Difference between revisions of "Aufgaben:Exercise 2.9: Coherence Time"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Mobile Kommunikation/Das GWSSUS–Kanalmodell}} Datei:P_ID2180__Mob_A_2_9.png|right|frame|Doppler–Leistungsdichtespektrum un…“)
 
Line 3: Line 3:
  
 
[[File:P_ID2180__Mob_A_2_9.png|right|frame|Doppler–Leistungsdichtespektrum und Zeit–Korrelationsfunktion]]
 
[[File:P_ID2180__Mob_A_2_9.png|right|frame|Doppler–Leistungsdichtespektrum und Zeit–Korrelationsfunktion]]
Im Frequenzbereich wird der Einfluss des Rayleigh–Fadings durch das  [[Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh-Prozesses#AKF_und_LDS_bei_Rayleigh.E2.80.93Fading| Jakes–Spektrum]]  beschrieben. Mit dem Rayleigh–Parameter  $\sigma = \sqrt{0.5}$  gilt für dieses im Doppler–Frequenzbereich  $|f_{\rm D}| ≤ f_{\rm D, \ max}$:
+
In the frequency domain, the influence of Rayleigh fading is described by the  [[Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh-Prozesses#AKF_und_LDS_bei_Rayleigh.E2.80.93Fading| Jakes spectrum]] . If the Rayleigh parameter is  $\sigma = \sqrt{0.5}$  the Jakes spectrum is
:$${\it \Phi}_{\rm D}(f_{\rm D}) = \frac{1}{ \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot \sqrt{1 - \left (\frac{f_{\rm D}}{f_{\rm D,\hspace{0.05cm}max}} \right )^2} } \hspace{0.05cm}.$$
+
$${\it \Phi}_{\rm D}(f_{\rm D}) = \frac{1}{ \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot \sqrt{1 - \left (\frac{f_{\rm D}}}{f_{\rm D,\hspace{0.05cm}max}}} \right )^2} } \hspace{0.05cm}.$$
 +
for the Doppler frequency range  $|f_{\rm D}| ≤ f_{\rm D, \ max}$:
 +
This function is sketched for  $f_{\rm D, \ max} = 50 \ \rm Hz$  (blue curve) and  $f_{\rm D, \ max} = 100 \ \rm Hz$  (red curve).
  
Diese Funktion ist für  $f_{\rm D, \ max} = 50 \ \rm Hz$  (blaue Kurve) und   $f_{\rm D, \ max} = 100 \ \rm Hz$  (rote Kurve) skizziert.
+
The function  $\varphi_{\rm Z}(\delta t)$  is the inverse Fourier transform of the Doppler power density spectrum  ${\it \Phi}_{\rm D}(f)$:
 
 
Die Funktion  $\varphi_{\rm Z}(\Delta t)$  ist die Fourierrücktransformierte des Doppler–Leistungsdichtespektrums  ${\it \Phi}_{\rm D}(f)$:
 
 
:$$\varphi_{\rm Z}(\Delta t ) =  {\rm J}_0(2 \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot \Delta t ) \hspace{0.05cm}.$$
 
:$$\varphi_{\rm Z}(\Delta t ) =  {\rm J}_0(2 \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot \Delta t ) \hspace{0.05cm}.$$
  
${\rm J}_0$&nbsp; bezeichnet die <i>Besselfunktion nullter Ordnung</i>. Die ebenfalls symmetrische Korrelationsfunktion&nbsp; $\varphi_{\rm Z}(\Delta t)$&nbsp; ist unten gezeichnet, aus Platzgründen allerdings nur die rechte Hälfte.
+
${\rm J}_0$&nbsp; denotes the <i> zeroth-order Bessel function of the first kind</i>. The correlation function&nbsp; $\varphi_{\rm Z}(\Delta t)$&nbsp; which is also symmetrical, is drawn below, but for space reasons only the right half.
  
Aus jeder dieser beiden Beschreibungsfunktionen lässt sich eine Kenngröße ableiten:
+
A characteristic value can be derived from each of these two description functions:
* Die &nbsp;<b>Dopplerverbreiterung</b>&nbsp; $B_{\rm D}$ bezieht sich auf das Doppler&ndash;LDS&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp; und gibt dessen Streuung $\sigma_{\rm D}$ an.  
+
* The &nbsp;<b>Doppler spread</b>&nbsp; $B_{\rm D}$ refers to the Doppler PSD&nbsp; ${\it \Phi}_{\rm D}(f_{\rm D})$&nbsp; and is equal to the standard deviation $\sigma_{\rm D}$ of the Doppler frequency $f_D$.  
::Zu berücksichtigen ist, dass das Jakes&ndash;Spektrum mittelwertfrei ist, so dass die Varianz&nbsp; $\sigma_{\rm D}^2$&nbsp; nach dem Satz von Steiner gleich dem quadratischen Mittelwert&nbsp; ${\rm E}\big[f_{\rm D}^2\big]$&nbsp; ist. Die Berechnung geschieht analog zur Bestimmung der Mehrwegeverbreiterung&nbsp; $T_{\rm V}$&nbsp; aus dem Verzögerungs&ndash;LDS&nbsp; ${\it \Phi}_{\rm V}(\tau)$ &nbsp; &#8658; &nbsp; [[Aufgaben:2.7_Koh%C3%A4renzbandbreite| Aufgabe 2.7]].
+
Note that the Jakes spectrum is zero-mean, so that the variance&nbsp; $\sigma_{\rm D}^2$&nbsp; according to Steiner's theorem is equal to the second moment&nbsp; ${\rm E}\big[f_{\rm D}^2\big]$&nbsp;. The calculation is analogous to the determination of the delay spread&nbsp; $T_{\rm V}$&nbsp; from the delay PSD&nbsp; ${\it \Phi}_{\rm V}(\tau)$ &nbsp; &#8658; &nbsp; [[Aufgaben:Exercise_2.7:_Coherence_Bandwidth| Exercise 2.7]].
  
* Die&nbsp; <b>Korrelationsdauer</b> $T_{\rm D}$&nbsp; bezieht sich dagegen auf die Zeitkorrelationsfunktion&nbsp; $\varphi_{\rm Z}(\Delta t)$&nbsp;.
+
* The&nbsp; <b>coherence time</b> $T_{\rm D}$&nbsp; on the other hand, refers to the time correlation function&nbsp; $\varphi_{\rm Z}(\Delta t)$&nbsp;.
:: $T_{\rm D}$&nbsp; gibt denjenigen&nbsp; $\Delta t$&ndash;Wert an, bei dem deren Betrag erstmals auf die Hälfte des Maximums $($bei&nbsp; $\Delta t = 0)$&nbsp; abgefallen ist. Man erkennt die Analogie zur Bestimmung der Kohärenzbandbreite&nbsp; $B_{\rm K}$&nbsp; aus der Frequenz&ndash;Korrelationsfunktion&nbsp; $\varphi_{\rm F}(\Delta f)$ &nbsp; &#8658; &nbsp; [[Aufgaben:2.7_Koh%C3%A4renzbandbreite| Aufgabe 2.7]].
+
:: $T_{\rm D}$&nbsp; is the value of &nbsp; $\Delta t$&ndash; at which the magnitude $|\varphi_{\rm Z}(\Delta t)|$ first drops to half of the maximum $($at&nbsp; $\Delta t = 0)$&nbsp;. One recognizes the analogy with the determination of the coherence bandwidth&nbsp; $B_{\rm K}$&nbsp; from the frequency correlation function&nbsp; $\varphi_{\rm F}(\Delta f)$ &nbsp; &#8658; &nbsp; [[Aufgaben:Exercise_2.7:_Coherence_Bandwidth| Exercise 2.7]].
  
  
  
  
''Hinweise:''
+
''Notes:''
* Die Aufgabegehört zum Kapitel&nbsp; [[Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell| GWSSUS&ndash;Kanalmodell]].
+
* This task belongs to chapter&nbsp; [[Mobile_Kommunikation/Das_GWSSUS%E2%80%93Kanalmodell| GWSSUS&ndash;Kanalmodell]].
* Bezug genommen wird auch  auf das Kapitel&nbsp; [[Mobile_Kommunikation/Allgemeine_Beschreibung_zeitvarianter_Systeme| Allgemeine Beschreibung zeitvarianter Systeme]].
+
* Reference is also made to chapter&nbsp; [[Mobile_Kommunikation/Allgemeine_Beschreibung_zeitvarianter_Systeme| Allgemeine Beschreibung zeitvarianter Systeme]].
* Gegeben ist das folgende unbestimmte Integral:
+
* The following undefined integral is given:
 
:$$\int \frac{u^2}{\sqrt{1-u^2}} \hspace{0.15cm}{\rm d} u = -\frac{u}{2} \cdot \sqrt{1-u^2} + \frac{1}{2} \cdot {\rm arcsin}\,(u)
 
:$$\int \frac{u^2}{\sqrt{1-u^2}} \hspace{0.15cm}{\rm d} u = -\frac{u}{2} \cdot \sqrt{1-u^2} + \frac{1}{2} \cdot {\rm arcsin}\,(u)
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Line 36: Line 36:
  
  
===Fragebogen===
+
===Questionnaire===
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Aussagen treffen für die Wahrscheinlichkeitsdichtefunktion (WDF) der Dopplerfrequenz im vorliegenden Beispiel zu?
+
{Which statements apply to the probability density function (WDF) of the Doppler frequency in the present example?
 
|type="[]"}
 
|type="[]"}
+ Die Doppler&ndash;WDF ist immer formgleich mit dem Doppler&ndash;LDS.
+
+ The Doppler&ndash;WDF is always identical in shape to the Doppler&ndash;LDS.
+ Die Doppler&ndash;WDF ist hier identisch mit dem Doppler&ndash;LDS.
+
+ The Doppler&ndash;WDF is here identical with the Doppler&ndash;LDS.
- Doppler&ndash;WDF und Doppler&ndash;LDS unterscheiden sich grundsätzlich.
+
- Doppler&ndash;WDF and Doppler&ndash;LDS differ fundamentally.
  
{Bestimmen Sie die Dopplerverbreiterungen&nbsp; $B_{\rm D}$.
+
{Determine the doppler broadenings&nbsp; $B_{\rm D}$.
 
|type="{}"}
 
|type="{}"}
$f_{\rm D, \ max} = 50 \ {\rm Hz} \text{:} \hspace{0.6cm} B_{\rm D} \ = \ ${ 35.35 3% } $\ \rm Hz$
+
$f_{\rm D, \ max} = 50 \ {\rm Hz} \text \ \hspace{0.6cm} B_{\rm D} \ = \ ${ 35.35 3% } $\ \ \rm Hz$
$f_{\rm D, \ max} = 100 \ {\rm Hz} \text{:} \hspace{0.4cm} B_{\rm D} \ = \ ${ 70.7 3% } $\ \rm Hz$
+
$f_{\rm D, \ max} = 100 \ {\rm Hz} \text \ \hspace{0.4cm} B_{\rm D} \ = \ ${ 70.7 3% } $\ \ \rm Hz$
  
{Welcher Zeitkorrelationswert ergibt sich für&nbsp; $\Delta t = 5 \ \rm ms$?
+
{What is the time correlation value for&nbsp; $\Delta t = 5 \ \ \rm ms$?
 
|type="{}"}
 
|type="{}"}
$f_{\rm D, \ max} = 50 \ {\rm Hz} \text{:} \hspace{0.6cm} \varphi_{\rm Z}(\Delta t = 5 \ \rm ms) \ = \ ${ 0.472 3% }
+
$f_{\rm D, \ max} = 50 \ {\rm Hz} \text \ \hspace{0.6cm} \varphi_{\rm Z}(\delta t = 5 \ \rm ms) \ = \ ${ 0.472 3% }
$f_{\rm D, \ max} = 100 \ {\rm Hz} \text{:} \hspace{0.4cm} \varphi_{\rm Z}(\Delta t = 5 \ \rm ms) \ = \ ${ -0.31415--0.29585 }
+
$f_{\rm D, \ max} = 100 \ {\rm Hz} \text \ \hspace{0.4cm} \varphi_{\rm Z}(\delta t = 5 \ \rm ms) \ = \ ${ -0.31415--0.29585 }
  
{Wie groß sind die Korrelationsdauern&nbsp; $T_{\rm D}$&nbsp; für beide Parametersätze?
+
{What are the correlation durations&nbsp; $T_{\rm D}$&nbsp; for both parameter sets?
 
|type="{}"}
 
|type="{}"}
$f_{\rm D, \ max} = 50 \ {\rm Hz} \text{:} \hspace{0.6cm} T_{\rm D} \ = \ ${ 4.84 3% } $\ \rm ms$
+
$f_{\rm D, \ max} = 50 \ {\rm Hz} \text \ \hspace{0.6cm} T_{\rm D} \ = \ ${ 4.84 3% } $\ \ \rm ms$
$f_{\rm D, \ max} = 100 \ {\rm Hz} \text{:} \hspace{0.4cm} T_{\rm D} \ = \ ${ 2.42 3% } $\ \rm ms$
+
$f_{\rm D, \ max} = 100 \ {\rm Hz} \text \ \hspace{0.4cm} T_{\rm D} \ = \ ${ 2.42 3% } $\ \ \rm ms$
  
{Welcher Zusammenhang besteht zwischen der Dopplerverbreiterung&nbsp; $B_{\rm D}$&nbsp; und der Korrelationsdauer&nbsp; $T_{\rm D}$, ausgehend vom Jakes&ndash;Spektrum?
+
{What is the relationship between the Doppler broadening&nbsp; $B_{\rm D}$&nbsp; and the correlation duration&nbsp; $T_{\rm D}$, based on the Jakes&ndash;spectrum?
 
|type="()"}
 
|type="()"}
- $B_{\rm D} \cdot T_{\rm D} \approx 1$,
+
- $B_{\rm D} \cdot T_{\rm D} \approx $1,
 
- $B_{\rm D} \cdot T_{\rm D} \approx 0.5$,
 
- $B_{\rm D} \cdot T_{\rm D} \approx 0.5$,
+ $B_{\rm D} \cdot T_{\rm D} \approx 0.171$.
+
+ $B_{\rm D} \cdot T_{\rm D} \approx $0.171.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Sample solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind hier die <u>Lösungsvorschläge 1 und 2</u>:  
+
'''(1)''''&nbsp; <u>Solutions 1 and 2</u> are correct:  
*Doppler&ndash;WDF und Doppler&ndash;LDS sind im allgemeinen nur formgleich.  
+
*Doppler PDF and Doppler PSD are generally only identical in shape.  
*Da aber im betrachteten Beispiel das Integral über ${\it \Phi}_{\rm D}(f_{\rm D})$ gleich $1$ ist, erkennbar am Korrelationswert $\varphi_{\rm Z}(\Delta t = 0) = 1$, trifft hier sogar die Identität zu.  
+
*But since in the example considered the integral over ${\it \Phi}_{\rm D}(f_{\rm D})$ is equal to $1$, recognizable by the correlation value $\varphi_{\rm Z}(\Delta t = 0) = 1$, even the identity is correct here.  
*Bei anderer Wahl des Rayleigh&ndash;Paramters $\sigma$ würde dies allerdings nicht gelten.
+
*If the Rayleigh parameter $\sigma$ had been chosen differently, this would not apply.
  
  
'''(2)'''&nbsp; Aus der Achsensymmetrie von ${\it \Phi}_{\rm D}(f_{\rm D})$ erkennt man, dass der Mittelwert $m_{\rm D} = {\rm E}\big[f_{\rm D}\big] = 0$ ist.  
+
'''(2)'''&nbsp; From the axial symmetry of ${\it \Phi}_{\rm D}(f_{\rm D})$ you can see that the mean value $m_{\rm D} = {\rm E}\big [f_{\rm D}\big] = 0$.  
*Die Varianz der Zufallsgröße $f_{\rm D}$ kann somit direkt als quadratischer Mittelwert berechnet werden:
+
*The variance of the random variable $f_{\rm D}$ can thus be calculated directly as a square mean value:
:$$\sigma_{\rm D}^2 = \int_{-\infty}^{+\infty} f_{\rm D}^2 \cdot {\it \Phi}_{\rm D}(f_{\rm D}) \hspace{0.15cm}{\rm d} f_{\rm D} = \int_{-f_{\rm D,\hspace{0.05cm}max}}^{+f_{\rm D,\hspace{0.05cm}max}} \frac{f_{\rm D}^2}{ \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot \sqrt{1 - \left ({f_{\rm D}}/{f_{\rm D,\hspace{0.05cm}max}} \right )^2} } \hspace{0.15cm}{\rm d} f_{\rm D}
+
$$\sigma_{\rm D}^2 = \int_{-\infty}^{+\infty} f_{\rm D}^2 \cdot {\it \Phi}_{\rm D}(f_{\rm D}) \hspace{0.15cm}{\rm d} f_{\rm D} = \int_{-f_{\rm D,\hspace{0.05cm}max}}}^{+f_{\rm D,\hspace{0.05cm}max}} \frac{f_{\rm D}^2}{ \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot \sqrt{1 - \left ({f_{\rm D}}}/{f_{\rm D,\hspace{0.05cm}max}}} \right )^2} } \hspace{0.15cm}{\rm d} f_{\rm D}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*Unter Ausnutzung der Symmetrie und mit der Substitution $u = f_{\rm D}/f_{\rm D, \ max}$ ergibt sich daraus:
+
*Using symmetry and with the substitution $u = f_{\rm D}/f_{\rm D, \ max}$ results in
:$$\sigma_{\rm D}^2 = \frac{2}{\pi} \cdot f_{\rm D,\hspace{0.05cm}max}^2 \cdot \int_{0}^{1} \frac{u^2}{\sqrt{1-u^2}} \hspace{0.15cm}{\rm d} u  
+
$$\sigma_{\rm D}^2 = \frac{2}{\pi} \cdot f_{\rm D,\hspace{0.05cm}max}^2 \cdot \int_{0}^{1} \frac{u^2}{\sqrt{1-u^2} \hspace{0.15cm}{\rm d} u  
 
  \hspace{0.05cm}. $$
 
  \hspace{0.05cm}. $$
  
*Mit dem auf der Angabenseite angegebenen Integral erhält man weiter:
+
*With the integral given on the data page you get further:
:$$\sigma_{\rm D}^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{2}{\pi} \cdot f_{\rm D,\hspace{0.05cm}max}^2 \cdot \left [ -\frac{u}{2} \cdot \sqrt{1-u^2} + \frac{1}{2} \cdot {\rm arcsin}\,(u) \right ]_0^1 = \frac{2}{\pi} \cdot f_{\rm D,\hspace{0.05cm}max}^2 \cdot \frac{2}{2}\cdot \frac{\pi}{2} = \frac{f_{\rm D,\hspace{0.05cm}max}^2}{2}  
+
$$\sigma_{\rm D}^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{2}{\pi} \cdot f_{\rm D,\hspace{0.05cm}max}^2 \cdot \left [ -\frac{u}{2} \cdot \sqrt{1-u^2} + \frac{1}{2} \cdot {\rm arcsin}\,(u) \right ]_0^1 = \frac{2}{\pi} \cdot f_{\rm D,\hspace{0.05cm}max}^2 \cdot \frac{2}{2}\cdot \frac{\pi}{2} = \frac{f_{\rm D,\hspace{0.05cm}max}^2}{2}  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*Die Dopplerverbreiterung ist gleich der Streuung, also der Wurzel aus der Varianz:
+
*The Doppler widening is equal to the scatter, i.e. the square root of the variance:
:$$B_{\rm D} = \sigma_{\rm D} = \frac{f_{\rm D,\hspace{0.05cm}max}}{\sqrt{2}}= \left\{ \begin{array}{c} \underline{35.35\,{\rm Hz}}\\
+
$$B_{\rm D} = \sigma_{\rm D} = \frac{f_{\rm D,\hspace{0.05cm}max}}}{\sqrt{2}}= \left\{ \begin{array}{c} \underline {35.35\,{\rm Hz}}\\\
  \underline{70.7\,{\rm Hz}}  \end{array} \right.\quad
+
  \underline {70.7\,{\rm Hz}}  \end{array} \right.\quad
\begin{array}{*{1}c} {\rm f\ddot{u}r} \hspace{0.15cm}f_{\rm D,\hspace{0.05cm}max} = 50\,{\rm Hz}
+
\begin{array}{*{*{1}c} {\rm f\ddot{u} \hspace{0.15cm}f_{\rm D,\hspace{0.05cm}max} = 50\,{\rm Hz}
\\ {\rm f\ddot{u}r} \hspace{0.15cm}f_{\rm D,\hspace{0.05cm}max} = 100\,{\rm Hz} \\ \end{array}
+
\\ {\rm f\ddot{u} \hspace{0.15cm}f_{\rm D,\hspace{0.05cm}max} = 100\,{\rm Hz} \\ \end{array}
 
  \hspace{0.05cm}. $$
 
  \hspace{0.05cm}. $$
  
  
'''(3)'''&nbsp; Mit den angegebenen Besselwerten erhält man
+
'''(3)'''&nbsp; With the Bessel values given, one obtains
* für die Dopplerfrequenz&nbsp; $f_{\rm D, \ max} = 50 \ \rm Hz$:
+
* for the Doppler frequency&nbsp; $f_{\rm D, \ max} = 50 \ \rm Hz$:
:$$\varphi_{\rm Z}(\Delta t = 5\,{\rm ms}) = {\rm J}_0(2 \pi \cdot 50\,{\rm Hz} \cdot 5\,{\rm ms} ) = {\rm J}_0(\pi/2) \hspace{0.1cm} \underline {= 0.472} \hspace{0.05cm},$$
+
$$\varphi_{\rm Z}(\delta t = 5\,{\rm ms}) = {\rm J}_0(2 \pi \cdot 50\,{\rm Hz} \cdot 5\,{\rm ms} ) = {\rm J}_0(\pi/2) \hspace{0.1cm} \underline {= 0.472} \hspace{0.05cm},$$
* für die Dopplerfrequenz&nbsp; $f_{\rm D, \ max} = 100 \ \rm Hz$:
+
* for the Doppler frequency&nbsp; $f_{\rm D, \ max} = 100 \ \rm Hz$:
:$$\varphi_{\rm Z}(\Delta t = 5\,{\rm ms}) =   {\rm J}_0(\pi) \hspace{0.1cm} \underline {= -0.305} \hspace{0.05cm}.$$
+
$$\varphi_{\rm Z}(\delta t = 5\,{\rm ms}) = {\rm J}_0(\pi) \hspace{0.1cm} \underline {= -0.305} \hspace{0.05cm}.$$
  
  
  
'''(4)'''&nbsp; Die Korrelationsdauer $T_{\rm D}$ ergibt sich aus der Zeitkorrelationsfunktion $\varphi_{\rm Z}(\Delta t)$. $T_{\rm D}$ ist derjenige $\Delta t$&ndash;Wert, bei dem $|\varphi_{\rm Z}(\Delta t)|$ auf die Hälfte seines Maximalwertes abgeklungen ist. Es muss gelten:
+
'''(4)'''&nbsp; The correlation duration $T_{\rm D}$ is derived from the time correlation function $\varphi_{\rm Z}(\delta t)$. $T_{\rm D}$ is the $\delta t$&ndash;value where $|\varphi_{\rm Z}(\delta t)|$ has decayed to half of its maximum value. It must hold:
:$$\varphi_{\rm Z}(\Delta t = T_{\rm D}) = {\rm J}_0(2 \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot T_{\rm D}) \stackrel {!}{=} 0.5 \hspace{0.3cm}  
+
$$\varphi_{\rm Z}(\delta t = T_{\rm D}) = {\rm J}_0(2 \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot T_{\rm D}) \stackrel {!}{=} 0.5 \hspace{0.3cm}  
 
\Rightarrow \hspace{0.3cm} 2 \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot T_{\rm D} = 1.52  
 
\Rightarrow \hspace{0.3cm} 2 \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot T_{\rm D} = 1.52  
  \hspace{0.3cm} \Rightarrow \hspace{0.3cm} T_{\rm D} = \frac{1.52}{2 \pi f_{\rm D,\hspace{0.05cm}max}} = \frac{0.242}{ f_{\rm D,\hspace{0.05cm}max}}$$
+
  \hspace{0.3cm} \Rightarrow \hspace{0.3cm} T_{\rm D} = \frac{1.52}{2 \pi f_{\rm D,\hspace{0.05cm}max}}} = \frac{0.242}{ f_{\rm D,\hspace{0.05cm}max}}$$
:$$\Rightarrow \hspace{0.3cm} f_{\rm D,\hspace{0.05cm}max} = 50\,{\rm Hz}\text{:} \ \hspace{-0.1cm}\hspace{0.2cm} T_{\rm D} \hspace{0.1cm} \underline {\approx 4.84\,{\rm ms}}  \hspace{0.05cm},\hspace{0.8cm} f_{\rm D,\hspace{0.05cm}max} = 100\,{\rm Hz}\text{:} \ \hspace{-0.1cm}\hspace{0.2cm} T_{\rm D} \hspace{0.1cm} \underline {\approx 2.42\,{\rm ms}}  \hspace{0.05cm}. $$
+
$$\Rightarrow \hspace{0.3cm} f_{\rm D,\hspace{0.05cm}max} = 50\,{\rm Hz}\text{:} \hspace{-0.1cm}\hspace{0.2cm}\hspace{0.2cm} T_{\rm D} \hspace{0.1cm} \underline {\approx 4.84\,{\rm ms}  \hspace{0.05cm},\hspace{0.8cm} f_{\rm D,\hspace{0.05cm}max} = 100\,{\rm Hz}\text{:} \hspace{-0.1cm}\hspace{0.2cm}\hspace{0.2cm} T_{\rm D} \hspace{0.1cm} \underline {\approx 2.42\,{\rm ms}  \hspace{0.05cm}. $$
  
  
'''(5)'''&nbsp; In den Teilaufgaben '''(2)''' und '''(4)''' haben wir erhalten:
+
'''(5)'''&nbsp; In the subtasks '''(2)''' and '''(4)''' we received
:$$B_{\rm D} = \frac{ f_{\rm D,\hspace{0.05cm}max}}{\sqrt{2}}\hspace{0.05cm}, \hspace{0.2cm} T_{\rm D} = \frac{1.52}{2 \pi f_{\rm D,\hspace{0.05cm}max}}\hspace{0.3cm}
+
$$B_{\rm D} = \frac{ f_{\rm D,\hspace{0.05cm}max}}}}{\sqrt{2}}\hspace{0.05cm}, \hspace{0.2cm} T_{\rm D} = \frac{1.52}{2 \pi f_{\rm D,\hspace{0.05cm}max}}\hspace{0.3cm}
\Rightarrow \hspace{0.3cm} B_{\rm D} \cdot T_{\rm D} = \frac{1.52}{\sqrt{2} \cdot 2 \pi } \hspace{0.1cm}\underline {\approx 0.171}\hspace{0.05cm}.$$
+
\Rightarrow \hspace{0.3cm} B_{\rm D} \cdot T_{\rm D} = \frac{1.52}{\sqrt{2} \cdot 2 \pi } \hspace{0.1cm}\underline {\approx 0.171}\hspace{0.05cm}.$$
  
Richtig ist demnach der <u>letzte Lösungsvorschlag</u>.
+
Correct is therefore the <u>last proposed solution</u>.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
 
  
  
 
[[Category:Exercises for Mobile Communications|^2.3 The GWSSUS Channel Model^]]
 
[[Category:Exercises for Mobile Communications|^2.3 The GWSSUS Channel Model^]]

Revision as of 10:51, 23 April 2020

Doppler–Leistungsdichtespektrum und Zeit–Korrelationsfunktion

In the frequency domain, the influence of Rayleigh fading is described by the  Jakes spectrum . If the Rayleigh parameter is  $\sigma = \sqrt{0.5}$  the Jakes spectrum is $${\it \Phi}_{\rm D}(f_{\rm D}) = \frac{1}{ \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot \sqrt{1 - \left (\frac{f_{\rm D}}}{f_{\rm D,\hspace{0.05cm}max}}} \right )^2} } \hspace{0.05cm}.$$ for the Doppler frequency range  $|f_{\rm D}| ≤ f_{\rm D, \ max}$: This function is sketched for  $f_{\rm D, \ max} = 50 \ \rm Hz$  (blue curve) and  $f_{\rm D, \ max} = 100 \ \rm Hz$  (red curve).

The function  $\varphi_{\rm Z}(\delta t)$  is the inverse Fourier transform of the Doppler power density spectrum  ${\it \Phi}_{\rm D}(f)$:

$$\varphi_{\rm Z}(\Delta t ) = {\rm J}_0(2 \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot \Delta t ) \hspace{0.05cm}.$$

${\rm J}_0$  denotes the zeroth-order Bessel function of the first kind. The correlation function  $\varphi_{\rm Z}(\Delta t)$  which is also symmetrical, is drawn below, but for space reasons only the right half.

A characteristic value can be derived from each of these two description functions:

  • The  Doppler spread  $B_{\rm D}$ refers to the Doppler PSD  ${\it \Phi}_{\rm D}(f_{\rm D})$  and is equal to the standard deviation $\sigma_{\rm D}$ of the Doppler frequency $f_D$.

Note that the Jakes spectrum is zero-mean, so that the variance  $\sigma_{\rm D}^2$  according to Steiner's theorem is equal to the second moment  ${\rm E}\big[f_{\rm D}^2\big]$ . The calculation is analogous to the determination of the delay spread  $T_{\rm V}$  from the delay PSD  ${\it \Phi}_{\rm V}(\tau)$   ⇒   Exercise 2.7.

  • The  coherence time $T_{\rm D}$  on the other hand, refers to the time correlation function  $\varphi_{\rm Z}(\Delta t)$ .
$T_{\rm D}$  is the value of   $\Delta t$– at which the magnitude $|\varphi_{\rm Z}(\Delta t)|$ first drops to half of the maximum $($at  $\Delta t = 0)$ . One recognizes the analogy with the determination of the coherence bandwidth  $B_{\rm K}$  from the frequency correlation function  $\varphi_{\rm F}(\Delta f)$   ⇒   Exercise 2.7.



Notes:

$$\int \frac{u^2}{\sqrt{1-u^2}} \hspace{0.15cm}{\rm d} u = -\frac{u}{2} \cdot \sqrt{1-u^2} + \frac{1}{2} \cdot {\rm arcsin}\,(u) \hspace{0.05cm}.$$
  • Abschließend noch einige Werte für die Besselfunktion nullter Ordnung  $({\rm J}_0)$:
$${\rm J}_0(\pi/2) = 0.472\hspace{0.05cm},\hspace{0.4cm}{\rm J}_0(1.52) = 0.500\hspace{0.05cm},\hspace{0.4cm}{\rm J}_0(\pi) = -0.305\hspace{0.05cm},\hspace{0.4cm} {\rm J}_0(2\pi) = 0.221 \hspace{0.05cm}.$$



Questionnaire

1

Which statements apply to the probability density function (WDF) of the Doppler frequency in the present example?

The Doppler–WDF is always identical in shape to the Doppler–LDS.
The Doppler–WDF is here identical with the Doppler–LDS.
Doppler–WDF and Doppler–LDS differ fundamentally.

2

Determine the doppler broadenings  $B_{\rm D}$.

$f_{\rm D, \ max} = 50 \ {\rm Hz} \text \ \hspace{0.6cm} B_{\rm D} \ = \ $

$\ \ \rm Hz$
$f_{\rm D, \ max} = 100 \ {\rm Hz} \text \ \hspace{0.4cm} B_{\rm D} \ = \ $

$\ \ \rm Hz$

3

What is the time correlation value for  $\Delta t = 5 \ \ \rm ms$?

$f_{\rm D, \ max} = 50 \ {\rm Hz} \text \ \hspace{0.6cm} \varphi_{\rm Z}(\delta t = 5 \ \rm ms) \ = \ $

$f_{\rm D, \ max} = 100 \ {\rm Hz} \text \ \hspace{0.4cm} \varphi_{\rm Z}(\delta t = 5 \ \rm ms) \ = \ $

4

What are the correlation durations  $T_{\rm D}$  for both parameter sets?

$f_{\rm D, \ max} = 50 \ {\rm Hz} \text \ \hspace{0.6cm} T_{\rm D} \ = \ $

$\ \ \rm ms$
$f_{\rm D, \ max} = 100 \ {\rm Hz} \text \ \hspace{0.4cm} T_{\rm D} \ = \ $

$\ \ \rm ms$

5

What is the relationship between the Doppler broadening  $B_{\rm D}$  and the correlation duration  $T_{\rm D}$, based on the Jakes–spectrum?

$B_{\rm D} \cdot T_{\rm D} \approx $1,
$B_{\rm D} \cdot T_{\rm D} \approx 0.5$,
$B_{\rm D} \cdot T_{\rm D} \approx $0.171.


Sample solution

(1)'  Solutions 1 and 2 are correct:

  • Doppler PDF and Doppler PSD are generally only identical in shape.
  • But since in the example considered the integral over ${\it \Phi}_{\rm D}(f_{\rm D})$ is equal to $1$, recognizable by the correlation value $\varphi_{\rm Z}(\Delta t = 0) = 1$, even the identity is correct here.
  • If the Rayleigh parameter $\sigma$ had been chosen differently, this would not apply.


(2)  From the axial symmetry of ${\it \Phi}_{\rm D}(f_{\rm D})$ you can see that the mean value $m_{\rm D} = {\rm E}\big [f_{\rm D}\big] = 0$.

  • The variance of the random variable $f_{\rm D}$ can thus be calculated directly as a square mean value:

$$\sigma_{\rm D}^2 = \int_{-\infty}^{+\infty} f_{\rm D}^2 \cdot {\it \Phi}_{\rm D}(f_{\rm D}) \hspace{0.15cm}{\rm d} f_{\rm D} = \int_{-f_{\rm D,\hspace{0.05cm}max}}}^{+f_{\rm D,\hspace{0.05cm}max}} \frac{f_{\rm D}^2}{ \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot \sqrt{1 - \left ({f_{\rm D}}}/{f_{\rm D,\hspace{0.05cm}max}}} \right )^2} } \hspace{0.15cm}{\rm d} f_{\rm D} \hspace{0.05cm}.$$

  • Using symmetry and with the substitution $u = f_{\rm D}/f_{\rm D, \ max}$ results in

$$\sigma_{\rm D}^2 = \frac{2}{\pi} \cdot f_{\rm D,\hspace{0.05cm}max}^2 \cdot \int_{0}^{1} \frac{u^2}{\sqrt{1-u^2} \hspace{0.15cm}{\rm d} u \hspace{0.05cm}. $$

  • With the integral given on the data page you get further:

$$\sigma_{\rm D}^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{2}{\pi} \cdot f_{\rm D,\hspace{0.05cm}max}^2 \cdot \left [ -\frac{u}{2} \cdot \sqrt{1-u^2} + \frac{1}{2} \cdot {\rm arcsin}\,(u) \right ]_0^1 = \frac{2}{\pi} \cdot f_{\rm D,\hspace{0.05cm}max}^2 \cdot \frac{2}{2}\cdot \frac{\pi}{2} = \frac{f_{\rm D,\hspace{0.05cm}max}^2}{2} \hspace{0.05cm}.$$

  • The Doppler widening is equal to the scatter, i.e. the square root of the variance:

$$B_{\rm D} = \sigma_{\rm D} = \frac{f_{\rm D,\hspace{0.05cm}max}}}{\sqrt{2}}= \left\{ \begin{array}{c} \underline {35.35\,{\rm Hz}}\\\ \underline {70.7\,{\rm Hz}} \end{array} \right.\quad \begin{array}{*{*{1}c} {\rm f\ddot{u} \hspace{0.15cm}f_{\rm D,\hspace{0.05cm}max} = 50\,{\rm Hz} \\ {\rm f\ddot{u} \hspace{0.15cm}f_{\rm D,\hspace{0.05cm}max} = 100\,{\rm Hz} \\ \end{array} \hspace{0.05cm}. $$


(3)  With the Bessel values given, one obtains

  • for the Doppler frequency  $f_{\rm D, \ max} = 50 \ \rm Hz$:

$$\varphi_{\rm Z}(\delta t = 5\,{\rm ms}) = {\rm J}_0(2 \pi \cdot 50\,{\rm Hz} \cdot 5\,{\rm ms} ) = {\rm J}_0(\pi/2) \hspace{0.1cm} \underline {= 0.472} \hspace{0.05cm},$$

  • for the Doppler frequency  $f_{\rm D, \ max} = 100 \ \rm Hz$:

$$\varphi_{\rm Z}(\delta t = 5\,{\rm ms}) = {\rm J}_0(\pi) \hspace{0.1cm} \underline {= -0.305} \hspace{0.05cm}.$$


(4)  The correlation duration $T_{\rm D}$ is derived from the time correlation function $\varphi_{\rm Z}(\delta t)$. $T_{\rm D}$ is the $\delta t$–value where $|\varphi_{\rm Z}(\delta t)|$ has decayed to half of its maximum value. It must hold: $$\varphi_{\rm Z}(\delta t = T_{\rm D}) = {\rm J}_0(2 \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot T_{\rm D}) \stackrel {!}{=} 0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 2 \pi \cdot f_{\rm D,\hspace{0.05cm}max} \cdot T_{\rm D} = 1.52 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} T_{\rm D} = \frac{1.52}{2 \pi f_{\rm D,\hspace{0.05cm}max}}} = \frac{0.242}{ f_{\rm D,\hspace{0.05cm}max}}$$ $$\Rightarrow \hspace{0.3cm} f_{\rm D,\hspace{0.05cm}max} = 50\,{\rm Hz}\text{:} \hspace{-0.1cm}\hspace{0.2cm}\hspace{0.2cm} T_{\rm D} \hspace{0.1cm} \underline {\approx 4.84\,{\rm ms} \hspace{0.05cm},\hspace{0.8cm} f_{\rm D,\hspace{0.05cm}max} = 100\,{\rm Hz}\text{:} \hspace{-0.1cm}\hspace{0.2cm}\hspace{0.2cm} T_{\rm D} \hspace{0.1cm} \underline {\approx 2.42\,{\rm ms} \hspace{0.05cm}. $$


(5)  In the subtasks (2) and (4) we received $$B_{\rm D} = \frac{ f_{\rm D,\hspace{0.05cm}max}}}}{\sqrt{2}}\hspace{0.05cm}, \hspace{0.2cm} T_{\rm D} = \frac{1.52}{2 \pi f_{\rm D,\hspace{0.05cm}max}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} B_{\rm D} \cdot T_{\rm D} = \frac{1.52}{\sqrt{2} \cdot 2 \pi } \hspace{0.1cm}\underline {\approx 0.171}\hspace{0.05cm}.$$

Correct is therefore the last proposed solution.