Difference between revisions of "Aufgaben:Exercise 3.4Z: Continuous Phase Frequency Shift Keying"

From LNTwww
Line 50: Line 50:
 
|type="{}"}
 
|type="{}"}
 
$f_{\rm T} \cdot T \ = \ $ { 4 3% }
 
$f_{\rm T} \cdot T \ = \ $ { 4 3% }
$\delta f_{\rm A} \cdot T \ = \ $ { 1 3% }
+
$\Delta f_{\rm A} \cdot T \ = \ $ { 1 3% }
 
$h \ = \ $ { 2 3% }
 
$h \ = \ $ { 2 3% }
  
Line 67: Line 67:
 
+ $s_{\rm C}(t)$.
 
+ $s_{\rm C}(t)$.
  
{What signals describe  ''Minimum Shift Keying''  (MSK)?
+
{What signals describe  "Minimum Shift Keying"  $\rm (MSK)$?
 
|type="[]"}
 
|type="[]"}
 
- $s_{\rm A}(t)$,
 
- $s_{\rm A}(t)$,
Line 79: Line 79:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
'''(1)'''&nbsp; <u>All statements except the third are true</u>:  
 
'''(1)'''&nbsp; <u>All statements except the third are true</u>:  
*Generally nonlinear FSK can only be demodulated coherently, while MSK can also use a noncoherent demodulation method.  
+
*Generally nonlinear FSK can only be demodulated coherently,&nbsp; while MSK can also use a noncoherent demodulation method.
*Compared to QPSK with coherent demodulation, MSK requires $3 \ \rm dB$ more $E_{\rm B}/N_{0}$ (energy per bit related to the noise power density) for the same bit error rate.
+
*The first zero in the power density spectrum occurs later in MSK than in QSPK, but it shows a faster asymptotic decay than in QSPK.
+
*Compared to QPSK with coherent demodulation,&nbsp; MSK requires&nbsp; $3 \ \rm dB$&nbsp; more&nbsp; $E_{\rm B}/N_{0}$&nbsp; $($energy per bit related to the noise power density$)$&nbsp; for the same bit error rate.
*The constant envelope of MSK means that nonlinearities in the transmission line do not play a role. This allows the use of simple and inexpensive power amplifiers with lower power consumption and thus longer operating times of battery-powered devices.
 
  
 +
*The first zero in the power-spectral density occurs in MSK later than in QSPK,&nbsp; but it shows a faster asymptotic decay than in QSPK.
 +
 +
*The constant envelope of MSK means that nonlinearities in the transmission line do not play a role.&nbsp; This allows the use of simple and inexpensive power amplifiers with lower power consumption and thus longer operating times of battery-powered devices.
  
  
'''(2)'''&nbsp; One can see from the graph five and three oscillations per symbol duration, respectively:
+
 
 +
'''(2)'''&nbsp; One can see from the graph five and three oscillations per symbol duration,&nbsp; respectively:
 
:$$f_{\rm 1} \cdot T \hspace{0.15cm} \underline {= 5}\hspace{0.05cm},\hspace{0.2cm}f_{\rm 2} \cdot T \hspace{0.15cm} \underline { = 3}\hspace{0.05cm}.$$
 
:$$f_{\rm 1} \cdot T \hspace{0.15cm} \underline {= 5}\hspace{0.05cm},\hspace{0.2cm}f_{\rm 2} \cdot T \hspace{0.15cm} \underline { = 3}\hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; For FSK with rectangular pulse shape, only the two instantaneous frequencies $f_{1} = f_{\rm T} + \Delta f_{\rm A}$ and $f_{2} = f_{\rm T} - \Delta f_{\rm A}$ occur.  
+
'''(3)'''&nbsp; For FSK with rectangular pulse shape,&nbsp; only the two instantaneous frequencies&nbsp; $f_{1} = f_{\rm T} + \Delta f_{\rm A}$&nbsp; and&nbsp; $f_{2} = f_{\rm T} - \Delta f_{\rm A}$&nbsp; occur.  
*With the result from '''(2)''' we thus obtain:
+
*With the result from subtask&nbsp; '''(2)'''&nbsp; we thus obtain:
 
:$$f_{\rm T} \ = \ \frac{f_{\rm 1}+f_{\rm 2}}{2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm T} \cdot T \hspace{0.15cm} \underline {= 4}\hspace{0.05cm},$$
 
:$$f_{\rm T} \ = \ \frac{f_{\rm 1}+f_{\rm 2}}{2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm T} \cdot T \hspace{0.15cm} \underline {= 4}\hspace{0.05cm},$$
 
:$$ \Delta f_{\rm A} \ = \ \frac{f_{\rm 1}-f_{\rm 2}}{2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\Delta f_{\rm A} \cdot T \hspace{0.15cm} \underline { = 1}\hspace{0.05cm},$$  
 
:$$ \Delta f_{\rm A} \ = \ \frac{f_{\rm 1}-f_{\rm 2}}{2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\Delta f_{\rm A} \cdot T \hspace{0.15cm} \underline { = 1}\hspace{0.05cm},$$  
Line 98: Line 101:
  
  
'''(4)'''&nbsp; From the graph one can see the frequencies $f_{1} \cdot T = 4.5$ and $f_{2} \cdot T = 3.5$.  
+
'''(4)'''&nbsp; From the graph one can see the frequencies&nbsp; $f_{1} \cdot T = 4.5$&nbsp; and&nbsp; $f_{2} \cdot T = 3.5$.  
*This results in the frequency deviation $\Delta f_{\rm A} \cdot T = 0.5$ and the modulation index $\underline{h = 1}$.
+
*This results in the frequency deviation&nbsp; $\Delta f_{\rm A} \cdot T = 0.5$&nbsp; and the modulation index&nbsp; $\underline{h = 1}$.
  
  
  
'''(5)'''&nbsp; Here the two (normalized) frequencies $f_{1} \cdot T = 4.25$ and $f_{2} \cdot T = 3.75$ occur,  
+
'''(5)'''&nbsp; Here the two&nbsp; $($normalized$)$&nbsp; frequencies&nbsp; $f_{1} \cdot T = 4.25$&nbsp; and&nbsp; $f_{2} \cdot T = 3.75$&nbsp; occur,  
*which results in the frequency deviation $\Delta f_{\rm A} \cdot T = 0.25$ and the modulation index $\underline{h = 0.5}$ can be calculated.
+
*which results in the frequency deviation&nbsp; $\Delta f_{\rm A} \cdot T = 0.25$&nbsp; and the modulation index&nbsp; $\underline{h = 0.5}$.
  
  
  
'''(6)'''&nbsp; Correct are the <u>solutions 2 and 3</u>:
+
'''(6)'''&nbsp; Correct are the&nbsp; <u>solutions 2 and 3</u>:
*Only at $s_{\rm A}(t)$ was no phase adjustment made.  
+
*Only at&nbsp; $s_{\rm A}(t)$&nbsp; was no phase adjustment made.&nbsp; Here,&nbsp; the signal waveforms in the region of the first and second bit&nbsp; $(a_{1} = a_{2} = +1)$&nbsp; are each cosinusoidal like the carrier signal&nbsp; $($with respect to the symbol boundary$)$.
*Here, the signal waveforms in the region of the first and second bit ($a_{1} = a_{2} = +1$) are each cosinusoidal like the carrier signal (with respect to the symbol boundary).  
+
*In contrast, in the second symbol of $s_{\rm B}(t)$ a minus-cosine-shaped course (initial phase $\phi_{0} = π$ corresponding to $180^\circ$) can be seen and in the second symbol of $s_{\rm C}(t)$ a minus-sine-shaped course ($\phi_{0} = π /2$ or $90^\circ$).  
+
*In contrast,&nbsp; in the second symbol of&nbsp; $s_{\rm B}(t)$&nbsp; a minus-cosine-shaped course&nbsp; $($initial phase&nbsp; $\phi_{0} = π$,&nbsp; corresponding to&nbsp; $180^\circ)$&nbsp; can be seen and in the second symbol of&nbsp; $s_{\rm C}(t)$&nbsp; a minus-sine-shaped course&nbsp; $(\phi_{0} = π /2$&nbsp; or&nbsp; $90^\circ)$.
*For $s_{\rm A}(t)$ the initial phase is always $0$, for $s_{\rm B}(t)$ either $0$ or $π$, while for the signal $s_{\rm C}(t)$ with modulation index $h = 0.5$ a total of four initial phases are possible: $0^\circ, \ 90^\circ, \ 180^\circ$ and $270^\circ$.
+
 +
*For $s_{\rm A}(t)$&nbsp; the initial phase is always zero,&nbsp; for&nbsp; $s_{\rm B}(t)$&nbsp; either zero or&nbsp; $π$,&nbsp; while for the signal $s_{\rm C}(t)$&nbsp; with modulation index&nbsp; $h = 0.5$&nbsp; a total of four initial phases are possible:&nbsp; $0^\circ, \ 90^\circ, \ 180^\circ$&nbsp; and&nbsp; $270^\circ$.
  
  
  
'''(7)'''&nbsp; Correct is the <u>last proposed solution</u>, since for this signal $h = 0.5$ holds.  
+
'''(7)'''&nbsp; Correct is the&nbsp; <u>last proposed solution</u>,&nbsp; since for this signal $h = 0.5$.  
*This is the smallest possible modulation index for which there is orthogonality between $f_{1}$ and $f_{2}$ within the symbol duration $T$.
+
*This is the smallest possible modulation index for which there is orthogonality between&nbsp; $f_{1}$&nbsp; and&nbsp; $f_{2}$&nbsp; within the symbol duration&nbsp; $T$.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 14:38, 19 January 2023

Signals for  $\text{CP-FSK}$

The graph shows three frequency shift keying  $\rm (FSK)$  transmitted signals which differ with respect to the frequency deviation  $\Delta f_{\rm A}$  distinguish and thus also by their modulation index

$$h = 2 \cdot \Delta f_{\rm A} \cdot T.$$


The digital source signal  $q(t)$ underlying the signals  $s_{\rm A}(t),  s_{\rm B}(t)$  and  $s_{\rm C}(t)$  is shown above.  All considered signals are normalized to amplitude  $1$  and time duration  $T$  and based on a cosine carrier with frequency  $f_{\rm T}$.

With binary FSK  $($"Binary Frequency Shift Keying"$)$  only two different frequencies occur,  each of which remains constant over a bit duration:

  • $f_{1}$  $($if  $a_{\nu} = +1)$,
  • $f_{2}$  $($if  $a_{\nu} = -1)$.


If the modulation index is not a multiple of  $2$,  continuous phase adjustment is required to avoid phase jumps.  This is called  "Continuous Phase Frequency Shift Keying"   $(\text{CP-FSK)}$.

An important special case is represented by binary FSK with modulation index  $h = 0.5$  which is also called  "Minimum Shift Keying"  $(\rm MSK)$.  This will be discussed in this exercise.



Hints:


Questions

1

Which statements are true for FSK and specifically for MSK?

FSK is generally a nonlinear modulation method.
MSK can be implemented as offset QPSK and is therefore linear.
This results in the same bit error rate as for QPSK.
A band limitation is less disturbing than with QPSK.
The MSK envelope is constant even with spectral shaping.

2

What frequencies  $f_{1}$  $($for amplitude coefficient  $a_{\nu} = +1)$  and $f_{2}$  $($for  $a_{\nu} = -1)$  does the signal  $s_{\rm A}(t)$  contain?

$f_{1} \cdot T \ = \ $

$f_{2} \cdot T \ = \ $

3

What are the carrier frequency  $f_{\rm T}$,  the frequency deviation  $\delta f_{\rm A}$  and the modulation index  $h$  for signal  $s_{\rm A}(t)$?

$f_{\rm T} \cdot T \ = \ $

$\Delta f_{\rm A} \cdot T \ = \ $

$h \ = \ $

4

What is the modulation index for signal  $s_{\rm B}(t)$?

$h \ = \ $

5

What is the modulation index for signal  $s_{\rm C}(t)$?

$h \ = \ $

6

Which signals required continuous phase adjustment?

$s_{\rm A}(t)$,
$s_{\rm B}(t)$,
$s_{\rm C}(t)$.

7

What signals describe  "Minimum Shift Keying"  $\rm (MSK)$?

$s_{\rm A}(t)$,
$s_{\rm B}(t)$,
$s_{\rm C}(t)$.


Solution

(1)  All statements except the third are true:

  • Generally nonlinear FSK can only be demodulated coherently,  while MSK can also use a noncoherent demodulation method.
  • Compared to QPSK with coherent demodulation,  MSK requires  $3 \ \rm dB$  more  $E_{\rm B}/N_{0}$  $($energy per bit related to the noise power density$)$  for the same bit error rate.
  • The first zero in the power-spectral density occurs in MSK later than in QSPK,  but it shows a faster asymptotic decay than in QSPK.
  • The constant envelope of MSK means that nonlinearities in the transmission line do not play a role.  This allows the use of simple and inexpensive power amplifiers with lower power consumption and thus longer operating times of battery-powered devices.


(2)  One can see from the graph five and three oscillations per symbol duration,  respectively:

$$f_{\rm 1} \cdot T \hspace{0.15cm} \underline {= 5}\hspace{0.05cm},\hspace{0.2cm}f_{\rm 2} \cdot T \hspace{0.15cm} \underline { = 3}\hspace{0.05cm}.$$


(3)  For FSK with rectangular pulse shape,  only the two instantaneous frequencies  $f_{1} = f_{\rm T} + \Delta f_{\rm A}$  and  $f_{2} = f_{\rm T} - \Delta f_{\rm A}$  occur.

  • With the result from subtask  (2)  we thus obtain:
$$f_{\rm T} \ = \ \frac{f_{\rm 1}+f_{\rm 2}}{2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm T} \cdot T \hspace{0.15cm} \underline {= 4}\hspace{0.05cm},$$
$$ \Delta f_{\rm A} \ = \ \frac{f_{\rm 1}-f_{\rm 2}}{2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\Delta f_{\rm A} \cdot T \hspace{0.15cm} \underline { = 1}\hspace{0.05cm},$$
$$h \ = \ 2 \cdot \Delta f_{\rm A} \cdot T \hspace{0.15cm} \underline {= 2} \hspace{0.05cm}.$$


(4)  From the graph one can see the frequencies  $f_{1} \cdot T = 4.5$  and  $f_{2} \cdot T = 3.5$.

  • This results in the frequency deviation  $\Delta f_{\rm A} \cdot T = 0.5$  and the modulation index  $\underline{h = 1}$.


(5)  Here the two  $($normalized$)$  frequencies  $f_{1} \cdot T = 4.25$  and  $f_{2} \cdot T = 3.75$  occur,

  • which results in the frequency deviation  $\Delta f_{\rm A} \cdot T = 0.25$  and the modulation index  $\underline{h = 0.5}$.


(6)  Correct are the  solutions 2 and 3:

  • Only at  $s_{\rm A}(t)$  was no phase adjustment made.  Here,  the signal waveforms in the region of the first and second bit  $(a_{1} = a_{2} = +1)$  are each cosinusoidal like the carrier signal  $($with respect to the symbol boundary$)$.
  • In contrast,  in the second symbol of  $s_{\rm B}(t)$  a minus-cosine-shaped course  $($initial phase  $\phi_{0} = π$,  corresponding to  $180^\circ)$  can be seen and in the second symbol of  $s_{\rm C}(t)$  a minus-sine-shaped course  $(\phi_{0} = π /2$  or  $90^\circ)$.
  • For $s_{\rm A}(t)$  the initial phase is always zero,  for  $s_{\rm B}(t)$  either zero or  $π$,  while for the signal $s_{\rm C}(t)$  with modulation index  $h = 0.5$  a total of four initial phases are possible:  $0^\circ, \ 90^\circ, \ 180^\circ$  and  $270^\circ$.


(7)  Correct is the  last proposed solution,  since for this signal $h = 0.5$.

  • This is the smallest possible modulation index for which there is orthogonality between  $f_{1}$  and  $f_{2}$  within the symbol duration  $T$.