Difference between revisions of "Aufgaben:Exercise 3.1: Causality Considerations"

From LNTwww
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1755__LZI_A_3_1.png|right|Zwei Vierpolschaltungen]]
+
[[File:P_ID1755__LZI_A_3_1.png|right|frame|Zwei Vierpolschaltungen]]
 
Die Grafik zeigt oben den Vierpol mit der Übertragungsfunktion
 
Die Grafik zeigt oben den Vierpol mit der Übertragungsfunktion
$$H_1(f) = \frac{{\rm j}\cdot f/f_{\rm G}}{1+{\rm j}\cdot f/f_{\rm G}}
+
:$$H_1(f) = \frac{{\rm j}\cdot f/f_{\rm G}}{1+{\rm j}\cdot f/f_{\rm G}}
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
  
 
wobei $f_{\rm G}$ die 3dB–Grenzfrequenz angibt:
 
wobei $f_{\rm G}$ die 3dB–Grenzfrequenz angibt:
$$f_{\rm G} = \frac{R}{2 \pi \cdot L}
+
:$$f_{\rm G} = \frac{R}{2 \pi \cdot L}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
 
Durch Hintereinanderschalten $n$ gleich aufgebauter Vierpole $H_1(f)$ kommt man zu der Übertragungsfunktion
 
Durch Hintereinanderschalten $n$ gleich aufgebauter Vierpole $H_1(f)$ kommt man zu der Übertragungsfunktion
$$H_n(f) = \left [H_1(f)\right ]^n =\frac{\left [{\rm j}\cdot f/f_{\rm G}\right ]^n}{\left [1+{\rm j}\cdot f/f_{\rm G}\right ]^n}
+
:$$H_n(f) = \big [H_1(f)\big ]^n =\frac{\big [{\rm j}\cdot f/f_{\rm G}\big ]^n}{\big [1+{\rm j}\cdot f/f_{\rm G}\big ]^n}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Line 19: Line 19:
  
 
In dieser Aufgabe wird ein solcher Vierpol im Hinblick auf seine Kausalitätseigenschaften betrachtet. Bei einem jeden kausalen System erfüllen der Real– und der Imaginärteil der Spektralfunktion $H(f)$ die [[Lineare_zeitinvariante_Systeme/Folgerungen_aus_dem_Zuordnungssatz#Hilbert.E2.80.93Transformation|Hilbert–Transformation]], was durch das folgende Kurzzeichen ausgedrückt wird:
 
In dieser Aufgabe wird ein solcher Vierpol im Hinblick auf seine Kausalitätseigenschaften betrachtet. Bei einem jeden kausalen System erfüllen der Real– und der Imaginärteil der Spektralfunktion $H(f)$ die [[Lineare_zeitinvariante_Systeme/Folgerungen_aus_dem_Zuordnungssatz#Hilbert.E2.80.93Transformation|Hilbert–Transformation]], was durch das folgende Kurzzeichen ausgedrückt wird:
$${\rm Im} \left\{ H(f) \right \}  \quad
+
:$${\rm Im} \left\{ H(f) \right \}  \quad
 
\bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad
 
\bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad
 
{\rm Re} \left\{ H(f) \right \}\hspace{0.05cm}.$$
 
{\rm Re} \left\{ H(f) \right \}\hspace{0.05cm}.$$
  
 
Da die Hilbert–Transformation nicht nur für Übertragungsfunktionen, sondern auch für Zeitsignale wichtige Aussagen liefert, wird die Korrespondenz häufig durch die allgemeine Variable $x$ ausgedrückt, die je nach Anwendungsfall als normierte Frequenz oder als normierte Zeit zu interpretieren ist.
 
Da die Hilbert–Transformation nicht nur für Übertragungsfunktionen, sondern auch für Zeitsignale wichtige Aussagen liefert, wird die Korrespondenz häufig durch die allgemeine Variable $x$ ausgedrückt, die je nach Anwendungsfall als normierte Frequenz oder als normierte Zeit zu interpretieren ist.
 +
 +
 +
 +
  
 
''Hinweise:''  
 
''Hinweise:''  
Line 35: Line 39:
 
<quiz display=simple>
 
<quiz display=simple>
 
{Wie kann $H_1(f)$ charakterisiert werden?
 
{Wie kann $H_1(f)$ charakterisiert werden?
|type="[]"}
+
|type="()"}
 
- $H_1(f)$ beschreibt einen Tiefpass.
 
- $H_1(f)$ beschreibt einen Tiefpass.
 
+ $H_1(f)$ beschreibt einen Hochpass.
 
+ $H_1(f)$ beschreibt einen Hochpass.
Line 41: Line 45:
  
 
{Beschreibt $H_1(f)$ ein kausales Netzwerk?
 
{Beschreibt $H_1(f)$ ein kausales Netzwerk?
|type="[]"}
+
|type="()"}
 
+ Ja.
 
+ Ja.
 
- Nein.
 
- Nein.
  
  
{Berechnen Sie die Übertragungsfunktion $H_2(f)$. Welcher komplexe Wert ergibt sich für $f = f_{\rm G})$?
+
{Berechnen Sie die Übertragungsfunktion $H_2(f)$. Welcher komplexe Wert ergibt sich für $f = f_{\rm G}$?
 
|type="{}"}
 
|type="{}"}
${\rm Re}{H_2(f = f_{\rm G})} \ =$  { 0. }
+
${\rm Re}{H_2(f = f_{\rm G})} \ = \ $  { 0. }
${\rm Im}{H_2(f = f_{\rm G})} \ =$ { 0.5 3% }
+
${\rm Im}{H_2(f = f_{\rm G})} \ = \ $ { 0.5 3% }
  
  
{Welche der nachfolgenden Aussagen treffen zu?
+
{Welche der folgenden Aussagen treffen zu?
 
|type="[]"}
 
|type="[]"}
 
+ $H_2(f)$ beschreibt ein kausales System.
 
+ $H_2(f)$ beschreibt ein kausales System.

Revision as of 18:01, 14 March 2018

Zwei Vierpolschaltungen

Die Grafik zeigt oben den Vierpol mit der Übertragungsfunktion

$$H_1(f) = \frac{{\rm j}\cdot f/f_{\rm G}}{1+{\rm j}\cdot f/f_{\rm G}} \hspace{0.05cm},$$

wobei $f_{\rm G}$ die 3dB–Grenzfrequenz angibt:

$$f_{\rm G} = \frac{R}{2 \pi \cdot L} \hspace{0.05cm}.$$

Durch Hintereinanderschalten $n$ gleich aufgebauter Vierpole $H_1(f)$ kommt man zu der Übertragungsfunktion

$$H_n(f) = \big [H_1(f)\big ]^n =\frac{\big [{\rm j}\cdot f/f_{\rm G}\big ]^n}{\big [1+{\rm j}\cdot f/f_{\rm G}\big ]^n} \hspace{0.05cm}.$$

Vorausgesetzt ist hierbei eine geeignete Widerstandsentkopplung, die aber zur Lösung dieser Aufgabe nicht von Bedeutung ist. Die untere Grafik zeigt zum Beispiel die Realisierung der Übertragungsfunktion $H_2(f)$.

In dieser Aufgabe wird ein solcher Vierpol im Hinblick auf seine Kausalitätseigenschaften betrachtet. Bei einem jeden kausalen System erfüllen der Real– und der Imaginärteil der Spektralfunktion $H(f)$ die Hilbert–Transformation, was durch das folgende Kurzzeichen ausgedrückt wird:

$${\rm Im} \left\{ H(f) \right \} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad {\rm Re} \left\{ H(f) \right \}\hspace{0.05cm}.$$

Da die Hilbert–Transformation nicht nur für Übertragungsfunktionen, sondern auch für Zeitsignale wichtige Aussagen liefert, wird die Korrespondenz häufig durch die allgemeine Variable $x$ ausgedrückt, die je nach Anwendungsfall als normierte Frequenz oder als normierte Zeit zu interpretieren ist.



Hinweise:


Fragebogen

1

Wie kann $H_1(f)$ charakterisiert werden?

$H_1(f)$ beschreibt einen Tiefpass.
$H_1(f)$ beschreibt einen Hochpass.

2

Beschreibt $H_1(f)$ ein kausales Netzwerk?

Ja.
Nein.

3

Berechnen Sie die Übertragungsfunktion $H_2(f)$. Welcher komplexe Wert ergibt sich für $f = f_{\rm G}$?

${\rm Re}{H_2(f = f_{\rm G})} \ = \ $

${\rm Im}{H_2(f = f_{\rm G})} \ = \ $

4

Welche der folgenden Aussagen treffen zu?

$H_2(f)$ beschreibt ein kausales System.
$(x^4 - x^2)/(x^4 +2 x^2 + 1)$ und $2x^3/(x^4 +2 x^2 + 1)$ sind ein Hilbert–Paar.
Für $n > 2$ ist die Kausalitätsbedingung nicht erfüllt.


Musterlösung

(1)  Mit der angegebenen Übertragungsfunktion kann man nach dem Spannungsteilerprinzip $$H_1(f = 0) = 0, \hspace{0.2cm}H_1(f \rightarrow \infty) = 1$$

berechnen   ⇒  Es handelt sich um einen Hochpass. Für sehr niedrige Frequenzen stellt die Induktivität $L$ einen Kurzschluss dar.


(2)  Jedes reale Netzwerk ist kausal. Die Impulsantwort $h(t)$ ist gleich dem Ausgangssignal $y(t)$, wenn zum Zeitpunkt $t= 0$ am Eingang ein extrem kurzfristiger Impuls – ein so genannter Diracimpuls – angelegt wird. Aus Kausalitätsgründen kann dann natürlich am Ausgang nicht schon für Zeiten $t< 0$ ein Signal auftreten: $$y(t) = h(t) = 0 \hspace{0.2cm}{\rm{f\ddot{u}r}} \hspace{0.2cm} t<0 \hspace{0.05cm}.$$

Formal lässt sich dies folgendermaßen zeigen: Die Hochpass–Übertragungsfunktion $H_1(f)$ kann wie folgt umgeformt werden: $$H_1(f) = \frac{{\rm j}\cdot f/f_{\rm G}}{1+{\rm j}\cdot f/f_{\rm G}} = 1- \frac{1}{1+{\rm j}\cdot f/f_{\rm G}} \hspace{0.05cm}.$$

Die zweite Übertragungsfunktion beschreibt die zu $H_1(f)$ äquivalente Tiefpassfunktion, die im Zeitbereich zur Exponentialfunktion führt. Die „1” wird zu einer Diracfunktion. Mit $T = 2\pi \cdot f_{\rm G}$ gilt somit für $t \ge 0$: $$h_1(t) = \delta(t) - {1}/{T} \cdot {\rm e}^{-t/T} \hspace{0.05cm}.$$

Für $t< 0$ gilt dagegen $h_1(t)= 0$, womit die Kausalität nachgewiesen wäre   ⇒   Antwort Ja.


(3)  Die Hintereinanderschaltung zweier Hochpässe führt zu folgender Übertragungsfunktion: $$\begin {align*}H_2(f) = \left [H_1(f)\right ]^2 & =\frac{\left [{\rm j}\cdot f/f_{\rm G}\right ]^2}{\left [1+{\rm j}\cdot f/f_{\rm G}\right ]^2} =\frac{\left [{\rm j}\cdot f/f_{\rm G}\right ]^2 \cdot \left [(1-{\rm j}\cdot f/f_{\rm G})\right ]^2} {\left [(1+{\rm j}\cdot f/f_{\rm G}) \cdot (1-{\rm j}\cdot f/f_{\rm G})\right ]^2}= \\ & = \frac{(f/f_{\rm G})^4 - (f/f_{\rm G})^2 +{\rm j}\cdot 2 \cdot (f/f_{\rm G})^3)} {\left [1+(f/f_{\rm G})^2 \right ]^2}\hspace{0.05cm}.\end {align*}$$

Mit $f = f_{\rm G}$ folgt daraus: $$H_2(f = f_{\rm G}) = \frac{1 - 1 +{\rm j}\cdot 2} {4}= {\rm j} /{2} \hspace{0.5cm}\Rightarrow \hspace{0.5cm}{\rm Re} \left\{ H_2(f = f_{\rm G}) \right \} = 0, \hspace{0.4cm} {\rm Im} \left\{ H_2(f = f_{\rm G}) \right \} \hspace{0.15cm}\underline{ = 0.5}\hspace{0.05cm}.$$


(4)  Richtig sind hier die beiden ersten Lösungsvorschläge:

  • Da für $t < 0$ die Impulsantwort $h_1(t) = 0$ ist, erfüllt auch die Faltungsoperation $h_2(t) = h_1(t) \star h_1(t)$ die Kausalitätsbedingung. Ebenso ergibt die $n$–fache Faltung eine kausale Impulsantwort:   $h_n(t) = 0 \hspace{0.2cm}{\rm{f\ddot{u}r}} \hspace{0.2cm} t<0 \hspace{0.05cm}.$
  • Bei kausaler Impulsantwort $h_2(t)$ hängen aber der Real– und der Imaginärteil der Spektralfunktion $H_2(f)$ über die Hilbert–Transformation zusammen. Mit der Abkürzung $x = f/f_{\rm G}$ < und dem Ergebnis der Teilaufgabe (3) gilt somit:
$$\frac{x^4- x^2}{x^4+2 x^2+1} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad \frac{2x^3}{x^4+2 x^2+1}\hspace{0.05cm}.$$