Difference between revisions of "Aufgaben:Exercise 3.4: GMSK Modulation"

From LNTwww
m (Text replacement - "Category:Aufgaben zu Beispiele von Nachrichtensystemen" to "Category:Examples of Communication Systems: Exercises")
 
(15 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/Funkschnittstelle
+
{{quiz-Header|Buchseite=Examples_of_Communication_Systems/Radio_Interface
 
}}  
 
}}  
  
[[File:P_ID1229__Bei_A_3_4.png|right|frame|Verschiedene Signale der GMSK-Modulation]]
+
[[File:EN_Bei_A_3_4.png|right|frame|Various signals of the GMSK modulation]]
Das bei GSM eingesetzte Modulationsverfahren ist bekanntlich  ''Gaussian Minimum Shift Keying'', abgekürtzt  $\rm GMSK$. Dabei handelt es sich um eine Art von  '' Frequency Shift Keying''  (FSK) mit kontinuierlicher Phasenanpassung  $(\rm CP–FSK)$, bei der
+
The modulation method used for GSM is known as  "Gaussian Minimum Shift Keying"  $\rm (GMSK)$.  This is a type of  "Frequency Shift Keying"  $\rm (FSK)$  with continuous phase adjustment  $(\text{CP-FSK)}$,  in which
*der Modulationsindex kleinstmöglich ist, um die Orthogonalitätsbedingung noch zu erfüllen&nbsp; <br> &nbsp; &nbsp; $h = 0.5$ &nbsp; &rArr; &nbsp;  ''Minimum Shift Keying'',
+
*the modulation index is smallest possible to still satisfy the orthogonality condition&nbsp; <br> &nbsp; &nbsp; $h = 0.5$ &nbsp; &rArr; &nbsp;  "Minimum Shift Keying",
*ein Gaußtiefpass mit Impulsantwort&nbsp; $h_{\rm G}(t)$&nbsp; vor dem FSK–Modulator eingebracht ist, <br>um noch weiter Bandbreite einzusparen.
 
  
 +
*a Gaussian low-pass filter with impulse response&nbsp; $h_{\rm G}(t)$&nbsp; is introduced before the FSK modulator, <br>to further save bandwidth.
  
Die Grafik verdeutlicht den Sachverhalt:
 
  
*Die digitale Nachricht wird durch die Amplitudenkoeffizienten&nbsp; $a_{\nu} ∈ ±1$&nbsp; repräsentiert, die einem Diracpuls beaufschlagt sind. Anzumerken ist, dass die eingezeichnete (rote) Folge für die Teilaufgabe '''(3)''' vorausgesetzt wird.
+
The graph illustrates the facts:
  
*Der Rechteckimpuls sei dimensionslos, symmetrisch und besitze die GSM–Bitdauer&nbsp; $T_{\rm B} = T$:
+
*The digital message is represented by the amplitude coefficients&nbsp; $a_{\nu} ∈ ±1$&nbsp; to which a Dirac delta comb is applied.&nbsp; Note that the plotted&nbsp; (red)&nbsp; sequence is assumed for subtask&nbsp; '''(3)'''.
:$$g_{\rm R}(t) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c} {\rm{{\rm{f\ddot{u}r}}}} \\ {\rm{{\rm{f\ddot{u}r}}}} \\ \end{array}\begin{array}{*{5}c} |\hspace{0.05cm} t \hspace{0.05cm}| < T/2 \hspace{0.05cm}, \\ |\hspace{0.05cm} t \hspace{0.05cm}| > T/2 \hspace{0.05cm}. \\ \end{array}$$
 
  
:Damit ergibt sich für das Rechtecksignal:
+
*Let the rectangular pulse be dimensionless,&nbsp; symmetric and have the GSM bit duration $T_{\rm B} = T$:
 +
:$$g_{\rm R}(t) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c} {\rm{{\rm{for}}}} \\ {\rm{{\rm{for}}}} \\ \end{array}\begin{array}{*{5}c} |\hspace{0.05cm} t \hspace{0.05cm}| < T/2 \hspace{0.05cm}, \\ |\hspace{0.05cm} t \hspace{0.05cm}| > T/2 \hspace{0.05cm}. \\ \end{array}$$
 +
 
 +
*This gives the following for the rectangular source signal:
 
:$$q_{\rm R} (t) = q_{\rm \delta} (t) \star g_{\rm R}(t) = \sum_{\nu} a_{\nu}\cdot g_{\rm R}(t - \nu \cdot T)\hspace{0.05cm}.$$
 
:$$q_{\rm R} (t) = q_{\rm \delta} (t) \star g_{\rm R}(t) = \sum_{\nu} a_{\nu}\cdot g_{\rm R}(t - \nu \cdot T)\hspace{0.05cm}.$$
  
*Der Gaußtiefpass ist durch seinen Frequenzgang bzw. seine Impulsantwort gegeben:
+
*The Gaussian low-pass is given by its frequency response and its impulse response:
 
:$$H_{\rm G}(f) = {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}[f/(2 f_{\rm G})]^2} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} h_{\rm G}(t) = 2 f_{\rm G} \cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}(2 f_{\rm G}\cdot t)^2}\hspace{0.05cm},$$
 
:$$H_{\rm G}(f) = {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}[f/(2 f_{\rm G})]^2} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} h_{\rm G}(t) = 2 f_{\rm G} \cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}(2 f_{\rm G}\cdot t)^2}\hspace{0.05cm},$$
  
:wobei die systemtheoretische Grenzfrequenz&nbsp; $f_{\rm G}$&nbsp; verwendet wird. In der GSM–Spezifikation wird aber die&nbsp; $3 \hspace{0.05cm}\rm dB$–Grenzfrequenz mit&nbsp; $f_{\rm 3\hspace{0.05cm} dB} = 0.3/T$&nbsp; angegeben. Daraus kann&nbsp; $f_{\rm G}$&nbsp; direkt berechnet werden.
+
:where the system theoretic cutoff frequency&nbsp; $f_{\rm G}$&nbsp; is used.  
  
*Das Signal nach dem Gaußtiefpass lautet somit:
+
*However,&nbsp; in the GSM specification,&nbsp; the&nbsp; $3 \hspace{0.05cm}\rm dB$&nbsp; cutoff frequency is given as&nbsp; $f_{\rm 3\hspace{0.05cm} dB} = 0.3/T$.&nbsp; From this&nbsp; $f_{\rm G}$&nbsp; can be calculated directly.
 +
 
 +
*The signal after the Gaussian low-pass is thus:
 
:$$q_{\rm G} (t) = q_{\rm R} (t) \star h_{\rm G}(t) = \sum_{\nu} a_{\nu}\cdot g(t - \nu \cdot T)\hspace{0.05cm}.$$
 
:$$q_{\rm G} (t) = q_{\rm R} (t) \star h_{\rm G}(t) = \sum_{\nu} a_{\nu}\cdot g(t - \nu \cdot T)\hspace{0.05cm}.$$
  
:Hierbei wird&nbsp; $g(t)$&nbsp; als Frequenzimpuls bezeichnet. Für diesen gilt:
+
*$g(t)$&nbsp; is called the&nbsp; "frequency pulse".&nbsp; For this holds:
 
:$$g(t) = q_{\rm R} (t) \star h_{\rm G}(t) \hspace{0.05cm}.$$
 
:$$g(t) = q_{\rm R} (t) \star h_{\rm G}(t) \hspace{0.05cm}.$$
  
*Mit dem tiefpassgefilterten Signal&nbsp; $q_{\rm G}(t)$, der Trägerfrequenz&nbsp; $f_{\rm T}$&nbsp; und dem Frequenzhub&nbsp; $\Delta f_{\rm A}$&nbsp; kann somit für die Augenblicksfrequenz am Ausgang des FSK–Modulators geschrieben werden:
+
*For the instantaneous frequency at the  FSK modulator output can thus be written
:$$f_{\rm A}(t) = f_{\rm T} + \Delta f_{\rm A} \cdot q_{\rm G} (t)\hspace{0.05cm}.$$
+
:$$f_{\rm A}(t) = f_{\rm T} + \Delta f_{\rm A} \cdot q_{\rm G} (t)\hspace{0.05cm},$$
 
+
:*with the low-pass filtered signal&nbsp; $q_{\rm G}(t)$,
:Verwenden Sie für Ihre Berechnungen die beispielhaften Werte&nbsp; $f_{\rm T} = 900 \ \rm MHz$&nbsp; und&nbsp; $\Delta f_{\rm A} = 68 \ \rm kHz$.
+
:*the carrier frequency&nbsp; $f_{\rm T}$,&nbsp; and
 
+
:*the frequency deviation&nbsp; $\Delta f_{\rm A}$.
 
+
[[File:P_ID1230__Bei_A_3_4b.png|right|frame|Table of the Gaussian error function]]
 +
 +
*For your calculations,&nbsp; use the example values&nbsp; $f_{\rm T} = 900 \ \rm MHz$&nbsp; and&nbsp; $\Delta f_{\rm A} = 68 \ \rm kHz$.
  
  
  
  
 +
<u>Hints:</u>
  
''Hinweise:''
+
*This exercise belongs to the chapter&nbsp; [[Examples_of_Communication_Systems/Radio_Interface|"Radio Interface"]].
  
[[File:P_ID1230__Bei_A_3_4b.png|right|frame|Tabelle der Gaußschen Fehlerfunktion]]
+
*Reference is made in particular to the section&nbsp; [[Examples_of_Communication_Systems/Radio_Interface#Gaussian_Minimum_Shift_Keying_.28GMSK.29|"Gaussian Minimum Shift Keying"]]
*Diese Aufgabe gehört zum Kapitel&nbsp;  [[Examples_of_Communication_Systems/Funkschnittstelle|Funkschnittstelle]].
 
*Bezug genommen wird insbesondere auf die Seite&nbsp; [[Examples_of_Communication_Systems/Funkschnittstelle#Gaussian_Minimum_Shift_Keying_.28GMSK.29|Gaussian Minimum Shift Keying]]
 
 
   
 
   
*Verwenden Sie zur Lösung dieser Aufgabe das Gaußintegral (siehe nebenstehende Tabelle):
+
*Use the Gaussian integral to solve this exercise&nbsp; $($see adjacent table$)$:
 
:$$\phi(x) =\frac {1}{\sqrt{2 \pi}} \cdot \int^{x} _{-\infty} {\rm e}^{-u^2/2}\,{\rm d}u \hspace{0.05cm}.$$
 
:$$\phi(x) =\frac {1}{\sqrt{2 \pi}} \cdot \int^{x} _{-\infty} {\rm e}^{-u^2/2}\,{\rm d}u \hspace{0.05cm}.$$
  
Line 53: Line 57:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{In welchem Bereich kann die Augenblicksfrequenz&nbsp; $f_{\rm A}(t)$&nbsp; schwanken? Welche Voraussetzungen müssen dafür erfüllt sein?
+
{In what range can the instantaneous frequency&nbsp; $f_{\rm A}(t)$&nbsp; vary?&nbsp; What conditions must be met for this to happen?
 
|type="{}"}
 
|type="{}"}
 
${\rm Max} \ \big [f_{\rm A}(t) \big ] \ = \ $ { 900.068 3% }
 
${\rm Max} \ \big [f_{\rm A}(t) \big ] \ = \ $ { 900.068 3% }
 +
${\rm Min} \ \big [f_{\rm A}(t) \big ] \ = \ $ { 899.932 3% }
  
{Welche systemtheoretische Grenzfrequenz des Gaußtiefpasses ergibt sich aus der Forderung&nbsp; $f_{\rm 3\hspace{0.05cm} dB} \cdot T = 0.3$?
+
{Which system theoretic cutoff frequency of the Gaussian low-pass results from the requirement&nbsp; $f_{\rm 3\hspace{0.05cm} dB} \cdot T = 0.3$?
 
|type="{}"}
 
|type="{}"}
 
$f_{\rm G} \cdot T \ = \ $ { 0.45 3% }
 
$f_{\rm G} \cdot T \ = \ $ { 0.45 3% }
  
{Berechnen Sie den Frequenzimpuls&nbsp; $g(t)$&nbsp; unter Verwendung der Funktion&nbsp; $\Phi (x)$. Wie groß ist der Impulswert&nbsp; $g(t = 0)$?
+
{Calculate the frequency pulse&nbsp; $g(t)$&nbsp; using the function&nbsp; $\Phi (x)$.&nbsp; What is the &nbsp; $g(t = 0)$&nbsp; value?
 
|type="{}"}
 
|type="{}"}
 
$g(t = 0) \ = \ $ { 0.737 3% }
 
$g(t = 0) \ = \ $ { 0.737 3% }
  
{Welcher Wert ergibt sich für&nbsp; $q_{\rm G}(t = 3T)$, wenn alle Koeffizienten außer&nbsp; $a_{3} = -1$&nbsp; weiterhin&nbsp; $a_{\nu \neq 3} = +1$&nbsp; sind?&nbsp; Wie groß ist hier&nbsp; $f_{\rm A}(t = 3T)$?
+
{What is the &nbsp; $q_{\rm G}(t = 3T)$&nbsp; value  if all coefficients except&nbsp; $a_{3} = -1$&nbsp; continue&nbsp; $a_{\nu \neq 3} = +1$&nbsp; What is here the instantaneous frequency&nbsp; $f_{\rm A}(t = 3T)$?
 
|type="{}"}
 
|type="{}"}
 
$q_{\rm G}(t = 3T) \ = \ $ { -0.48822--0.45978 }
 
$q_{\rm G}(t = 3T) \ = \ $ { -0.48822--0.45978 }
  
{Berechnen Sie die Impulswerte&nbsp; $g(t = ±T)$.
+
{Calculate the values&nbsp; $g(t = ±T)$.
 
|type="{}"}
 
|type="{}"}
 
$ g(t = ±T) \ = \ $ { 0.131 3% }
 
$ g(t = ±T) \ = \ $ { 0.131 3% }
  
{Wie groß ist der maximale Betrag von&nbsp; $q_{\rm G}(t)$&nbsp; bei alternierenden Koeffizienten? Berücksichtigen Sie, dass&nbsp; $g(t ≥ 2 T) \approx 0$&nbsp; ist.
+
{What is the maximum&nbsp; $q_{\rm G}(t)$&nbsp; value with alternating coefficients? Consider that&nbsp; $g(t ≥ 2 T) \approx 0$.
 
|type="{}"}
 
|type="{}"}
 
${\rm Max} \ |q_{\rm G}(t)| \ = \ $ { 0.475 3% }
 
${\rm Max} \ |q_{\rm G}(t)| \ = \ $ { 0.475 3% }
Line 84: Line 89:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Wenn alle Amplitudenkoeffizienten $a_{\nu}$ gleich $+1$ sind, ist $q_{\rm R}(t) = 1$ eine Konstante.  
+
'''(1)'''&nbsp; If all amplitude coefficients&nbsp; $a_{\nu}=+1$,&nbsp; then&nbsp; $q_{\rm R}(t) = 1$&nbsp; is a constant.  
*Der Gaußtiefpass hat deshalb keinen Einfluss und es ergibt sich $q_{\rm G}(t) = 1$.  
+
*The Gaussian low-pass therefore has no effect and&nbsp; $q_{\rm G}(t) \equiv 1$.
*Die maximale Frequenz ist somit
+
:$${\rm Max}\hspace{0.05cm}[f_{\rm A}(t)] = f_{\rm T} + \Delta f_{\rm A} \hspace{0.15cm} \underline {= 900.068\,{\rm MHz}} \hspace{0.05cm}.$$
+
*The maximum frequency is therefore
 +
:$${\rm Max}\hspace{0.05cm}[f_{\rm A}(t)] = f_{\rm T} + \Delta f_{\rm A} \hspace{0.15cm} \underline{= 900.068\,{\rm MHz}} \hspace{0.05cm}.$$
  
*Das Minimum der Augenblicksfrequenz ergibt sich, wenn alle Amplitudenkoeffizienten negativ sind:
+
*The minimum of the instantaneous frequency results when all coefficients are negative:
 
:$${\rm Min}\hspace{0.05cm}[f_{\rm A}(t)] = f_{\rm T} - \Delta f_{\rm A} \hspace{0.15cm} \underline { = 899.932\,{\rm MHz}} \hspace{0.05cm}$$
 
:$${\rm Min}\hspace{0.05cm}[f_{\rm A}(t)] = f_{\rm T} - \Delta f_{\rm A} \hspace{0.15cm} \underline { = 899.932\,{\rm MHz}} \hspace{0.05cm}$$
*In diesem Fall ist $q_{\rm R}(t) = q_{\rm G}(t) = -1$.
+
*In this case,&nbsp; $q_{\rm R}(t) = q_{\rm G}(t) = -1$.
  
  
  
  
'''(2)'''&nbsp; Diejenige Frequenz, bei der die logarithmierte Leistungsübertragungsfunktion gegenüber $f = 0$ um $3 \ \rm dB$ kleiner ist, bezeichnet man als die $3\hspace{0.05cm}\rm dB$–Grenzfrequenz.  
+
'''(2)'''&nbsp; The frequency at which the logarithmized power transfer function is&nbsp; $3 \ \rm dB$&nbsp; smaller than at&nbsp; $f = 0$&nbsp; is&nbsp; called the&nbsp; "$3\hspace{0.05cm}\rm dB$"&nbsp; cutoff frequency.  
*Diese lässt sich auch wie folgt ausdrücken:
+
*This can also be expressed as follows:
 
:$$\frac {|H(f = f_{\rm 3\hspace{0.05cm}dB})|}{|H(f = 0)|}= \frac{1}{\sqrt{2}} \hspace{0.05cm}.$$
 
:$$\frac {|H(f = f_{\rm 3\hspace{0.05cm}dB})|}{|H(f = 0)|}= \frac{1}{\sqrt{2}} \hspace{0.05cm}.$$
  
*Insbesondere gilt für den Gaußtiefpass wegen $H(f = 0) = 1$:
+
*In particular,&nbsp; for the Gaussian low-pass because of&nbsp; $H(f = 0) = 1$:
 
:$$H(f = f_{\rm 3dB})= {\rm e}^{-\pi\cdot ({f_{\rm 3dB}}/{2 f_{\rm G}})^2} = \frac{1}{\sqrt{2}}\hspace{0.3cm}
 
:$$H(f = f_{\rm 3dB})= {\rm e}^{-\pi\cdot ({f_{\rm 3dB}}/{2 f_{\rm G}})^2} = \frac{1}{\sqrt{2}}\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}(\frac{f_{\rm 3dB}}{2 f_{\rm G}})^2 = \frac{{\rm ln}\hspace{0.1cm}\sqrt{2}}{\pi} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm G} = \sqrt{\frac{\pi}{4 \cdot {\rm ln}\hspace{0.1cm}\sqrt{2}}}\cdot f_{\rm 3dB}\hspace{0.05cm}.$$
 
\Rightarrow \hspace{0.3cm}(\frac{f_{\rm 3dB}}{2 f_{\rm G}})^2 = \frac{{\rm ln}\hspace{0.1cm}\sqrt{2}}{\pi} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm G} = \sqrt{\frac{\pi}{4 \cdot {\rm ln}\hspace{0.1cm}\sqrt{2}}}\cdot f_{\rm 3dB}\hspace{0.05cm}.$$
*Die numerische Auswertung führt auf $f_{\rm G} \approx 1.5 \cdot f_{\rm 3\hspace{0.05cm}dB}$.  
+
*The numerical evaluation leads to&nbsp; $f_{\rm G} \approx 1.5 \cdot f_{\rm 3\hspace{0.05cm}dB}$.
*Aus $f_{\rm 3\hspace{0.05cm}dB} \cdot T = 0.3$ folgt somit $f_{\rm G} \cdot T \hspace{0.15cm}\underline{\approx 0.45}$.
+
 +
*From&nbsp; $f_{\rm 3\hspace{0.05cm}dB} \cdot T = 0.3$&nbsp; thus follows&nbsp; $f_{\rm G} \cdot T \hspace{0.15cm}\underline{\approx 0.45}$.
  
  
  
  
'''(3)'''&nbsp; Der Frequenzimpuls ergibt sich aus der Faltung von Rechteckfunktion $g_{\rm R}(t)$ und Impulsantwort $h_{\rm G}(t)$:
+
'''(3)'''&nbsp; The frequency pulse is obtained by convolution of the rectangular function&nbsp; $g_{\rm R}(t)$&nbsp; and the impulse response&nbsp; $h_{\rm G}(t)$:
 
:$$g(t) = g_{\rm R} (t) \star h_{\rm G}(t) = 2 f_{\rm G} \cdot \int \limits^{t + T/2} _{t - T/2} {\rm e}^{-\pi\cdot (2 f_{\rm G}\cdot \tau)^2}\,{\rm d}\tau \hspace{0.05cm}.$$
 
:$$g(t) = g_{\rm R} (t) \star h_{\rm G}(t) = 2 f_{\rm G} \cdot \int \limits^{t + T/2} _{t - T/2} {\rm e}^{-\pi\cdot (2 f_{\rm G}\cdot \tau)^2}\,{\rm d}\tau \hspace{0.05cm}.$$
  
*Mit der Substitution $u^{2 } = 8π \cdot f_{\rm G}^{2} \cdot \tau^{2}$ und der Funktion $\phi (x)$ kann hierfür auch geschrieben werden:
+
*With the substitution &nbsp; $u^{2 } = 8π \cdot f_{\rm G}^{2} \cdot \tau^{2}$ &nbsp; and the function &nbsp; $\phi (x)$&nbsp; can also be written:
 
:$$g(t) \ = \ \frac {1}{\sqrt{2 \pi}} \cdot \int \limits^{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2)} _{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)} {\rm e}^{-u^2/2}\,{\rm d}u = \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2))- \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)) \hspace{0.05cm}.$$
 
:$$g(t) \ = \ \frac {1}{\sqrt{2 \pi}} \cdot \int \limits^{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2)} _{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)} {\rm e}^{-u^2/2}\,{\rm d}u = \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2))- \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)) \hspace{0.05cm}.$$
  
*Für die Zeit $t = 0$ gilt unter Berücksichtigung von $\phi (-x) = 1 - \phi (x)$ und $f_{\rm G} \cdot T = 0.45$:
+
*For time&nbsp; $t = 0$,&nbsp; taking into account &nbsp; $\phi (-x) = 1 - \phi (x)$ &nbsp; and &nbsp; $f_{\rm G} \cdot T = 0.45$:
:$$g(t = 0) \ = \ \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(-\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)= 2 \cdot \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)-1 \approx 2 \cdot \phi(1.12)-1 \hspace{0.15cm} \underline {= 0.737} \hspace{0.05cm}.$$
+
:$$g(t = 0) \ = \ \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(-\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)= 2 \cdot \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)-1 \approx 2 \cdot \phi(1. 12)-1 \hspace{0.15cm} \underline {= 0.737} \hspace{0.05cm}.$$
  
  
  
  
'''(4)'''&nbsp; Mit $a_{3} = +1$ würde sich $q_{\rm G}(t = 3 T) = 1$ ergeben. Aufgrund der Linearität gilt somit:
+
'''(4)'''&nbsp; With&nbsp; $a_{3} = +1$ &nbsp; &rArr; &nbsp; $q_{\rm G}(t = 3 T) = 1$&nbsp; would result. Thus,&nbsp; due to linearity:
 
:$$q_{\rm G}(t = 3 T ) = 1 - 2 \cdot g(t = 0)= 1 - 2 \cdot 0.737 \hspace{0.15cm} \underline {= -0.474} \hspace{0.05cm}.$$
 
:$$q_{\rm G}(t = 3 T ) = 1 - 2 \cdot g(t = 0)= 1 - 2 \cdot 0.737 \hspace{0.15cm} \underline {= -0.474} \hspace{0.05cm}.$$
  
  
  
'''(5)'''&nbsp; Mit dem Ergebnis der Teilaufgabe  '''(3)''' und $f_{\rm G} \cdot T = 0.45$ erhält man:
+
'''(5)'''&nbsp; Using the result of subtask&nbsp; '''(3)'''&nbsp; and&nbsp; $f_{\rm G} \cdot T = 0.45$&nbsp; we obtain:
 
:$$g(t = T) \ = \ \phi(3 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T) \approx \ \phi(3.36)-\phi(1.12) = 0.999 - 0.868 \hspace{0.15cm} \underline { = 0.131} \hspace{0.05cm}.$$
 
:$$g(t = T) \ = \ \phi(3 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T) \approx \ \phi(3.36)-\phi(1.12) = 0.999 - 0.868 \hspace{0.15cm} \underline { = 0.131} \hspace{0.05cm}.$$
  
  
  
'''(6)'''&nbsp; Bei der alternierenden Folge sind aus Symmetriegründen die Beträge $|q_{\rm G}(\nu \cdot T)|$ bei allen Vielfachen der Bitdauer $T$ alle gleich.  
+
'''(6)'''&nbsp; In the alternating sequence,&nbsp; for symmetry reasons, the magnitudes &nbsp; $|q_{\rm G}(\nu \cdot T)|$ &nbsp; are all the same for all multiples of the bit duration&nbsp; $T$.  
*Alle Zwischenwerte bei $t \neq \nu · T$ sind kleiner.  
+
*All intermediate values at&nbsp; $t \neq \nu \cdot T$&nbsp; are smaller.
*Unter Berücksichtigung von $g(t ≥ 2T) \approx 0$ wird jeder einzelne Impulswert $g(0)$ durch den vorangegangenen Impuls mit $g(t = T)$ verkleinert, zusätzlich vom nachfolgenden mit $g(t = -T)$.  
+
*Es ergeben sich also Impulsinterferenzen und man erhält:
+
*Considering&nbsp; $g(t ≥ 2T) \approx 0$,&nbsp; every single pulse value&nbsp; $g(0)$&nbsp; is reduced by the preceding pulse with&nbsp; $g(t = T)$,&nbsp; additionally by the following one with&nbsp; $g(t = -T)$.
 +
 +
*Thus,&nbsp; intersymbol interference results and one obtains:
 
:$${\rm Max} \hspace{0.08cm}q_{\rm G}(t) = g(0) - 2 \cdot g(T) = 0.737 - 2 \cdot 0.131 \hspace{0.15cm} \underline {= 0.475 }\hspace{0.05cm}.$$
 
:$${\rm Max} \hspace{0.08cm}q_{\rm G}(t) = g(0) - 2 \cdot g(T) = 0.737 - 2 \cdot 0.131 \hspace{0.15cm} \underline {= 0.475 }\hspace{0.05cm}.$$
  
Line 143: Line 152:
  
  
[[Category:Examples of Communication Systems: Exercises|^3.2 Funkschnittstelle^]]
+
[[Category:Examples of Communication Systems: Exercises|^3.2 Radio Interface^]]

Latest revision as of 17:26, 11 January 2023

Various signals of the GMSK modulation

The modulation method used for GSM is known as  "Gaussian Minimum Shift Keying"  $\rm (GMSK)$.  This is a type of  "Frequency Shift Keying"  $\rm (FSK)$  with continuous phase adjustment  $(\text{CP-FSK)}$,  in which

  • the modulation index is smallest possible to still satisfy the orthogonality condition 
        $h = 0.5$   ⇒   "Minimum Shift Keying",
  • a Gaussian low-pass filter with impulse response  $h_{\rm G}(t)$  is introduced before the FSK modulator,
    to further save bandwidth.


The graph illustrates the facts:

  • The digital message is represented by the amplitude coefficients  $a_{\nu} ∈ ±1$  to which a Dirac delta comb is applied.  Note that the plotted  (red)  sequence is assumed for subtask  (3).
  • Let the rectangular pulse be dimensionless,  symmetric and have the GSM bit duration $T_{\rm B} = T$:
$$g_{\rm R}(t) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c} {\rm{{\rm{for}}}} \\ {\rm{{\rm{for}}}} \\ \end{array}\begin{array}{*{5}c} |\hspace{0.05cm} t \hspace{0.05cm}| < T/2 \hspace{0.05cm}, \\ |\hspace{0.05cm} t \hspace{0.05cm}| > T/2 \hspace{0.05cm}. \\ \end{array}$$
  • This gives the following for the rectangular source signal:
$$q_{\rm R} (t) = q_{\rm \delta} (t) \star g_{\rm R}(t) = \sum_{\nu} a_{\nu}\cdot g_{\rm R}(t - \nu \cdot T)\hspace{0.05cm}.$$
  • The Gaussian low-pass is given by its frequency response and its impulse response:
$$H_{\rm G}(f) = {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}[f/(2 f_{\rm G})]^2} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} h_{\rm G}(t) = 2 f_{\rm G} \cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}(2 f_{\rm G}\cdot t)^2}\hspace{0.05cm},$$
where the system theoretic cutoff frequency  $f_{\rm G}$  is used.
  • However,  in the GSM specification,  the  $3 \hspace{0.05cm}\rm dB$  cutoff frequency is given as  $f_{\rm 3\hspace{0.05cm} dB} = 0.3/T$.  From this  $f_{\rm G}$  can be calculated directly.
  • The signal after the Gaussian low-pass is thus:
$$q_{\rm G} (t) = q_{\rm R} (t) \star h_{\rm G}(t) = \sum_{\nu} a_{\nu}\cdot g(t - \nu \cdot T)\hspace{0.05cm}.$$
  • $g(t)$  is called the  "frequency pulse".  For this holds:
$$g(t) = q_{\rm R} (t) \star h_{\rm G}(t) \hspace{0.05cm}.$$
  • For the instantaneous frequency at the FSK modulator output can thus be written
$$f_{\rm A}(t) = f_{\rm T} + \Delta f_{\rm A} \cdot q_{\rm G} (t)\hspace{0.05cm},$$
  • with the low-pass filtered signal  $q_{\rm G}(t)$,
  • the carrier frequency  $f_{\rm T}$,  and
  • the frequency deviation  $\Delta f_{\rm A}$.
Table of the Gaussian error function
  • For your calculations,  use the example values  $f_{\rm T} = 900 \ \rm MHz$  and  $\Delta f_{\rm A} = 68 \ \rm kHz$.



Hints:

  • Use the Gaussian integral to solve this exercise  $($see adjacent table$)$:
$$\phi(x) =\frac {1}{\sqrt{2 \pi}} \cdot \int^{x} _{-\infty} {\rm e}^{-u^2/2}\,{\rm d}u \hspace{0.05cm}.$$



Questions

1

In what range can the instantaneous frequency  $f_{\rm A}(t)$  vary?  What conditions must be met for this to happen?

${\rm Max} \ \big [f_{\rm A}(t) \big ] \ = \ $

${\rm Min} \ \big [f_{\rm A}(t) \big ] \ = \ $

2

Which system theoretic cutoff frequency of the Gaussian low-pass results from the requirement  $f_{\rm 3\hspace{0.05cm} dB} \cdot T = 0.3$?

$f_{\rm G} \cdot T \ = \ $

3

Calculate the frequency pulse  $g(t)$  using the function  $\Phi (x)$.  What is the   $g(t = 0)$  value?

$g(t = 0) \ = \ $

4

What is the   $q_{\rm G}(t = 3T)$  value if all coefficients except  $a_{3} = -1$  continue  $a_{\nu \neq 3} = +1$  What is here the instantaneous frequency  $f_{\rm A}(t = 3T)$?

$q_{\rm G}(t = 3T) \ = \ $

5

Calculate the values  $g(t = ±T)$.

$ g(t = ±T) \ = \ $

6

What is the maximum  $q_{\rm G}(t)$  value with alternating coefficients? Consider that  $g(t ≥ 2 T) \approx 0$.

${\rm Max} \ |q_{\rm G}(t)| \ = \ $


Solution

(1)  If all amplitude coefficients  $a_{\nu}=+1$,  then  $q_{\rm R}(t) = 1$  is a constant.

  • The Gaussian low-pass therefore has no effect and  $q_{\rm G}(t) \equiv 1$.
  • The maximum frequency is therefore
$${\rm Max}\hspace{0.05cm}[f_{\rm A}(t)] = f_{\rm T} + \Delta f_{\rm A} \hspace{0.15cm} \underline{= 900.068\,{\rm MHz}} \hspace{0.05cm}.$$
  • The minimum of the instantaneous frequency results when all coefficients are negative:
$${\rm Min}\hspace{0.05cm}[f_{\rm A}(t)] = f_{\rm T} - \Delta f_{\rm A} \hspace{0.15cm} \underline { = 899.932\,{\rm MHz}} \hspace{0.05cm}$$
  • In this case,  $q_{\rm R}(t) = q_{\rm G}(t) = -1$.



(2)  The frequency at which the logarithmized power transfer function is  $3 \ \rm dB$  smaller than at  $f = 0$  is  called the  "$3\hspace{0.05cm}\rm dB$"  cutoff frequency.

  • This can also be expressed as follows:
$$\frac {|H(f = f_{\rm 3\hspace{0.05cm}dB})|}{|H(f = 0)|}= \frac{1}{\sqrt{2}} \hspace{0.05cm}.$$
  • In particular,  for the Gaussian low-pass because of  $H(f = 0) = 1$:
$$H(f = f_{\rm 3dB})= {\rm e}^{-\pi\cdot ({f_{\rm 3dB}}/{2 f_{\rm G}})^2} = \frac{1}{\sqrt{2}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}(\frac{f_{\rm 3dB}}{2 f_{\rm G}})^2 = \frac{{\rm ln}\hspace{0.1cm}\sqrt{2}}{\pi} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm G} = \sqrt{\frac{\pi}{4 \cdot {\rm ln}\hspace{0.1cm}\sqrt{2}}}\cdot f_{\rm 3dB}\hspace{0.05cm}.$$
  • The numerical evaluation leads to  $f_{\rm G} \approx 1.5 \cdot f_{\rm 3\hspace{0.05cm}dB}$.
  • From  $f_{\rm 3\hspace{0.05cm}dB} \cdot T = 0.3$  thus follows  $f_{\rm G} \cdot T \hspace{0.15cm}\underline{\approx 0.45}$.



(3)  The frequency pulse is obtained by convolution of the rectangular function  $g_{\rm R}(t)$  and the impulse response  $h_{\rm G}(t)$:

$$g(t) = g_{\rm R} (t) \star h_{\rm G}(t) = 2 f_{\rm G} \cdot \int \limits^{t + T/2} _{t - T/2} {\rm e}^{-\pi\cdot (2 f_{\rm G}\cdot \tau)^2}\,{\rm d}\tau \hspace{0.05cm}.$$
  • With the substitution   $u^{2 } = 8π \cdot f_{\rm G}^{2} \cdot \tau^{2}$   and the function   $\phi (x)$  can also be written:
$$g(t) \ = \ \frac {1}{\sqrt{2 \pi}} \cdot \int \limits^{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2)} _{2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)} {\rm e}^{-u^2/2}\,{\rm d}u = \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t + T/2))- \phi(2 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot(t - T/2)) \hspace{0.05cm}.$$
  • For time  $t = 0$,  taking into account   $\phi (-x) = 1 - \phi (x)$   and   $f_{\rm G} \cdot T = 0.45$:
$$g(t = 0) \ = \ \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(-\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)= 2 \cdot \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T)-1 \approx 2 \cdot \phi(1. 12)-1 \hspace{0.15cm} \underline {= 0.737} \hspace{0.05cm}.$$



(4)  With  $a_{3} = +1$   ⇒   $q_{\rm G}(t = 3 T) = 1$  would result. Thus,  due to linearity:

$$q_{\rm G}(t = 3 T ) = 1 - 2 \cdot g(t = 0)= 1 - 2 \cdot 0.737 \hspace{0.15cm} \underline {= -0.474} \hspace{0.05cm}.$$


(5)  Using the result of subtask  (3)  and  $f_{\rm G} \cdot T = 0.45$  we obtain:

$$g(t = T) \ = \ \phi(3 \cdot \sqrt{2 \pi} \cdot f_{\rm G} \cdot T)- \phi(\sqrt{2 \pi} \cdot f_{\rm G} \cdot T) \approx \ \phi(3.36)-\phi(1.12) = 0.999 - 0.868 \hspace{0.15cm} \underline { = 0.131} \hspace{0.05cm}.$$


(6)  In the alternating sequence,  for symmetry reasons, the magnitudes   $|q_{\rm G}(\nu \cdot T)|$   are all the same for all multiples of the bit duration  $T$.

  • All intermediate values at  $t \neq \nu \cdot T$  are smaller.
  • Considering  $g(t ≥ 2T) \approx 0$,  every single pulse value  $g(0)$  is reduced by the preceding pulse with  $g(t = T)$,  additionally by the following one with  $g(t = -T)$.
  • Thus,  intersymbol interference results and one obtains:
$${\rm Max} \hspace{0.08cm}q_{\rm G}(t) = g(0) - 2 \cdot g(T) = 0.737 - 2 \cdot 0.131 \hspace{0.15cm} \underline {= 0.475 }\hspace{0.05cm}.$$