Difference between revisions of "Aufgaben:Exercise 3.1: Causality Considerations"

From LNTwww
Line 45: Line 45:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie kann &nbsp;$H_1(f)$&nbsp; charakterisiert werden?
+
{How can &nbsp;$H_1(f)$&nbsp; be characterized?
 
|type="()"}
 
|type="()"}
- $H_1(f)$&nbsp; beschreibt einen Tiefpass.
+
- $H_1(f)$&nbsp; describes a low-pass filter.
+ $H_1(f)$&nbsp; beschreibt einen Hochpass.
+
+ $H_1(f)$&nbsp; describes a high-pass filter.
  
  
{Beschreibt &nbsp;$H_1(f)$&nbsp; ein kausales Netzwerk?
+
{Does &nbsp;$H_1(f)$&nbsp; describe a causal network?
 
|type="()"}
 
|type="()"}
+ Ja.
+
+ Yes.
- Nein.
+
- No.
  
  
{Berechnen Sie die Übertragungsfunktion &nbsp;$H_2(f)$.&nbsp; Welcher komplexe Wert ergibt sich für &nbsp;$f = f_{\rm G}$?
+
{Compute the transfer function &nbsp;$H_2(f)$.&nbsp; What is the complex value for &nbsp;$f = f_{\rm G}$?
 
|type="{}"}
 
|type="{}"}
 
${\rm Re}\big[H_2(f = f_{\rm G})\big] \ = \ $  { 0. }
 
${\rm Re}\big[H_2(f = f_{\rm G})\big] \ = \ $  { 0. }
Line 63: Line 63:
  
  
{Welche der folgenden Aussagen treffen zu?
+
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
+ $H_2(f)$&nbsp; beschreibt ein kausales System.
+
+ $H_2(f)$&nbsp; describes a causal system.
+ Die Ausdrücke&nbsp; $(x^4 - x^2)/(x^4 +2 x^2 + 1)$&nbsp; und &nbsp;$2x^3/(x^4 +2 x^2 + 1)$&nbsp; sind ein Hilbert&ndash;Paar.
+
+ The expressions&nbsp; $(x^4 - x^2)/(x^4 +2 x^2 + 1)$&nbsp; and &nbsp;$2x^3/(x^4 +2 x^2 + 1)$&nbsp; are a Hilbert pair.
- Für &nbsp;$n > 2$&nbsp; ist die Kausalitätsbedingung nicht erfüllt.
+
- The causality condition is not satisfied for &nbsp;$n > 2$&nbsp;.
  
  

Revision as of 02:46, 24 September 2021

Two two-port networks

The graph shows above the two-port network with the transfer function

$$H_1(f) = \frac{{\rm j}\cdot f/f_{\rm G}}{1+{\rm j}\cdot f/f_{\rm G}} \hspace{0.05cm},$$

where  $f_{\rm G}$  represents the 3dB cut-off frequency:

$$f_{\rm G} = \frac{R}{2 \pi \cdot L} \hspace{0.05cm}.$$

By cascading  $n$  two-port networks  $H_1(f)$  built the same way, the transfer function

$$H_n(f) = \big [H_1(f)\big ]^n =\frac{\big [{\rm j}\cdot f/f_{\rm G}\big ]^n}{\big [1+{\rm j}\cdot f/f_{\rm G}\big ]^n} \hspace{0.05cm}$$ is obtained.
  • Here, a suitable resistor decoupling is presumed, but this is not important for solving this exercise.
  • The lower graph shows for example the realization of the transfer function  $H_2(f)$.


In this exercise, such a two-port network is considered with respect to its causality properties.

For any causal system, the real and imaginary parts of the spectral function  $H(f)$  satisfy the  Hilbert transformation, which is expressed by the following abbreviation:

$${\rm Im} \left\{ H(f) \right \} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad {\rm Re} \left\{ H(f) \right \}\hspace{0.05cm}.$$

Since the Hilbert transformation provides important information not only for transfer functions but also for time signals, the correspondence is often expressed by the general variable  $x$ , which is to be interpreted - depending on the application - as normalized frequency or normalized time.





Please note:


Questions

1

How can  $H_1(f)$  be characterized?

$H_1(f)$  describes a low-pass filter.
$H_1(f)$  describes a high-pass filter.

2

Does  $H_1(f)$  describe a causal network?

Yes.
No.

3

Compute the transfer function  $H_2(f)$.  What is the complex value for  $f = f_{\rm G}$?

${\rm Re}\big[H_2(f = f_{\rm G})\big] \ = \ $

${\rm Im}\big[H_2(f = f_{\rm G})\big] \ = \ $

4

Which of the following statements are true?

$H_2(f)$  describes a causal system.
The expressions  $(x^4 - x^2)/(x^4 +2 x^2 + 1)$  and  $2x^3/(x^4 +2 x^2 + 1)$  are a Hilbert pair.
The causality condition is not satisfied for  $n > 2$ .


Solution

(1)  Richtig ist der Lösungsvorschlag 2:

  • Die angegebene Übertragungsfunktion kann man nach dem Spannungsteilerprinzip berechnen.   Es gilt:
$$H_1(f = 0) = 0, \hspace{0.2cm}H_1(f \rightarrow \infty) = 1$$
  • Es handelt sich um einen Hochpass.
  • Für sehr niedrige Frequenzen stellt die Induktivität  $L$  einen Kurzschluss dar.


(2)  Richtig ist Ja:

  • Jedes reale Netzwerk ist kausal.  Die Impulsantwort  $h(t)$  ist gleich dem Ausgangssignal  $y(t)$, wenn zum Zeitpunkt  $t= 0$  am Eingang ein extrem kurzfristiger Impuls – ein so genannter Diracimpuls – angelegt wird.
  • Aus Kausalitätsgründen kann dann natürlich am Ausgang nicht schon für Zeiten  $t< 0$  ein Signal auftreten:
$$y(t) = h(t) = 0 \hspace{0.2cm}{\rm{f\ddot{u}r}} \hspace{0.2cm} t<0 \hspace{0.05cm}.$$
  • Formal lässt sich dies folgendermaßen zeigen:   Die Hochpass–Übertragungsfunktion  $H_1(f)$  kann wie folgt umgeformt werden:
$$H_1(f) = \frac{{\rm j}\cdot f/f_{\rm G}}{1+{\rm j}\cdot f/f_{\rm G}} = 1- \frac{1}{1+{\rm j}\cdot f/f_{\rm G}} \hspace{0.05cm}.$$
  • Die zweite Übertragungsfunktion beschreibt die zu  $H_1(f)$  äquivalente Tiefpassfunktion, die im Zeitbereich zur Exponentialfunktion führt.
  • Die "$1$" wird zu einer Diracfunktion.  Mit  $T = 2\pi \cdot f_{\rm G}$  gilt somit für  $t \ge 0$:
$$h_1(t) = \delta(t) - {1}/{T} \cdot {\rm e}^{-t/T} \hspace{0.05cm}.$$
  • Für  $t< 0$  gilt dagegen  $h_1(t)= 0$, womit die Kausalität nachgewiesen wäre.


(3)  Die Hintereinanderschaltung zweier Hochpässe führt zu folgender Übertragungsfunktion:

$$H_2(f) = \big [H_1(f)\big ]^2 =\frac{\big [{\rm j}\cdot f/f_{\rm G}\big ]^2}{\big [1+{\rm j}\cdot f/f_{\rm G}\big ]^2} =\frac{\big [{\rm j}\cdot f/f_{\rm G}\big ]^2 \cdot \big [(1-{\rm j}\cdot f/f_{\rm G})\big ]^2} {\big [(1+{\rm j}\cdot f/f_{\rm G}) \cdot (1-{\rm j}\cdot f/f_{\rm G})\big ]^2}= \frac{(f/f_{\rm G})^4 - (f/f_{\rm G})^2 +{\rm j}\cdot 2 \cdot (f/f_{\rm G})^3)} {\big [1+(f/f_{\rm G})^2 \big ]^2}\hspace{0.05cm}.$$
  • Mit  $f = f_{\rm G}$  folgt daraus:
$$H_2(f = f_{\rm G}) = \frac{1 - 1 +{\rm j}\cdot 2} {4}= {\rm j} /{2} \hspace{0.5cm}\Rightarrow \hspace{0.5cm}{\rm Re} \left\{ H_2(f = f_{\rm G}) \right \} \hspace{0.15cm}\underline{ = 0}, \hspace{0.4cm} {\rm Im} \left\{ H_2(f = f_{\rm G}) \right \} \hspace{0.15cm}\underline{ = 0.5}\hspace{0.05cm}.$$


(4)  Richtig sind die beiden ersten Lösungsvorschläge:

  • Da für  $t < 0$  die Impulsantwort  $h_1(t) = 0$  ist, erfüllt auch die Faltungsoperation  $h_2(t) = h_1(t) \star h_1(t)$  die Kausalitätsbedingung.  Ebenso ergibt die  $n$–fache Faltung eine kausale Impulsantwort:   $h_n(t) = 0 \hspace{0.2cm}{\rm{f\ddot{u}r}} \hspace{0.2cm} t<0 \hspace{0.05cm}.$
  • Bei kausaler Impulsantwort  $h_2(t)$  hängen aber der Real– und der Imaginärteil der Spektralfunktion  $H_2(f)$  über die Hilbert–Transformation zusammen.  Mit der Abkürzung  $x = f/f_{\rm G}$  und dem Ergebnis der Teilaufgabe  (3)  gilt somit:
$$\frac{x^4- x^2}{x^4+2 x^2+1} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad \frac{2x^3}{x^4+2 x^2+1}\hspace{0.05cm}.$$