibt jeweils die Leistung  (den quadratischen Mittelwert)  des Differenzsignals  $\varepsilon(t) = y(t) - x(t)$  an.
+
*To determine the powers  $P_{x}$  and  $P_{\rm V}$  it is necessary to take the average of the squared signals in each case. However, it is easier to calculate the powers in the frequency domain in this task.
 
 
 
 
Zur Bestimmung der Leistungen  $P_{x}$  und  $P_{\rm V}$  muss jeweils über die quadrierten Signale gemittelt werden. Einfacher ist in dieser Aufgabe jedoch die Leistungsberechnung im Frequenzbereich.
 
  
  
Line 40: Line 39:
  
  
''Hinweise:''  
+
''Please note:''  
*Die Aufgabe gehört zum Kapitel  [[Linear_and_Time_Invariant_Systems/Nichtlineare_Verzerrungen|Nichtlineare Verzerrungen]].
+
*The task belongs to the chapter  [[Linear_and_Time_Invariant_Systems/Nonlinear_Distortion|Nonlinear Distortions]].
 
   
 
   
*Alle hier abgefragten Leistungen beziehen sich auf den Widerstand  $R = 1 \ \rm \Omega$  und haben somit die Einheit  ${\rm V}^2$.
+
*All powers required here refer to the resistance $R = 1 \ \rm \Omega$  and thus have the unit ${\rm V}^2$.
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie den Klirrfaktor&nbsp; $K$&nbsp; für die Eingangsamplitude&nbsp;  $\underline{ A_x = 1\ \rm V}$.
+
{Compute the distortion factor&nbsp; $K$&nbsp; for the input amplitude&nbsp;  $\underline{ A_x = 1\ \rm V}$.
 
|type="{}"}
 
|type="{}"}
 
$K \ = \ $  { 6.25 3% } $\%$
 
$K \ = \ $  { 6.25 3% } $\%$
  
  
{Welcher Klirrfaktor ergibt sich mit der Eingangsamplitude&nbsp; $\underline{ A_x = 2\ \rm V}$?
+
{What is the distortion factor with the input amplitude&nbsp; $\underline{ A_x = 2\ \rm V}$?
 
|type="{}"}
 
|type="{}"}
 
$K \ = \ $ { 12.5 3% } $\%$
 
$K \ = \ $ { 12.5 3% } $\%$
  
  
{Welche Aussagen sind für die Signale &nbsp;$x_2(t)$&nbsp; und &nbsp;$y_2(t)$&nbsp; zutreffend?
+
{Which statements are true for the signals&nbsp;$x_2(t)$&nbsp; and &nbsp;$y_2(t)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ Die untere Halbwelle verläuft spitzförmiger als die obere.
+
+ The lower half-wave is more peaked than the upper half-wave.
+ Der Maximal&ndash; und Minimalwert von &nbsp;$y_2(t)$&nbsp; sind unsymmetrisch zu Null.
+
+ The maximum&ndash; and minimum values of&nbsp;$y_2(t)$&nbsp; are asymmetrically zero.
- Bei anderer Frequenz würde sich ein anderer Klirrfaktor ergeben.
+
- A different frequency would result in a different distortion factor.
  
  
{Wie groß ist die Leistung &nbsp;$P_x$&nbsp; des Eingangssignals &nbsp;$x_2(t)$&nbsp; in &nbsp;${\rm V}^2$, also umgerechnet auf den Bezugswiderstand &nbsp;$R = 1 \ \rm \Omega$?
+
{What is the power&nbsp;$P_x$&nbsp; of the input signal&nbsp;$x_2(t)$&nbsp; in &nbsp;${\rm V}^2$, i.e. in terms of the reference resistance &nbsp;$R = 1 \ \rm \Omega$?
 
|type="{}"}
 
|type="{}"}
 
$P_x \ = \ $  { 2 1% } $\ {\rm V}^2$
 
$P_x \ = \ $  { 2 1% } $\ {\rm V}^2$
  
  
{Wie groß ist die "Leistung" &nbsp;$P_{\rm V}$&nbsp; des Differenzsignals &nbsp;$\varepsilon_2(t)$ &nbsp; &rArr; &nbsp; "Verzerrungsleistung"?  
+
{What is the power&nbsp;$P_{\rm V}$&nbsp; of the difference signal&nbsp;$\varepsilon_2(t)$ &nbsp; &rArr; &nbsp; "distortion power"?  
 
|type="{}"}
 
|type="{}"}
 
$P_{\rm V} \ = \ $  { 0.031 3% } $\ {\rm V}^2$
 
$P_{\rm V} \ = \ $  { 0.031 3% } $\ {\rm V}^2$
  
  
{Wie groß ist das Signal&ndash;zu&ndash;Verzerrungs&ndash;Leistungsverhältnis in&nbsp; ${\rm dB}$?
+
{What is the signal&ndash;to&ndash;distortion&ndash;power ratio in&nbsp; ${\rm dB}$?
 
|type="{}"}
 
|type="{}"}
 
$10 \cdot {\rm lg} \ \rho_{\rm V} \ = \ $ { 18.1 3% } $\ {\rm dB}$
 
$10 \cdot {\rm lg} \ \rho_{\rm V} \ = \ $ { 18.1 3% } $\ {\rm dB}$
  
  
{Welche der folgenden Aussagen treffen bei cosinusförmigem Eingangssignal zu?
+
{Which of the following statements are true for cosine-shaped input signals?
 
|type="[]"}
 
|type="[]"}
+ Der Klirrfaktor kann allein aus den Koeffizienten &nbsp;$A_1$,&nbsp; $A_2$,&nbsp; $A_3$,&nbsp; ...&nbsp; der Ausgangsgröße berechnet werden.
+
+ The distortion factor can be computed using the coefficients&nbsp;$A_1$,&nbsp; $A_2$,&nbsp; $A_3$,&nbsp; ...&nbsp; of the output variable alone.
- Das Signal&ndash;zu&ndash;Verzerrungs&ndash;Leistungsverhältnis&nbsp; $10 \cdot {\rm lg} \ \rho_{\rm V}$&nbsp; ist allein aus den Koeffizienten &nbsp;$A_1$,&nbsp; $A_2$,&nbsp; $A_3$,&nbsp; ...&nbsp; berechenbar.
+
- The signal&ndash;to&ndash;distortion&ndash;power ratio&nbsp; $10 \cdot {\rm lg} \ \rho_{\rm V}$&nbsp; is computable using the coefficients&nbsp;$A_1$,&nbsp; $A_2$,&nbsp; $A_3$,&nbsp; ...&nbsp; alone.
+ Für den Sonderfall&nbsp; $A_1 = A_x$ &nbsp; &rArr; &nbsp; keine Veränderung der Grundwelle]&nbsp; können &nbsp;$\rho_{\rm V}$&nbsp; und &nbsp;$K$&nbsp; direkt ineinander umgerechnet werden.
+
+ For the special case&nbsp; [$A_1 = A_x$ &nbsp; &rArr; &nbsp; no change of the fundamental wave],&nbsp; &nbsp;$\rho_{\rm V}$&nbsp; and &nbsp;$K$&nbsp; can be converted directly into each other.
  
  
Line 91: Line 90:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Mit der Eingangsamplitude&nbsp; $A_x = 1 \ \rm V$&nbsp; entsprechend der oberen Skizze liefert nur der Klirrfaktor zweiter Ordnung einen relevanten Beitrag. Deshalb gilt:
+
'''(1)'''&nbsp; Considering the input amplitude&nbsp; $A_x = 1 \ \rm V$&nbsp; corresponding to the upper sketch only the second order distortion factor provides a relevant contribution. Therefore, the following holds:
 
:$$K \approx K_2 = \frac{0.062 \,\,{\rm V}}{0.992 \,\,{\rm V}}
 
:$$K \approx K_2 = \frac{0.062 \,\,{\rm V}}{0.992 \,\,{\rm V}}
 
\hspace{0.15cm}\underline{\approx 6.25 \%}.$$
 
\hspace{0.15cm}\underline{\approx 6.25 \%}.$$
Line 99: Line 98:
  
  
'''(2)'''&nbsp; Für die Eingangsamplitude&nbsp; $A_x = 2 \ \rm V$&nbsp; (untere Skizze) lauten die verschiedenen Klirrfaktoren:
+
'''(2)'''&nbsp; For the input amplitude&nbsp; $A_x = 2 \ \rm V$&nbsp; (bottom sketch) the various distortion factors are:
 
:$$K_2 = \frac{0.234 \,\,{\rm V}}{1.938 \,\,{\rm V}} \approx 0.121,
 
:$$K_2 = \frac{0.234 \,\,{\rm V}}{1.938 \,\,{\rm V}} \approx 0.121,
 
\hspace{0.5cm} K_3 = \frac{0.058 \,\,{\rm V}}{1.938 \,\,{\rm V}}
 
\hspace{0.5cm} K_3 = \frac{0.058 \,\,{\rm V}}{1.938 \,\,{\rm V}}
Line 105: Line 104:
 
\,\,{\rm V}} \approx 0.009.$$
 
\,\,{\rm V}} \approx 0.009.$$
  
*Somit lautet der Gesamtklirrfaktor:
+
*Thus, the overall distortion factor is:
 
:$$K = \sqrt{K_2^2 + K_3^2 + K_4^2 +\text{ ...} }\hspace{0.15cm}\underline{ \approx 12.5 \%}.$$
 
:$$K = \sqrt{K_2^2 + K_3^2 + K_4^2 +\text{ ...} }\hspace{0.15cm}\underline{ \approx 12.5 \%}.$$
  
  
  
'''(3)'''&nbsp; Richtig sind die <u>beiden ersten Lösungsvorschläge</u>:
+
'''(3)'''&nbsp; <u>The first two proposed solutions</u> are correct:
*Hier bewirken die nichtlinearen Verzerrungen, dass die untere Halbwelle spitzförmiger verläuft als die obere.  
+
*Here, the nonlinear distortions cause the lower half-wave to be more peaked than the upper half-wave.  
*Da zudem&nbsp; $y(t)$&nbsp; gleichsignalfrei ist, gilt&nbsp; $y_{\rm max} = 1.75 \ \rm V$&nbsp; und&nbsp; $y_{\rm min} = -2.25 \ \rm V$. Die Symmetrie bezüglich der Nulllinie ist somit nicht mehr gegeben.
+
*In addition, &nbsp; $y_{\rm max} = 1.75 \ \rm V$&nbsp; and&nbsp; $y_{\rm min} = -2.25 \ \rm V$ hold since&nbsp; $y(t)$&nbsp; does not contain any direct (DC) signals. <br>Hence, there is no symmetry with respect to the zero line anymore.
*Bei einem nichtlinearen System ist der Klirrfaktor&nbsp; $K$&nbsp; unabhängig von der Frequenz des cosinusförmigen Eingangssignals, aber stark abhängig von dessen Amplitude.  
+
*For a nonlinear system, the distortion factor&nbsp; $K$&nbsp; is independent of the frequency of the cosine input signal but strongly dependent on its amplitude.  
  
  
  
'''(4)'''&nbsp; Der Effektivwert eines Cosinussignals ist bekanntlich das&nbsp; $\sqrt{0.5}$&ndash;fache der Amplitude. Das Quadrat hiervon ergibt die "Leistung":
+
'''(4)'''&nbsp; The root mean square (rms) value of a cosine signal is known to be&nbsp; $\sqrt{0.5}$&ndash;times the amplitude.&nbsp; The square of this is the "power":
 
:$$P_x = \frac{A_x^2}{2} = \frac{(2 \,{\rm V})^2}{2}\hspace{0.15cm}\underline{ = 2\,{\rm V^2}}.$$
 
:$$P_x = \frac{A_x^2}{2} = \frac{(2 \,{\rm V})^2}{2}\hspace{0.15cm}\underline{ = 2\,{\rm V^2}}.$$
  
*Eigentlich hängt die Leistung ja auch vom Bezugswiderstand &nbsp;$R$&nbsp; ab und besitzt die Einheit "Watt".  
+
*Actually, the power also depends on the reference resistance&nbsp;$R$&nbsp; and has the unit "Watt".  
*Mit &nbsp;$R = 1 \ \rm \Omega$&nbsp; ergibt sich &nbsp;$P_x =  2 \ \rm W$, also der genau gleiche Zahlenwert wie bei dieser einfacheren Berechnung.
+
*$P_x =  2 \ \rm W$ is obtained with&nbsp;$R = 1 \ \rm \Omega$&nbsp;, so exactly the same numerical value as in this simpler calculation.
  
  
  
'''(5)'''&nbsp; Bezeichnet man
+
'''(5)'''&nbsp; Denoting
*mit&nbsp; $A_1$&nbsp; die Amplitude der Grundwelle von&nbsp; $y_2(t)$, und
+
*the amplitude of the basic wave of&nbsp; $y_2(t)$&nbsp; by&nbsp; $A_1$&nbsp; and
*mit&nbsp; $A_2$,&nbsp; $A_3$&nbsp; und&nbsp; $A_4$&nbsp; die so genannten Oberwellen,
+
*the so-called harmonics by&nbsp; $A_2$,&nbsp; $A_3$&nbsp; and&nbsp; $A_4$,&nbsp;  
  
  
so erhält man für die Verzerrungsleistung durch Berechnung im Frequenzbereich:
+
the distortion power is thus by computing it in the frequency domain:
 
:$$P_{\rm V} = \frac{1}{2} \cdot \big[ (A_1 - A_x)^2 + A_2^2+
 
:$$P_{\rm V} = \frac{1}{2} \cdot \big[ (A_1 - A_x)^2 + A_2^2+
 
A_3^2+ A_4^2\big] =  \frac{1}{2} \cdot \big[ (-2
 
A_3^2+ A_4^2\big] =  \frac{1}{2} \cdot \big[ (-2
Line 136: Line 135:
 
\,{\rm V})^2 \big] \hspace{0.15cm}\underline{\approx 0.031 \,{\rm V}^2}.$$
 
\,{\rm V})^2 \big] \hspace{0.15cm}\underline{\approx 0.031 \,{\rm V}^2}.$$
  
Hierbei bezeichnet&nbsp; $A_x$&nbsp; die Amplitude des Eingangssignals. Die Vorzeichen der Oberwellen spielen bei dieser Berechnung keine Rolle.
+
Here,&nbsp; $A_x$&nbsp; denotes the amplitude of the input signal.&nbsp; The signs of the harmonics do not matter in this calculation.
  
  
  
'''(6)'''&nbsp; Mit den Ergebnissen der Unterpunkte&nbsp; '''(4)'''&nbsp; und&nbsp; '''(5)'''&nbsp; erhält man:
+
'''(6)'''&nbsp; Using the results of subtasks&nbsp; '''(4)'''&nbsp; and&nbsp; '''(5)'''&nbsp; the following is obtained:
 
:$$10 \cdot \lg \rho_{V} =  10 \cdot \lg \frac{P_x}{P_{\rm V}}=  10
 
:$$10 \cdot \lg \rho_{V} =  10 \cdot \lg \frac{P_x}{P_{\rm V}}=  10
 
\cdot \lg \frac{2.000\,{\rm V^2}}{0.031 \,{\rm V}^2} \hspace{0.15cm}\underline{\approx 18.10
 
\cdot \lg \frac{2.000\,{\rm V^2}}{0.031 \,{\rm V}^2} \hspace{0.15cm}\underline{\approx 18.10
Line 146: Line 145:
  
  
'''(7)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 3</u>:
+
'''(7)'''&nbsp; <u>Proposed solutions 1 and 3</u> are correct:
*Die erste Aussage ist richtig, denn es gilt
+
*The first statement is correct because it holds that
 
:$$K^2 = \frac{A_2^2 + A_3^2 + A_4^2 + ... }{A_1^2}.$$
 
:$$K^2 = \frac{A_2^2 + A_3^2 + A_4^2 + ... }{A_1^2}.$$
  
*Dagegen gilt für den Kehrwert des Signal&ndash;zu&ndash;Verzerrungs&ndash;Leistungsverhältnisses:
+
*In contrast, the following holds for the reciprocal of the signal&ndash;to&ndash;distortion&ndash;power ratio:
 
:$${1}/{\rho_{\rm V}} = \frac{(A_1 - A_x)^2+A_2^2 + A_3^2 + A_4^2
 
:$${1}/{\rho_{\rm V}} = \frac{(A_1 - A_x)^2+A_2^2 + A_3^2 + A_4^2
 
+ \text{...} }{A_x^2}.$$
 
+ \text{...} }{A_x^2}.$$
  
*Bei der Berechnung der Verzerrungsleistung&nbsp; $P_{\rm V}$&nbsp; wird auch eine Verfälschung der Grundwellenamplitude&nbsp; $($diese ist nun&nbsp; $A_1$&nbsp; anstelle von&nbsp; $A_x)$&nbsp; berücksichtigt. Außerdem wird die Verzerrungsleistung nicht auf&nbsp; $A_1^2$,  sondern auf&nbsp; $A_x^2$&nbsp; bezogen.  
+
*When calculating the distortion power&nbsp; $P_{\rm V}$&nbsp; a falsification of the amplitude of the basic wave&nbsp; $($this is now&nbsp; $A_1$&nbsp; instead of&nbsp; $A_x)$&nbsp; is also taken into account.&nbsp; Moreover, the distortion power is not in terms of&nbsp; $A_1^2$&nbsp; but in terms of&nbsp; $A_x^2$&nbsp;.  
  
*Allgemein gilt zwischen dem Signal&ndash;zu&ndash;Verzerrungs&ndash;Leistungsverhältnis und dem Klirrfaktor folgender Zusammenhang:
+
*Generally, the following relationship holds between the signal&ndash;to&ndash;distortion&ndash;power ratio and the distortion factor:
 
:$${\rho_{\rm V}} = \frac{A_x^2}{(A_1 - A_x)^2 + K^2 \cdot A_1^2}.$$
 
:$${\rho_{\rm V}} = \frac{A_x^2}{(A_1 - A_x)^2 + K^2 \cdot A_1^2}.$$
  
*Mit&nbsp; $A_1 = A_x$&nbsp; vereinfacht sich diese Gleichung wie folgt:
+
*With&nbsp; $A_1 = A_x$&nbsp; this equation is simplified as follows:
 
:$${\rho_{\rm V}} = {1}/{ K^2 }.$$
 
:$${\rho_{\rm V}} = {1}/{ K^2 }.$$
  
  
''Anmerkungen:''
+
Remarks:
*Ein Klirrfaktor von&nbsp; $1\%$&nbsp; entspricht in diesem Fall dem Ergebnis&nbsp; $10 \cdot \lg \rho_{\rm V} = 40 \,{\rm dB}$.
+
*A distortion factor of&nbsp; $1\%$&nbsp; corresponds in this case  to the result&nbsp; $10 \cdot \lg \rho_{\rm V} = 40 \,{\rm dB}$.
*Mit dem Klirrfaktor&nbsp; $K = 0.125$&nbsp; aus Teilaufgabe&nbsp; '''(2)'''&nbsp; hätte man mit der Näherung&nbsp; $A_1 \approx A_x$&nbsp; sofort&nbsp; $10 \cdot \lg \rho_{\rm V} = 18.06 \,{\rm dB}$&nbsp; erhalten.
+
*Using the distortion factor&nbsp; $K = 0.125$&nbsp; from subtask&nbsp; '''(2)''' &nbsp; &rArr; &nbsp; $10 \cdot \lg \rho_{\rm V} = 18.06 \,{\rm dB}$&nbsp; would have been obtained immediately with the approximation&nbsp; $A_1 \approx A_x$&nbsp;.
*Der unter Punkt&nbsp; '''(7)'''&nbsp; errechnete tatsächliche Wert&nbsp; $(18.10 \ \rm dB)$&nbsp; weicht hiervon nur unwesentlich ab.  
+
*The actual value &nbsp; $(18.10 \ \rm dB)$&nbsp; calculated in subtask&nbsp; '''(7)'''&nbsp; differs from this only insignificantly.  
  
  
Line 173: Line 172:
  
  
[[Category:Linear and Time-Invariant Systems: Exercises|^2.2 Nichtlineare Verzerrungen^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^2.2 Nonlinear Distortions^]]

Latest revision as of 14:56, 1 October 2021

Given input and output signals

A cosine signal

$$x_1(t) = A_x \cdot \cos(\omega_0 t)$$

with the amplitude  $A_x = 1 \ \rm V$  is applied to the input of a communication system to test it.

Then, the following signal occurs at the system output:

$$y_1(t) = {0.992 \,\rm V} \cdot \cos(\omega_0 t) - {0.062 \,\rm V} \cdot \cos(2\omega_0 t)+ \hspace{0.05cm}\text{...}$$

In the upper graph the signals  $x_1(t)$  and  $y_1(t)$  are shown. Harmonics with amplitudes  $\lt 10 \ \rm mV$  are not considered here.


The bottom image shows the input signal  $x_2(t)$  with the ampiltude  $A_x = 2 \ \rm V$  and the corresponding output signal, again without harmonics smaller than  $10 \ \rm mV$:

$$y_2(t) \hspace{-0.05cm}=\hspace{-0.05cm}{1.938 \,\rm V} \cdot \cos(\omega_0 t)\hspace{-0.05cm} -\hspace{-0.05cm} {0.234 \,\rm V} \cdot \cos(2\omega_0 t) \hspace{-0.05cm}+\hspace{-0.05cm} {0.058 \,\rm V} \cdot \cos(3\omega_0 t)\hspace{-0.05cm} -\hspace{-0.05cm}{0.018 \,\rm V} \cdot \cos(4\omega_0 t) \hspace{-0.05cm}+\hspace{-0.05cm} \hspace{0.05cm}\text{...}$$

It is obvious that the indices  "1"  and  "2"  respectively denote the normalized amplitude of the input signal.

The system is supposed to be analyzed based on the signal–to–distortion–power ratio

$$\rho_{\rm V} = { P_{x}}/{P_{\rm V}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot \lg \hspace{0.1cm}\rho_{\rm V} = 10 \cdot \lg \hspace{0.1cm}{ P_{x}}/{P_{\rm V}}\hspace{0.3cm} \left( {\rm in \hspace{0.15cm} dB} \right)$$

defined in the section  Quantitative measure for the signal distortions  and the distortion factor  $K$ :

  • $P_x$  denotes the power of the input signal.
  • The distortion power  (German:  "Verrzerrungsleistung"   ⇒   "V")  $P_{\rm V}$  represents the power  (the root mean square)  of the difference signal  $\varepsilon(t) = y(t) - x(t)$ .
  • To determine the powers  $P_{x}$  and  $P_{\rm V}$  it is necessary to take the average of the squared signals in each case. However, it is easier to calculate the powers in the frequency domain in this task.





Please note:

  • All powers required here refer to the resistance $R = 1 \ \rm \Omega$  and thus have the unit ${\rm V}^2$.


Questions

1

Compute the distortion factor  $K$  for the input amplitude  $\underline{ A_x = 1\ \rm V}$.

$K \ = \ $

$\%$

2

What is the distortion factor with the input amplitude  $\underline{ A_x = 2\ \rm V}$?

$K \ = \ $

$\%$

3

Which statements are true for the signals $x_2(t)$  and  $y_2(t)$ ?

The lower half-wave is more peaked than the upper half-wave.
The maximum– and minimum values of $y_2(t)$  are asymmetrically zero.
A different frequency would result in a different distortion factor.

4

What is the power $P_x$  of the input signal $x_2(t)$  in  ${\rm V}^2$, i.e. in terms of the reference resistance  $R = 1 \ \rm \Omega$?

$P_x \ = \ $

$\ {\rm V}^2$

5

What is the power $P_{\rm V}$  of the difference signal $\varepsilon_2(t)$   ⇒   "distortion power"?

$P_{\rm V} \ = \ $

$\ {\rm V}^2$

6

What is the signal–to–distortion–power ratio in  ${\rm dB}$?

$10 \cdot {\rm lg} \ \rho_{\rm V} \ = \ $

$\ {\rm dB}$

7

Which of the following statements are true for cosine-shaped input signals?

The distortion factor can be computed using the coefficients $A_1$,  $A_2$,  $A_3$,  ...  of the output variable alone.
The signal–to–distortion–power ratio  $10 \cdot {\rm lg} \ \rho_{\rm V}$  is computable using the coefficients $A_1$,  $A_2$,  $A_3$,  ...  alone.
For the special case  [$A_1 = A_x$   ⇒   no change of the fundamental wave],   $\rho_{\rm V}$  and  $K$  can be converted directly into each other.


Solution

(1)  Considering the input amplitude  $A_x = 1 \ \rm V$  corresponding to the upper sketch only the second order distortion factor provides a relevant contribution. Therefore, the following holds:

$$K \approx K_2 = \frac{0.062 \,\,{\rm V}}{0.992 \,\,{\rm V}} \hspace{0.15cm}\underline{\approx 6.25 \%}.$$


(2)  For the input amplitude  $A_x = 2 \ \rm V$  (bottom sketch) the various distortion factors are:

$$K_2 = \frac{0.234 \,\,{\rm V}}{1.938 \,\,{\rm V}} \approx 0.121, \hspace{0.5cm} K_3 = \frac{0.058 \,\,{\rm V}}{1.938 \,\,{\rm V}} \approx 0.030, \hspace{0.5cm}K_4 = \frac{0.018 \,\,{\rm V}}{1.938 \,\,{\rm V}} \approx 0.009.$$
  • Thus, the overall distortion factor is:
$$K = \sqrt{K_2^2 + K_3^2 + K_4^2 +\text{ ...} }\hspace{0.15cm}\underline{ \approx 12.5 \%}.$$


(3)  The first two proposed solutions are correct:

  • Here, the nonlinear distortions cause the lower half-wave to be more peaked than the upper half-wave.
  • In addition,   $y_{\rm max} = 1.75 \ \rm V$  and  $y_{\rm min} = -2.25 \ \rm V$ hold since  $y(t)$  does not contain any direct (DC) signals.
    Hence, there is no symmetry with respect to the zero line anymore.
  • For a nonlinear system, the distortion factor  $K$  is independent of the frequency of the cosine input signal but strongly dependent on its amplitude.


(4)  The root mean square (rms) value of a cosine signal is known to be  $\sqrt{0.5}$–times the amplitude.  The square of this is the "power":

$$P_x = \frac{A_x^2}{2} = \frac{(2 \,{\rm V})^2}{2}\hspace{0.15cm}\underline{ = 2\,{\rm V^2}}.$$
  • Actually, the power also depends on the reference resistance $R$  and has the unit "Watt".
  • $P_x = 2 \ \rm W$ is obtained with $R = 1 \ \rm \Omega$ , so exactly the same numerical value as in this simpler calculation.


(5)  Denoting

  • the amplitude of the basic wave of  $y_2(t)$  by  $A_1$  and
  • the so-called harmonics by  $A_2$,  $A_3$  and  $A_4$, 


the distortion power is thus by computing it in the frequency domain:

$$P_{\rm V} = \frac{1}{2} \cdot \big[ (A_1 - A_x)^2 + A_2^2+ A_3^2+ A_4^2\big] = \frac{1}{2} \cdot \big[ (-2 \,{\rm V} \hspace{-0.05cm}+ \hspace{-0.05cm}1.938 \,{\rm V} )^2 \hspace{-0.05cm}+ \hspace{-0.05cm} (0.234 \,{\rm V})^2 \hspace{-0.05cm}+ \hspace{-0.05cm} (0.058 \,{\rm V})^2 \hspace{-0.05cm}+ \hspace{-0.05cm} (0.018 \,{\rm V})^2 \big] \hspace{0.15cm}\underline{\approx 0.031 \,{\rm V}^2}.$$

Here,  $A_x$  denotes the amplitude of the input signal.  The signs of the harmonics do not matter in this calculation.


(6)  Using the results of subtasks  (4)  and  (5)  the following is obtained:

$$10 \cdot \lg \rho_{V} = 10 \cdot \lg \frac{P_x}{P_{\rm V}}= 10 \cdot \lg \frac{2.000\,{\rm V^2}}{0.031 \,{\rm V}^2} \hspace{0.15cm}\underline{\approx 18.10 \,{\rm dB}}.$$


(7)  Proposed solutions 1 and 3 are correct:

  • The first statement is correct because it holds that
$$K^2 = \frac{A_2^2 + A_3^2 + A_4^2 + ... }{A_1^2}.$$
  • In contrast, the following holds for the reciprocal of the signal–to–distortion–power ratio:
$${1}/{\rho_{\rm V}} = \frac{(A_1 - A_x)^2+A_2^2 + A_3^2 + A_4^2 + \text{...} }{A_x^2}.$$
  • When calculating the distortion power  $P_{\rm V}$  a falsification of the amplitude of the basic wave  $($this is now  $A_1$  instead of  $A_x)$  is also taken into account.  Moreover, the distortion power is not in terms of  $A_1^2$  but in terms of  $A_x^2$ .
  • Generally, the following relationship holds between the signal–to–distortion–power ratio and the distortion factor:
$${\rho_{\rm V}} = \frac{A_x^2}{(A_1 - A_x)^2 + K^2 \cdot A_1^2}.$$
  • With  $A_1 = A_x$  this equation is simplified as follows:
$${\rho_{\rm V}} = {1}/{ K^2 }.$$


Remarks:

  • A distortion factor of  $1\%$  corresponds in this case to the result  $10 \cdot \lg \rho_{\rm V} = 40 \,{\rm dB}$.
  • Using the distortion factor  $K = 0.125$  from subtask  (2)   ⇒   $10 \cdot \lg \rho_{\rm V} = 18.06 \,{\rm dB}$  would have been obtained immediately with the approximation  $A_1 \approx A_x$ .
  • The actual value   $(18.10 \ \rm dB)$  calculated in subtask  (7)  differs from this only insignificantly.