Difference between revisions of "Aufgaben:Exercise 3.2Z: Laplace and Fourier"

From LNTwww
Line 29: Line 29:
  
  
The  [[Signal_Representation/Fourier_Transform_Theorems|Fourier transform theorems]]  gelten meist (allerdings nicht immer) auch für die Laplace–Transformation, wobei  $p ={\rm j} \cdot 2 \pi f$  zu setzen ist:
+
The  [[Signal_Representation/Fourier_Transform_Theorems|Fourier transform theorems]]  usually (though not always) also apply to the Laplace transformation where  $p ={\rm j} \cdot 2 \pi f$  is to be set:
  
* Zum Beispiel lautet der  [[Signal_Representation/Fourier_Transform_Theorems#Shifting_Theorem|shifting theorem]]  in Laplace– bzw. Fourier–Darstellung:
+
* For example, the  [[Signal_Representation/Fourier_Transform_Theorems#Shifting_Theorem|shifting theorem]]  in Laplace or Fourier representation is:
 
:$$x(t- \tau) \quad
 
:$$x(t- \tau) \quad
 
\circ\!\!-\!\!\!-^{\hspace{-0.25cm}\rm
 
\circ\!\!-\!\!\!-^{\hspace{-0.25cm}\rm
Line 40: Line 40:
 
X(f)\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2\pi f \hspace{0.05cm} \cdot \hspace{0.05cm}\tau}\hspace{0.05cm} .$$
 
X(f)\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2\pi f \hspace{0.05cm} \cdot \hspace{0.05cm}\tau}\hspace{0.05cm} .$$
  
* Dagegen ergeben sich beim  [[Signal_Representation/Fourier_Transform_Theorems#Integration_Theorem|integration theorem]]  Unterschiede:
+
* In contrast, there are differences in the  [[Signal_Representation/Fourier_Transform_Theorems#Integration_Theorem|integration theorem]] :
 
:$$\int {x(\tau)} \hspace{0.1cm}{\rm
 
:$$\int {x(\tau)} \hspace{0.1cm}{\rm
 
  d}\tau \quad
 
  d}\tau \quad
Line 62: Line 62:
 
''Please note:''  
 
''Please note:''  
 
*The exercise belongs to the chapter  [[Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function|Laplace Transform and p-Transfer Function]].
 
*The exercise belongs to the chapter  [[Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function|Laplace Transform and p-Transfer Function]].
*Das Lernvideo   [[Gesetzmäßigkeiten_der_Fouriertransformation_(Lernvideo)|Fourier transform theorems]]  könnte hilfreich sein .
+
*The educational video   [[Gesetzmäßigkeiten_der_Fouriertransformation_(Lernvideo)|Fourier transform theorems]]  might be helpful.
  
  
Line 69: Line 69:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lauten die Spektraltransformationen des Signals&nbsp; $a(t) = \delta(t)$?
+
{What are the spectral transformations of the signal&nbsp; $a(t) = \delta(t)$?
 
|type="[]"}
 
|type="[]"}
 
+ $A_{\rm L}(p) = 1$.
 
+ $A_{\rm L}(p) = 1$.
Line 76: Line 76:
  
  
{Wie lauten die Spektraltransformationen der Sprungfunktion&nbsp; $b(t) = \gamma(t)$?
+
{What are the spectral transformations of the step function&nbsp; $b(t) = \gamma(t)$?
 
|type="[]"}
 
|type="[]"}
 
+ $B_{\rm L}(p) = 1/p$.
 
+ $B_{\rm L}(p) = 1/p$.
Line 83: Line 83:
  
  
{Wie lauten die Spektraltransformationen der Rechteckfunktion&nbsp; $c(t)$?
+
{What are the spectral transformations of the rectangular function&nbsp; $c(t)$?
 
|type="[]"}
 
|type="[]"}
 
- $C_{\rm L}(p) = {\rm si}(pT)$.  
 
- $C_{\rm L}(p) = {\rm si}(pT)$.  
Line 90: Line 90:
  
  
{Wie lauten die Spektraltransformationen der Rampenfunktion&nbsp; $d(t)$?
+
{What are the spectral transformations of the ramp function&nbsp; $d(t)$?
 
|type="[]"}
 
|type="[]"}
 
+ $D_{\rm L}(p) =  \big[1-{\rm e}^{-p\hspace{0.05cm} \cdot \hspace{0.05cm}T}\big]/(p^2T)$.   
 
+ $D_{\rm L}(p) =  \big[1-{\rm e}^{-p\hspace{0.05cm} \cdot \hspace{0.05cm}T}\big]/(p^2T)$.   
Line 102: Line 102:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 3</u>:
+
'''(1)'''&nbsp; <u>Suggested solutions 1 and 3</u> are correct:
*Berücksichtigt man, dass die Diracfunktion nur bei&nbsp; $t= 0$&nbsp; ungleich Null ist und das Integral über den Dirac den Wert&nbsp; $1$&nbsp; liefert, solange das Integrationsintervall den Zeitpunkt&nbsp; $t= 0$&nbsp; einschließt, so erhält man:
+
*Considering that the Dirac function is non-zero only at&nbsp; $t= 0$&nbsp; and that the integral over the Dirac yields the value&nbsp; $1$&nbsp; as long as the integration interval includes the time&nbsp; $t= 0$,&nbsp; the following is obtained:
 
:$$A(f) = 1, \hspace{0.2cm}A_{\rm
 
:$$A(f) = 1, \hspace{0.2cm}A_{\rm
 
  L}(p) = 1  \hspace{0.05cm} .$$
 
  L}(p) = 1  \hspace{0.05cm} .$$
Line 109: Line 109:
  
  
'''(2)'''&nbsp; Richtig sind wieder die <u>Lösungsvorschläge 1 und 3</u>:  
+
'''(2)'''&nbsp; <u>Suggested solutions 1 and 3</u> are correct again:  
*Die Sprungfunktion&nbsp; $b(t) = \gamma(t)$&nbsp; ist das Integral über die Diracfunktion&nbsp; $a(t) = \delta(t)$ &nbsp; &rArr; &nbsp; man kann den&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Integration_Theorem|integration theorem]]&nbsp; anwenden:
+
*The step function&nbsp; $b(t) = \gamma(t)$&nbsp; is the integral over the Dirac function&nbsp; $a(t) = \delta(t)$ &nbsp; &rArr; &nbsp; the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Integration_Theorem|integration theorem]]&nbsp; can be applied:
 
:$$b(t) = \int_{-\infty}^t {a(\tau)} \hspace{0.1cm}{\rm
 
:$$b(t) = \int_{-\infty}^t {a(\tau)} \hspace{0.1cm}{\rm
 
  d}\tau  \hspace{0.3cm}\Rightarrow \hspace{0.3cm} B_{\rm L}(p) =A_{\rm L}(p)\cdot
 
  d}\tau  \hspace{0.3cm}\Rightarrow \hspace{0.3cm} B_{\rm L}(p) =A_{\rm L}(p)\cdot
Line 120: Line 120:
  
  
'''(3)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2 und 3</u>:  
+
'''(3)'''&nbsp; <u>Suggested solutions 2 and 3</u> are correct:  
*Nachdem die (kausale) Rechteckfunktion als Differenz zweier Sprungfunktionen dargestellt werden kann, erhält man mit dem&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Shifting_Theorem|shifting theorem]]:
+
*Since the (causal) rectangular function can be represented as the difference of two step functions, the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Shifting_Theorem|shifting theorem]] yields:
 
:$$c(t)= b(t) - b(t-T)  \hspace{0.3cm}
 
:$$c(t)= b(t) - b(t-T)  \hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm} C_{\rm L}(p) =B_{\rm L}(p)- B_{\rm L}(p)
 
\Rightarrow \hspace{0.3cm} C_{\rm L}(p) =B_{\rm L}(p)- B_{\rm L}(p)
Line 127: Line 127:
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
  
*Da die Rechteckfunktion eine endliche Energie besitzt, gilt für das&nbsp; [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_first_Fourier_integral|Fourier spectrum]]:
+
*The following holds for the&nbsp; [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_first_Fourier_integral|Fourier spectrum]] since the rectangular function has finite energy:
 
:$$C(f) =  C_{\rm L}(p)\Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{\rm j \hspace{0.05cm}2\pi \it
 
:$$C(f) =  C_{\rm L}(p)\Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{\rm j \hspace{0.05cm}2\pi \it
 
  f}} =  \frac{1}{{\rm j} \cdot 2\pi f} \cdot \big [ 1- {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi f T} \big ]
 
  f}} =  \frac{1}{{\rm j} \cdot 2\pi f} \cdot \big [ 1- {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi f T} \big ]
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
*Nach einigen trigonometrischen Umformungen kann hierfür auch geschrieben werden:
+
*The following can also be written for this using some trigonometric transformations:
 
:$$C(f) =  T \cdot {\rm si} (2 \pi  f{T})+ {\rm j} \cdot \frac{{\rm cos} (2 \pi  f{T})-1}{2\pi f}
 
:$$C(f) =  T \cdot {\rm si} (2 \pi  f{T})+ {\rm j} \cdot \frac{{\rm cos} (2 \pi  f{T})-1}{2\pi f}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Line 137: Line 137:
  
  
'''(4)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 1</u>, da gilt:
+
'''(4)'''&nbsp; <u>Suggested solution 1</u> is correct because the following holds:
 
:$$d(t) = \frac{1}{T} \cdot \int\limits_{-\infty}^t {c(\tau)} \hspace{0.1cm}{\rm
 
:$$d(t) = \frac{1}{T} \cdot \int\limits_{-\infty}^t {c(\tau)} \hspace{0.1cm}{\rm
 
  d}\tau  \hspace{0.3cm}\Rightarrow \hspace{0.3cm} D_{\rm L}(p) =C_{\rm L}(p)\cdot
 
  d}\tau  \hspace{0.3cm}\Rightarrow \hspace{0.3cm} D_{\rm L}(p) =C_{\rm L}(p)\cdot
 
\frac{1}{p \cdot  T} = \frac{1- {\rm e}^{-p \hspace{0.05cm}\cdot \hspace{0.05cm}T}}{p^2 \cdot
 
\frac{1}{p \cdot  T} = \frac{1- {\rm e}^{-p \hspace{0.05cm}\cdot \hspace{0.05cm}T}}{p^2 \cdot
 
T}\hspace{0.05cm} .$$
 
T}\hspace{0.05cm} .$$
*Da sich&nbsp; $d(t)$&nbsp; bis ins Unendliche erstreckt, ist der einfache Zusammenhang zwischen&nbsp; $D_{\rm L}(p)$&nbsp; und&nbsp; $D(f)$&nbsp; gemäß Lösungsvorschlag 3 nicht gegeben.  
+
*Since&nbsp; $d(t)$&nbsp; extends to infinity, the simple relation between&nbsp; $D_{\rm L}(p)$&nbsp; and&nbsp; $D(f)$&nbsp; according to proposed solution 3 is not valid.  
*$D(f)$&nbsp; beinhaltet vielmehr auch eine Diracfunktion bei der Frequenz&nbsp; $f = 0$.
+
*$D(f)$&nbsp; rather also includes a Dirac function at frequency&nbsp; $f = 0$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 11:31, 11 October 2021

Four causal time signals

The Fourier transformation can be applied to any deterministic signal  $x(t)$ . Then, the following holds for the spectral function:

$$X(f) = \int_{-\infty}^{ +\infty} { x(t) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi f t}}\hspace{0.1cm}{\rm d}t\hspace{0.05cm}\hspace{0.05cm} .$$

For power-limited signals – characteristics:   infinite energy – $X(f)$  also includes distributions (Dirac functions).

For all causal signals (and only for these), the Laplace transformation is also applicable beside the Fourier transformation:

$$X_{\rm L}(p) = \int_{0}^{ \infty} { x(t) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-p t}}\hspace{0.1cm}{\rm d}t\hspace{0.05cm}\hspace{0.05cm} .$$

In the diagram you can see several causal time functions that will be covered in this exercise:

  • the Dirac function  $a(t)$,
  • the step function  $b(t)$,
  • the rectangular function  $c(t)$,
  • the ramp function  $d(t)$.


The  Fourier transform theorems  usually (though not always) also apply to the Laplace transformation where  $p ={\rm j} \cdot 2 \pi f$  is to be set:

$$x(t- \tau) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}\rm L}\!\!\!-\!\!\hspace{-0.05cm}\bullet\quad X_{\rm L}(p)\cdot {\rm e}^{-p \hspace{0.05cm} \cdot \hspace{0.05cm}\tau}\hspace{0.05cm} ,$$
$$x(t- \tau) \quad \circ\!\!-\!\!\!-^{\hspace{-0.05cm}}\!\!\!-\!\!\hspace{-0.05cm}\bullet\quad X(f)\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2\pi f \hspace{0.05cm} \cdot \hspace{0.05cm}\tau}\hspace{0.05cm} .$$
$$\int {x(\tau)} \hspace{0.1cm}{\rm d}\tau \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}\rm L}\!\!\!-\!\!\hspace{-0.05cm}\bullet\quad X_{\rm L}(p)\cdot \frac{1}{p}\hspace{0.05cm} ,$$
$$\int {x(\tau)} \hspace{0.1cm}{\rm d}\tau \quad \circ\!\!-\!\!\!-^{\hspace{-0.05cm}}\!\!\!-\!\!\hspace{-0.05cm}\bullet\quad X(f)\cdot \left [ {1}/{2} \cdot{\rm \delta } (f) + \frac{1}{{\rm j} \cdot 2\pi f} \right ] \hspace{0.05cm} .$$





Please note:


Questions

1

What are the spectral transformations of the signal  $a(t) = \delta(t)$?

$A_{\rm L}(p) = 1$.
$A(f) = \delta(f)$.
$A(f) = 1$.

2

What are the spectral transformations of the step function  $b(t) = \gamma(t)$?

$B_{\rm L}(p) = 1/p$.
$B(f) = 1/({\rm j} \cdot 2 \pi f)$
$B(f) = 1/2 \cdot \delta(f) - {\rm j}/(2 \pi f)$.

3

What are the spectral transformations of the rectangular function  $c(t)$?

$C_{\rm L}(p) = {\rm si}(pT)$.
$C_{\rm L}(p) = \big [1-{\rm e}^{-p\hspace{0.05cm} \cdot \hspace{0.05cm}T} \big ]/p$.
$C(f) = C_{\rm L}(p)$  mit  $p = 2 \pi f$.

4

What are the spectral transformations of the ramp function  $d(t)$?

$D_{\rm L}(p) = \big[1-{\rm e}^{-p\hspace{0.05cm} \cdot \hspace{0.05cm}T}\big]/(p^2T)$.
$D_{\rm L}(p) = 1-{\rm e}^{-p\hspace{0.05cm} \cdot \hspace{0.05cm}T}$.
$D(f) = D_{\rm L}(p)$  mit  $p = 2 \pi f$.


Solution

(1)  Suggested solutions 1 and 3 are correct:

  • Considering that the Dirac function is non-zero only at  $t= 0$  and that the integral over the Dirac yields the value  $1$  as long as the integration interval includes the time  $t= 0$,  the following is obtained:
$$A(f) = 1, \hspace{0.2cm}A_{\rm L}(p) = 1 \hspace{0.05cm} .$$


(2)  Suggested solutions 1 and 3 are correct again:

  • The step function  $b(t) = \gamma(t)$  is the integral over the Dirac function  $a(t) = \delta(t)$   ⇒   the  integration theorem  can be applied:
$$b(t) = \int_{-\infty}^t {a(\tau)} \hspace{0.1cm}{\rm d}\tau \hspace{0.3cm}\Rightarrow \hspace{0.3cm} B_{\rm L}(p) =A_{\rm L}(p)\cdot {1}/{p} = {1}/{p}\hspace{0.05cm} ,$$
$$B(f) = A(f)\cdot \left [ {1}/{2} \cdot{\rm \delta } (f) + \frac{1}{{\rm j} \cdot 2\pi f} \right ] = {1}/{2} \cdot{\rm \delta } (f) + \frac{1}{{\rm j} \cdot 2\pi f}\hspace{0.05cm} .$$


(3)  Suggested solutions 2 and 3 are correct:

  • Since the (causal) rectangular function can be represented as the difference of two step functions, the  shifting theorem yields:
$$c(t)= b(t) - b(t-T) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} C_{\rm L}(p) =B_{\rm L}(p)- B_{\rm L}(p) \cdot {\rm e}^{-p \hspace{0.05cm} \cdot \hspace{0.05cm}T} = {1}/{p} \cdot \big [ 1- {\rm e}^{-p \hspace{0.05cm} \cdot \hspace{0.05cm}T} \big ] \hspace{0.05cm} .$$
  • The following holds for the  Fourier spectrum since the rectangular function has finite energy:
$$C(f) = C_{\rm L}(p)\Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{\rm j \hspace{0.05cm}2\pi \it f}} = \frac{1}{{\rm j} \cdot 2\pi f} \cdot \big [ 1- {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi f T} \big ] \hspace{0.05cm}.$$
  • The following can also be written for this using some trigonometric transformations:
$$C(f) = T \cdot {\rm si} (2 \pi f{T})+ {\rm j} \cdot \frac{{\rm cos} (2 \pi f{T})-1}{2\pi f} \hspace{0.05cm}.$$


(4)  Suggested solution 1 is correct because the following holds:

$$d(t) = \frac{1}{T} \cdot \int\limits_{-\infty}^t {c(\tau)} \hspace{0.1cm}{\rm d}\tau \hspace{0.3cm}\Rightarrow \hspace{0.3cm} D_{\rm L}(p) =C_{\rm L}(p)\cdot \frac{1}{p \cdot T} = \frac{1- {\rm e}^{-p \hspace{0.05cm}\cdot \hspace{0.05cm}T}}{p^2 \cdot T}\hspace{0.05cm} .$$
  • Since  $d(t)$  extends to infinity, the simple relation between  $D_{\rm L}(p)$  and  $D(f)$  according to proposed solution 3 is not valid.
  • $D(f)$  rather also includes a Dirac function at frequency  $f = 0$.