Exercise 3.5: Recursive Filters for GF(2)

From LNTwww
Revision as of 21:26, 10 November 2022 by Guenter (talk | contribs)

General recursive filter  (above)
and considered realization  (below)

The upper of the two circuits on the right shows a second order recursive filter in general form.  With

$$A(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} a_0 + a_1 \cdot D + a_2 \cdot D^2 \hspace{0.05cm},$$
$$B(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 + b_1 \cdot D + b_2 \cdot D^2 $$

one obtains for the transfer function

$$G(D) = \frac{A(D)}{B(D)} = \frac{a_0 + a_1 \cdot D + a_2 \cdot D^2}{1 + b_1 \cdot D + b_2 \cdot D^2} \hspace{0.05cm}.$$
  • It should be noted that all arithmetic operations refer to  ${\rm GF(2)}$. 
  • Thus,  the filter coefficients   $a_0, \ a_1, \ a_2, \ b_1, \ b_2$   are also binary $(0$  or  $1)$.


The bottom graph shows the filter specific to the exercise at hand:

  1.   A filter coefficient results in   $a_i = 1$   if the connection is through  $(0 ≤ i ≤ 2)$.
  2.   Otherwise,  $a_i = 0$.   The same system applies to the coefficients  $b_1$  and  $b_2$.


In the subtasks  (1), ... , (3)  you are to determine the respective output sequence  $\underline{x}$  for different input sequences

  • $\underline{u} = (1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, \text{...}\hspace{0.05cm})$,
  • $\underline{u} = (0, \, 1, \, 0, \, 1, \, 0, \, 0, \, 1, \, 1, \, \text{...}\hspace{0.05cm})$,
  • $\underline{u} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, \text{...}\hspace{0.05cm})$


using the given circuit.  It should be taken into account:

  • If the input sequence  $\underline{u}$  consists of a  "$1$"  followed by all zeros,  this specific output sequence  $\underline{x}$  is the  "impulse response"  $\underline{g}$,  and it holds:
$$\underline{g} \hspace{0.15cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.15cm}{G}(D)\hspace{0.05cm}. $$
  • Otherwise,  the output sequence results as the  "convolution product"  between the input sequence and the impulse response:
$$\underline{x} = \underline{u} * \underline{g} \hspace{0.05cm}.$$
  • The convolution operation can be bypassed with the  "D-transform" .




Hints:


Solution

1

What statements hold for the impulse response  $\underline{g}$  of the recursive filter?

It holds  $\underline{g} = (0, \, 1, \, 1, \, 0, \, 1, \, 0, \, 0, \, 1, \, \text{...}\hspace{0.05cm})$.
It holds  $\underline{g} = (1, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, \text{...}\hspace{0.05cm})$.
The impulse response  $\underline{g}$  is infinitely extended.

2

Let now  $\underline{u} = (0, \, 1, \, 0, \, 1, \, 0, \, 0, \, 1, \, 1)$. Which statements are true?

The output sequence is:  $\underline{x} = (0, \, 1, \, 1, \, 0, \, 1, \, 0, \, 0, \, 1, \, \text{...}\hspace{0.05cm})$.
The output sequence is:  $\underline{x} = (1, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, \text{...}\hspace{0.05cm})$.
The output sequence  $\underline{x}$  extends to infinity.

3

Now apply  $\underline{u} = (1, \, 1, \, 1)$. Which statements are true?

The output sequence  $\underline{x}$  starts with  $(1, \, 0, \, 1)$.
The output sequence  $\underline{x}$  begins with  $(1, \, 1, \, 1)$.
The output sequence  $\underline{x}$  extends to infinity.

4

What statements are valid for the transfer function  $G(D)$?

It holds  $G(D) = (1 + D^2)/(1 + D + D^2)$.
It holds  $G(D) = (1 + D + D^2)/(1 + D^2)$.
It holds  $G(D) = 1 + D + D^2 + D^4 + D^5 + D^7 + D^8 + \hspace{0.05cm} \text{...}\hspace{0.05cm} $ .


Solution

(1)  Correct are the proposed solutions 2 and 3:

To calculate the impulse response $\underline{g}$
  • The impulse response $\underline{g}$ is equal to the sequence $\underline{x}$ for the input sequence $\underline{u} = (1, \, 0, \, 0, \, \text{...})$. Based on the filter structure, $w_0 = w_{-1} = 0$ and the equations
$$w_i \hspace{-0.2cm} \ = \ \hspace{-0.2cm} u_i + w_{i-1} + w_{i-2} \hspace{0.05cm},$$
$$x_i \hspace{-0.2cm} \ = \ \hspace{-0.2cm} w_i + w_{i-2} $$
the result $\underline{g} = \underline{x} = (1, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, \text{...})$ corresponding to proposed solution 2, as shown in the adjacent calculation.
  • But additionally the proposed solution 3 is correct, because one recognizes from this calculation scheme further following periodicities of the impulse response $\underline{g}$ (up to infinity) because of in each case same register assignment:
$$g_3 \hspace{-0.2cm} \ = \ \hspace{-0.2cm} g_6 = g_9 = \hspace{0.05cm}\text{...} \hspace{0.05cm}= 1 \hspace{0.05cm},$$
$$g_4 \hspace{-0.2cm} \ = \ \hspace{-0.2cm} g_7 = g_{10} =\hspace{0.05cm} \text{...} \hspace{0.05cm}= 0 \hspace{0.05cm},$$
For calculation of the output sequence $\underline{x}$
$$g_5 \hspace{-0.2cm} \ = \ \hspace{-0.2cm} g_8 = g_{11} =\hspace{0.05cm} \text{...} \hspace{0.05cm}= 1 \hspace{0.05cm}.$$






(2) After similar calculations as in subtask (1) one recognizes the correctness of solutions 1 and 3:

  • The initial sequence $\underline{x}$ also extends to infinity.
  • Periodicities show up again.


The same result is obtained by adding the impulse responses $\underline{g} = (1, \, 0, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, \text{...} \hspace{0.05cm})$ n the Galois field ${\rm GF(2)}$ shifted by one, three, six, and seven positions (to the right, respectively):

$$\underline{x} = (0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} \text{...}\hspace{0.05cm}) \hspace{0.05cm} + \hspace{0.05cm} (0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} \text{...}\hspace{0.05cm}) \hspace{0.05cm} + \hspace{0.05cm} (0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} \text{...}\hspace{0.05cm}) \hspace{0.05cm} + \hspace{0.05cm} (0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} \text{...}\hspace{0.05cm}) $$
$$\Rightarrow \hspace{0.3cm}\underline{x} = (0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} \text{...}\hspace{0.05cm}) \hspace{0.05cm}. $$

Due to the linearity of the system under consideration, this is allowed.


(3)  Here we choose the way over the $D$ transforms:

$$\underline{u}= (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm}) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad U(D) = 1+ D + D^2 \hspace{0.05cm}.$$
  • With the transfer function $G(D) = (1 + D^2)/(1 + D + D^2)$ one thus obtains for the $D$ transform of the output sequence:
$$X(D) = {U(D)} \cdot G(D) = {1+D+D^2} \cdot \frac{1+D^2}{1+D+D^2} = 1+D^2 \hspace{0.05cm}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}\underline{x} = (1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.01cm} \text{...}\hspace{0.05cm} \hspace{0.05cm} ) \hspace{0.05cm}.$$
  • Only the proposed solution 1 is correct here: despite infinitely long impulse response $\underline{g}$, for this input sequence $\underline{u}$ the output sequence $\underline{x}$ is limited to three bits.
  • The same result is again obtained by adding shifted impulse responses:
$$\underline{x} = (1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} \text{...}\hspace{0.05cm}) + (0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} \text{...}\hspace{0.05cm}) + (0\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} \text{...}\hspace{0.05cm}) = (1\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} \text{...}\hspace{0.05cm}) \hspace{0.05cm}. $$


$\rm GF(2)$ polynomial division $(1 + D^2)/(1 + D + D^2)$

(4)  Correct are the proposed solutions 1 and 3:

  • On the data sheet, the general transfer function of a second–order recursive filter is given as follows.
$$G(D) = \frac{a_0 + a_1 \cdot D + a_2 \cdot D^2}{1 + b_1 \cdot D + b_2 \cdot D^2} \hspace{0.05cm}.$$
  • Das hier betrachtete Filter ist durch die Koeffizienten $a_0 = a_2 = b_1 = b_2 = 1$ und $a_1 = 0$ bestimmt. Somit erhält man das Ergebnis entsprechend dem Lösungsvorschlag 1:
$$G(D) = \frac{1 + D^2}{1 + D + D^2} \hspace{0.05cm}. $$
  • At the same time $G(D)$ is also the $D$ transformed of the impulse response:
$$\underline{g}= (1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm}0 ,\hspace{0.05cm} \text{ ...}\hspace{0.05cm}) \hspace{0.15cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.15cm} {G}(D)$$
$$\Rightarrow\hspace{0.3cm} {G}(D)= 1 + D + D^2 + D^4+ D^5 +\text{...} \hspace{0.1cm}. $$
  • This means: The proposed solution 3 is also correct.
  • The same result would have been obtained by dividing the two polynomials $1 + D^2$ and $1 + D + D^2$, as the calculation opposite shows.