Difference between revisions of "Aufgaben:Exercise 2.4Z: Error Probabilities for the Octal System"

From LNTwww
m (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
 
(11 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Redundanzfreie Codierung
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Redundancy-Free_Coding
 
}}
 
}}
  
[[File:P_ID1326__Dig_Z_2_4.png|right|frame|Oktale „Zufallscodierung” und Graycodierung]]
+
[[File:EN_Dig_A_2_6.png|right|frame|Octal  "random coding"  and  Gray coding]]
Es wird ein Digitalsystem mit $M = 8$ Amplitudenstufen (Oktalsystem) betrachtet, dessen $M – 1 = 7$ Entscheiderschwellen genau bei den jeweiligen Intervallmitten liegen.  
+
A digital system with  $M = 8$  amplitude levels  ("octal system")  is considered,  whose  $M – 1 = 7$  decision thresholds lie exactly at the respective interval centers.
 +
 
 +
Each of the equally probable amplitude coefficients  $a_{\mu}$  with  $1 ≤ \mu ≤ 8$  can be falsified only into the immediate neighbor coefficients  $a_{\mu–1}$  and  $a_{\mu+1}$,  respectively,  and in both directions with the same probability  $p = 0.01$.  Here are some examples:
 +
*$a_5$  passes into coefficient $a_4$ with probability  $p = 0.01$  and into coefficient  $a_6$ with the same probability  $p = 0.01$. 
 +
 +
*$a_8$  is falsified with probability  $p = 0.01$  into coefficient  $a_7$.  No falsification is possible in the other direction.
 +
 
 +
 
 +
The mapping of each three binary source symbols into an octal amplitude coefficient happens alternatively according to
 +
*the second column in the given table,  which was generated  "randomly"  - without strategy,
 +
 
 +
*the Gray coding,  which is only incompletely indicated in column 3 and is still to be supplemented.
  
Ein jeder der gleichwahrscheinlichen Amplitudenkoeffizienten $a_{\mu}$ mit $(1 ≤ \mu ≤ 8)$ kann nur in die unmittelbaren Nachbarkoeffizienten $a_{\mu–1}$ bzw. $a_{\mu+1}$ verfälscht werden und zwar in beiden Richtungen mit der gleichen Wahrscheinlichkeit $p = 0.01$. Hierzu einige Beispiele:
 
*$a_5$ geht mit der gleichen Wahrscheinlichkeit $p = 0.01$ in den Koeffizienten $a_4$ über und mit der gleichen Wahrscheinlichkeit in den Koeffizienten $a_6$.
 
*$a_8$ wird mit der Wahrscheinlichkeit $p = 0.01$ in den Koeffizienten $a_7$ verfälscht. In die andere Richtung ist keine Verfälschung möglich.
 
  
 +
The Gray code is given for  $M = 4$.  For  $M = 8$  the last two binary characters are to be mirrored at the dashed line.  For the first four amplitude coefficients a  $\rm L$  is to be added at the first place,  for  $a_{5}, ..., a_{8}$  the binary symbol  $\rm H$.
  
Die Zuordnung von jeweils drei binären Quellensymbolen in einen oktalen Amplitudenkoeffizienten geschieht alternativ entsprechend
+
For the two mappings  "Random"  and  "Gray"  are to be calculated:
*der zweiten Spalte in der angegebenen Tabelle, die „zufällig” – ohne Strategie – generiert wurde,
+
*the  "symbol error probability"  $p_{\rm S}$,  which is the same in both cases;  $p_{\rm S}$  indicates the average falsifcation probability of an amplitude coefficient  $a_{\mu}$; 
*der Graycodierung, die in Spalte 3 nur unvollständig angegeben ist und noch ergänzt werden soll.
+
 +
*the  "bit error probability"  $p_{\rm B}$  related to the (decoded) binary symbols.
  
  
Angegeben ist der Graycode für $M = 4$. Bei $M = 8$ sind die beiden letzten Binärzeichen an der gestrichelt eingezeichneten Linie zu spiegeln. Für die ersten vier Amplitudenkoeffizienten ist an der ersten Stelle ein '''L''' zu ergänzen, für $a_{5}, ..., a_{8}$ das Binärsymbol '''H'''.
 
  
Für die beiden Zuordnungen „Zufall” und „Gray” sollen berechnet werden:
 
*die ''Symbolfehlerwahrscheinlichkeit'' $p_{\rm S}$, die in beiden Fällen gleich ist; diese Größe gibt die mittlere Verfälschungswahrscheinlichkeit eines Amplitudenkoeffizienten $a_{\mu}$ an,
 
*die ''Bitfehlerwahrscheinlichkeit'' $p_{\rm B}$ bezogen auf die (decodierten) Binärsymbole.
 
  
  
 +
Notes:
 +
*The exercise belongs to the chapter   [[Digital_Signal_Transmission/Grundlagen_der_codierten_Übertragung|"Basics of Coded Transmission"]].
  
''Hinweise:''
+
*Reference is also made to the chapter  [[Digital_Signal_Transmission/Redundanzfreie_Codierung|"Redundancy-Free Coding"]] .
*Die Aufgabe gehört zum  Kapitel  [[Digitalsignalübertragung/Grundlagen_der_codierten_Übertragung|Grundlagen der codierten Übertragung]].
 
*Bezug genommen wird auch auf das Kapitel [[Digitalsignalübertragung/Redundanzfreie_Codierung|Redundanzfreie Codierung]] .
 
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Welchem Amplitudenkoeffizienten $a_{ \mu}$ entsprechen beim Graycode die binären Folgen „LHH” bzw. „HLL”? <br>Bitte Index $ \mu$  eingeben $(1 <  \mu < 8)$.
+
{To which amplitude coefficient &nbsp;$a_{ \mu}$&nbsp; do the binary sequences &nbsp;$\rm {LHH}$&nbsp; and &nbsp;$\rm {HLL}$ correspond in the Gray code? <br>Please enter index &nbsp;$ \mu$&nbsp; &nbsp;$(1 <  \mu < 8)$.
 
|type="{}"}
 
|type="{}"}
 
$ \rm {LHH}\text{:}\hspace{0.4cm}  \mu  \ = \ $ { 3 3% }  
 
$ \rm {LHH}\text{:}\hspace{0.4cm}  \mu  \ = \ $ { 3 3% }  
 
$ \rm {HLL}\text{:}\hspace{0.45cm}  \mu  \ = \ $ { 8 3% }  
 
$ \rm {HLL}\text{:}\hspace{0.45cm}  \mu  \ = \ $ { 8 3% }  
  
{Berechnen Sie die Symbolfehlerwahrscheinlichkeit.
+
{Calculate the symbol error probability &nbsp;$p_{\rm S}$.
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm S} \ = \ $ { 1.75 3% } $\ \%$
 
$p_{\rm S} \ = \ $ { 1.75 3% } $\ \%$
  
{Berechnen Sie die Bitfehlerwahrscheinlichkeit für den '''Graycode'''.
+
{Calculate the bit error probability &nbsp;$p_{\rm B}$&nbsp; for the&nbsp; <u>Gray code</u>.
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm B} \ = \ $ { 0.583 3% } $\ \%$
 
$p_{\rm B} \ = \ $ { 0.583 3% } $\ \%$
  
{Berechnen Sie die Bitfehlerwahrscheinlichkeit für den '''Zufallscode'''.
+
{Calculate the bit error probability &nbsp;$p_{\rm B}$&nbsp; for the&nbsp; <u>random code</u>.
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm B} \ = \ $ { 0.714 3% } $\ \%$
 
$p_{\rm B} \ = \ $ { 0.714 3% } $\ \%$
Line 55: Line 61:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  Entsprechend der Beschreibung auf der Angabenseite steht
+
'''(1)'''&nbsp;  According to the description on the specification page
*„LHH” für den Amplitudenkoeffizienten $a_{3}$  &nbsp; &rArr; &nbsp; $(\mu =3)$ und
+
*$\rm LHH$&nbsp; for the amplitude coefficient&nbsp; $a_{3}$  &nbsp; &rArr; &nbsp; $\underline{\mu =3}$.
* und „HLL” für für den Amplitudenkoeffizienten $a_{8}$  &nbsp; &rArr; &nbsp; $(\mu =8)$.  
+
*$\rm HLL$&nbsp; for the amplitude coefficient&nbsp; $a_{8}$  &nbsp; &rArr; &nbsp; $\underline{\mu =8}$.  
  
  
'''(2)'''&nbsp; Die äußeren Koeffizienten ($a_{1}$ und $a_{8}$) werden jeweils mit der Wahrscheinlichkeit $p = 1 \%$ verfälscht, die $M – 2 = 6$ inneren mit der doppelten Wahrscheinlichkeit $(2p= 2 \%)$. Durch Mittelung erhält man:
+
'''(2)'''&nbsp; The outer coefficients&nbsp; $(a_{1}$&nbsp; and&nbsp; $a_{8})$&nbsp; are each falsified with probability&nbsp; $p = 1 \%$,&nbsp; the&nbsp; $M – 2 = 6$&nbsp; inner ones with twice the probability&nbsp; $(2p= 2 \%)$.&nbsp; By averaging,&nbsp; we obtain:
 
:$$p_{\rm S} = \frac{2 \cdot 1 + 6 \cdot 2} { 8} \cdot p\hspace{0.15cm}\underline { = 1.75 \,\%} \hspace{0.05cm}.$$
 
:$$p_{\rm S} = \frac{2 \cdot 1 + 6 \cdot 2} { 8} \cdot p\hspace{0.15cm}\underline { = 1.75 \,\%} \hspace{0.05cm}.$$
  
'''(3)'''&nbsp; Jeder Übertragungsfehler (Symbolfehler) hat beim Graycode genau einen Bitfehler zur Folge. Da jedoch jedes Oktalsymbol drei Binärzeichen beinhaltet, gilt
+
 
 +
'''(3)'''&nbsp; Each transmission error&nbsp; (symbol error)&nbsp; results in exactly one bit error in Gray code.&nbsp; However,&nbsp; since each octal symbol contains three binary characters,&nbsp; the following applies
 
:$$p_{\rm B} ={p_{\rm S}}/ { 3}\hspace{0.15cm}\underline { = 0.583 \,\%} \hspace{0.05cm}.$$
 
:$$p_{\rm B} ={p_{\rm S}}/ { 3}\hspace{0.15cm}\underline { = 0.583 \,\%} \hspace{0.05cm}.$$
  
'''(4)'''&nbsp; Von den insgesamt sieben möglichen Übergängen (jeweils in beiden Richtungen) führen zu
+
 
*einem Fehler: &nbsp; &nbsp; '''HLH''' $\Leftrightarrow$ '''LLH''',
+
'''(4)'''&nbsp; Of the total of seven possible transitions&nbsp; (each in both directions)&nbsp; lead to
*zwei Fehlern: &nbsp; &nbsp; '''HLL''' $\Leftrightarrow$ '''HHH''', '''LLL''' $\Leftrightarrow$ '''LHH''', '''HHL''' $\Leftrightarrow$ '''HLH''', '''LLH''' $\Leftrightarrow$ '''LHL''',
+
*one error: &nbsp; &nbsp; $\rm HLH \ \Leftrightarrow \ LLH$,
*drei Fehlern: &nbsp; &nbsp; '''HHH''' $\Leftrightarrow$ '''LLL''', '''LHH''' $\Leftrightarrow$ '''HHL'''.
+
*two errors: &nbsp; &nbsp;&nbsp; $\rm HLL \ \Leftrightarrow \ HHH$, &nbsp;  &nbsp; $\rm LLL \ \Leftrightarrow \ LHH$, &nbsp;  &nbsp; $\rm HHL \ \Leftrightarrow \ HLH$, &nbsp;  &nbsp; $\rm LLH \ \Leftrightarrow \ LHL$,  
 +
*three errors: &nbsp; &nbsp;&nbsp; $\rm HHH \ \Leftrightarrow \ LLL$, &nbsp;  &nbsp; $\rm LHH \ \Leftrightarrow \ HHL$.
  
  
Daraus folgt:
+
It follows that:
 
:$$p_{\rm B} = \frac{p} { 3} \cdot \frac{1 + 4 \cdot 2 + 2 \cdot 3} { 7} = \frac{15} { 21} \cdot p \hspace{0.15cm}\underline { = 0.714 \,\%} \hspace{0.05cm}.$$
 
:$$p_{\rm B} = \frac{p} { 3} \cdot \frac{1 + 4 \cdot 2 + 2 \cdot 3} { 7} = \frac{15} { 21} \cdot p \hspace{0.15cm}\underline { = 0.714 \,\%} \hspace{0.05cm}.$$
  
Line 83: Line 91:
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^2.2 Redundanzfreie Codierung^]]
+
[[Category:Digital Signal Transmission: Exercises|^2.2 Redundancy-Free Coding^]]

Latest revision as of 10:19, 24 May 2022

Octal  "random coding"  and  Gray coding

A digital system with  $M = 8$  amplitude levels  ("octal system")  is considered,  whose  $M – 1 = 7$  decision thresholds lie exactly at the respective interval centers.

Each of the equally probable amplitude coefficients  $a_{\mu}$  with  $1 ≤ \mu ≤ 8$  can be falsified only into the immediate neighbor coefficients  $a_{\mu–1}$  and  $a_{\mu+1}$,  respectively,  and in both directions with the same probability  $p = 0.01$.  Here are some examples:

  • $a_5$  passes into coefficient $a_4$ with probability  $p = 0.01$  and into coefficient  $a_6$ with the same probability  $p = 0.01$. 
  • $a_8$  is falsified with probability  $p = 0.01$  into coefficient  $a_7$.  No falsification is possible in the other direction.


The mapping of each three binary source symbols into an octal amplitude coefficient happens alternatively according to

  • the second column in the given table,  which was generated  "randomly"  - without strategy,
  • the Gray coding,  which is only incompletely indicated in column 3 and is still to be supplemented.


The Gray code is given for  $M = 4$.  For  $M = 8$  the last two binary characters are to be mirrored at the dashed line.  For the first four amplitude coefficients a  $\rm L$  is to be added at the first place,  for  $a_{5}, ..., a_{8}$  the binary symbol  $\rm H$.

For the two mappings  "Random"  and  "Gray"  are to be calculated:

  • the  "symbol error probability"  $p_{\rm S}$,  which is the same in both cases;  $p_{\rm S}$  indicates the average falsifcation probability of an amplitude coefficient  $a_{\mu}$; 
  • the  "bit error probability"  $p_{\rm B}$  related to the (decoded) binary symbols.



Notes:



Questions

1

To which amplitude coefficient  $a_{ \mu}$  do the binary sequences  $\rm {LHH}$  and  $\rm {HLL}$ correspond in the Gray code?
Please enter index  $ \mu$   $(1 < \mu < 8)$.

$ \rm {LHH}\text{:}\hspace{0.4cm} \mu \ = \ $

$ \rm {HLL}\text{:}\hspace{0.45cm} \mu \ = \ $

2

Calculate the symbol error probability  $p_{\rm S}$.

$p_{\rm S} \ = \ $

$\ \%$

3

Calculate the bit error probability  $p_{\rm B}$  for the  Gray code.

$p_{\rm B} \ = \ $

$\ \%$

4

Calculate the bit error probability  $p_{\rm B}$  for the  random code.

$p_{\rm B} \ = \ $

$\ \%$


Solution

(1)  According to the description on the specification page

  • $\rm LHH$  for the amplitude coefficient  $a_{3}$   ⇒   $\underline{\mu =3}$.
  • $\rm HLL$  for the amplitude coefficient  $a_{8}$   ⇒   $\underline{\mu =8}$.


(2)  The outer coefficients  $(a_{1}$  and  $a_{8})$  are each falsified with probability  $p = 1 \%$,  the  $M – 2 = 6$  inner ones with twice the probability  $(2p= 2 \%)$.  By averaging,  we obtain:

$$p_{\rm S} = \frac{2 \cdot 1 + 6 \cdot 2} { 8} \cdot p\hspace{0.15cm}\underline { = 1.75 \,\%} \hspace{0.05cm}.$$


(3)  Each transmission error  (symbol error)  results in exactly one bit error in Gray code.  However,  since each octal symbol contains three binary characters,  the following applies

$$p_{\rm B} ={p_{\rm S}}/ { 3}\hspace{0.15cm}\underline { = 0.583 \,\%} \hspace{0.05cm}.$$


(4)  Of the total of seven possible transitions  (each in both directions)  lead to

  • one error:     $\rm HLH \ \Leftrightarrow \ LLH$,
  • two errors:      $\rm HLL \ \Leftrightarrow \ HHH$,     $\rm LLL \ \Leftrightarrow \ LHH$,     $\rm HHL \ \Leftrightarrow \ HLH$,     $\rm LLH \ \Leftrightarrow \ LHL$,
  • three errors:      $\rm HHH \ \Leftrightarrow \ LLL$,     $\rm LHH \ \Leftrightarrow \ HHL$.


It follows that:

$$p_{\rm B} = \frac{p} { 3} \cdot \frac{1 + 4 \cdot 2 + 2 \cdot 3} { 7} = \frac{15} { 21} \cdot p \hspace{0.15cm}\underline { = 0.714 \,\%} \hspace{0.05cm}.$$