Difference between revisions of "Aufgaben:Exercise 3.7: Comparison of Two Convolutional Encoders"

From LNTwww
(Die Seite wurde neu angelegt: „{{quiz-Header|Buchseite=Kanalcodierung/Codebeschreibung mit Zustands– und Trellisdiagramm }} [[File:|right|]] ===Fragebogen=== <quiz display=simple…“)
 
 
(26 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Codebeschreibung mit Zustands– und Trellisdiagramm
+
{{quiz-Header|Buchseite=Channel_Coding/Code_Description_with_State_and_Trellis_Diagram}}
  
 +
[[File:EN_KC_A_3_7_neu_v2.png|right|frame|Two convolutional encoders with parameters&nbsp; $n = 2, \ k = 1, \ m = 2$]]
 +
The graph shows two rate&nbsp; $1/2$&nbsp; convolutional encoders,&nbsp; each with memory&nbsp; $m = 2$:
 +
* The encoder &nbsp;$\rm A$&nbsp; has the transfer function matrix $\mathbf{G}(D) = (1 + D^2, \ 1 + D + D^2)$.
  
 +
* In encoder &nbsp;$\rm B$&nbsp; the two filters&nbsp; $($top and bottom$)$&nbsp; are interchanged,&nbsp; and it holds:
 +
:$$\mathbf{G}(D) = (1 + D + D^2, \ 1 + D^2).$$
  
  
 +
The lower encoder &nbsp;$\rm B$&nbsp; has already been treated in detail in the theory part.
  
}}
+
In the present exercise,&nbsp;
 +
*you are first to determine the state transition diagram for encoder &nbsp;$\rm A$,&nbsp;
  
[[File:|right|]]
+
*and then work out the differences and the similarities between the two state diagrams.
  
  
===Fragebogen===
 
  
 +
 +
 +
<u>Hints:</u>
 +
*This exercise belongs to the chapter&nbsp; [[Channel_Coding/Code_Description_with_State_and_Trellis_Diagram| "Code description with state and trellis diagram"]].
 +
 +
*Reference is made in particular to the sections
 +
:*&nbsp; [[Channel_Coding/Code_Description_with_State_and_Trellis_Diagram#State_definition_for_a_memory_register|"State definition for a memory register"]]&nbsp; and.
 +
:*&nbsp; [[Channel_Coding/Code_Description_with_State_and_Trellis_Diagram#Representation_in_the_state_transition_diagram|"Representation in the state transition diagram"]].
 +
 +
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{&nbsp; $\underline{u} = (0, \, 1, \, 1, \, 1, \, 0, \, 1, \, 0, \, 0, \, \text{...}\hspace{0.05cm})$&nbsp; holds.&nbsp; Which sequences does encoder &nbsp;$\rm A$ generate?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
+ $\underline{x}^{(1)} = (0, \, 1, \, 1, \, 0, \, 1, \, 0, \, 0, \, 1, \, \text{...}\hspace{0.05cm})$,
+ Richtig
+
- $\underline{x}^{(1)} = (0, \, 1, \, 0, \, 1, \, 0, \, 0, \, 1, \, 1, \, \text{...}\hspace{0.05cm})$,
 +
- $\underline{x}^{(2)} = (0, \, 1, \, 1, \, 0, \, 1, \, 0, \, 0, \, 1, \, \text{...}\hspace{0.05cm})$,
 +
+ $\underline{x}^{(2)} = (0, \, 1, \, 0, \, 1, \, 0, \, 0, \, 1, \, 1, \, \text{...}\hspace{0.05cm})$.
  
 +
{Which of the above state transitions exist in encoder &nbsp;$\rm A$?
 +
|type="[]"}
 +
+ $s_i = S_0, \ u_i = 0 \ &#8658; \ s_{i+1} = S_0; \hspace{1cm} s_i = S_0, \ u_i = 1 \ &#8658; \ s_{i+1} = S_1$.
 +
+ $s_i = S_1, \ u_i = 0 \ &#8658; \ s_{i+1} = S_2; \hspace{1cm} s_i = S_1, \ u_i = 1 \ &#8658; \ s_{i+1} = S_3$.
 +
+ $s_i = S_2, \ u_i = 0 \ &#8658; \ s_{i+1} = S_0; \hspace{1cm} s_i = S_2, \ u_i = 1 \ &#8658; \ s_{i+1} = S_1$.
 +
+ $s_i = S_3, \ u_i = 0 \ &#8658; \ s_{i+1} = S_2; \hspace{1cm} s_i = S_3, \ u_i = 1 \ &#8658; \ s_{i+1} = S_3$.
  
{Input-Box Frage
+
{How do the two state transition diagrams differ?
|type="{}"}
+
|type="[]"}
$\alpha$ = { 0.3 }
+
- Other state transitions are possible.
 +
- All eight transitions have different code sequences.
 +
+ Differences exist only for the code sequences&nbsp; "$(01)$"&nbsp; and&nbsp; "$(10)$".
 +
</quiz>
  
 +
===Solution===
 +
{{ML-Kopf}}
 +
[[File:P_ID2673__KC_A_3_7a_neu.png|right|frame|Calculation of the code sequence]]
 +
'''(1)'''&nbsp; The calculation is based on the equations
 +
:$$x_i^{(1)} = u_i + u_{i&ndash;2},$$
 +
:$$x_i^{(2)} = u_i + u_{i&ndash;1} + u_{i&ndash;2}.$$
 +
*Initially,&nbsp; the two memories&nbsp; $(u_{i&ndash;1}$&nbsp; and&nbsp; $u_{i&ndash;2})$&nbsp; are preallocated with zeros &nbsp; &#8658; &nbsp; $s_1 = S_0$.
 +
 +
*With&nbsp; $u_1 = 0$,&nbsp; we get&nbsp; $\underline{x}_1 = (00)$&nbsp; and&nbsp; $s_2 = S_0$.
  
 +
*With&nbsp; $u_2 = 1$,&nbsp; one obtains the output&nbsp; $\underline{x}_2 = (11)$&nbsp; and the new state&nbsp; $s_3 = S_3$.
  
</quiz>
 
  
===Musterlösung===
+
From the adjacent calculation scheme one recognizes the correctness of the&nbsp; <u>proposed solutions 1 and 4</u>.
{{ML-Kopf}}
 
'''1.'''
 
'''2.'''
 
'''3.'''
 
'''4.'''
 
'''5.'''
 
'''6.'''
 
'''7.'''
 
{{ML-Fuß}}
 
  
  
 +
[[File:P_ID2674__KC_A_3_7b.png|right|frame|State transition diagram of encoder &nbsp;$\rm A$]]
 +
'''(2)'''&nbsp; <u>All proposed solutions</u>&nbsp; are correct:
 +
*This can be seen by evaluating the table at subtask&nbsp; '''(1)'''.
 +
 +
*The results are shown in the adjacent graph.
 +
<br clear=all>
 +
[[File:P_ID2675__KC_A_3_7c.png|right|frame|State transition diagram of encoder &nbsp;$\rm B$]]
 +
'''(3)'''&nbsp; Correct is only&nbsp; <u>statement 3</u>:
 +
*The state transition diagram of encoder &nbsp;$\rm B$&nbsp; is sketched on the right.&nbsp; For derivation and interpretation,&nbsp; see section [[Channel_Coding/Code_Description_with_State_and_Trellis_Diagram#Representation_in_the_state_transition_diagram|"Representation in the state transition diagram"]].
  
[[Category:Aufgaben zu  Kanalcodierung|^3.3 Codebeschreibung mit Zustands– und Trellisdiagramm
+
*If we swap the two output bits&nbsp; $x_i^{(1)}$&nbsp; and&nbsp; $x_i^{(2)}$,&nbsp; we get from the convolutional encoder &nbsp;$\rm A$&nbsp; to the convolutional encoder&nbsp; $\rm B$&nbsp; $($and vice versa$)$.
  
  
 +
{{ML-Fuß}}
  
  
  
^]]
+
[[Category:Channel Coding: Exercises|^3.3 State and Trellis Diagram^]]

Latest revision as of 19:09, 16 November 2022

Two convolutional encoders with parameters  $n = 2, \ k = 1, \ m = 2$

The graph shows two rate  $1/2$  convolutional encoders,  each with memory  $m = 2$:

  • The encoder  $\rm A$  has the transfer function matrix $\mathbf{G}(D) = (1 + D^2, \ 1 + D + D^2)$.
  • In encoder  $\rm B$  the two filters  $($top and bottom$)$  are interchanged,  and it holds:
$$\mathbf{G}(D) = (1 + D + D^2, \ 1 + D^2).$$


The lower encoder  $\rm B$  has already been treated in detail in the theory part.

In the present exercise, 

  • you are first to determine the state transition diagram for encoder  $\rm A$, 
  • and then work out the differences and the similarities between the two state diagrams.



Hints:

  • Reference is made in particular to the sections


Questions

1

  $\underline{u} = (0, \, 1, \, 1, \, 1, \, 0, \, 1, \, 0, \, 0, \, \text{...}\hspace{0.05cm})$  holds.  Which sequences does encoder  $\rm A$ generate?

$\underline{x}^{(1)} = (0, \, 1, \, 1, \, 0, \, 1, \, 0, \, 0, \, 1, \, \text{...}\hspace{0.05cm})$,
$\underline{x}^{(1)} = (0, \, 1, \, 0, \, 1, \, 0, \, 0, \, 1, \, 1, \, \text{...}\hspace{0.05cm})$,
$\underline{x}^{(2)} = (0, \, 1, \, 1, \, 0, \, 1, \, 0, \, 0, \, 1, \, \text{...}\hspace{0.05cm})$,
$\underline{x}^{(2)} = (0, \, 1, \, 0, \, 1, \, 0, \, 0, \, 1, \, 1, \, \text{...}\hspace{0.05cm})$.

2

Which of the above state transitions exist in encoder  $\rm A$?

$s_i = S_0, \ u_i = 0 \ ⇒ \ s_{i+1} = S_0; \hspace{1cm} s_i = S_0, \ u_i = 1 \ ⇒ \ s_{i+1} = S_1$.
$s_i = S_1, \ u_i = 0 \ ⇒ \ s_{i+1} = S_2; \hspace{1cm} s_i = S_1, \ u_i = 1 \ ⇒ \ s_{i+1} = S_3$.
$s_i = S_2, \ u_i = 0 \ ⇒ \ s_{i+1} = S_0; \hspace{1cm} s_i = S_2, \ u_i = 1 \ ⇒ \ s_{i+1} = S_1$.
$s_i = S_3, \ u_i = 0 \ ⇒ \ s_{i+1} = S_2; \hspace{1cm} s_i = S_3, \ u_i = 1 \ ⇒ \ s_{i+1} = S_3$.

3

How do the two state transition diagrams differ?

Other state transitions are possible.
All eight transitions have different code sequences.
Differences exist only for the code sequences  "$(01)$"  and  "$(10)$".


Solution

Calculation of the code sequence

(1)  The calculation is based on the equations

$$x_i^{(1)} = u_i + u_{i–2},$$
$$x_i^{(2)} = u_i + u_{i–1} + u_{i–2}.$$
  • Initially,  the two memories  $(u_{i–1}$  and  $u_{i–2})$  are preallocated with zeros   ⇒   $s_1 = S_0$.
  • With  $u_1 = 0$,  we get  $\underline{x}_1 = (00)$  and  $s_2 = S_0$.
  • With  $u_2 = 1$,  one obtains the output  $\underline{x}_2 = (11)$  and the new state  $s_3 = S_3$.


From the adjacent calculation scheme one recognizes the correctness of the  proposed solutions 1 and 4.


State transition diagram of encoder  $\rm A$

(2)  All proposed solutions  are correct:

  • This can be seen by evaluating the table at subtask  (1).
  • The results are shown in the adjacent graph.


State transition diagram of encoder  $\rm B$

(3)  Correct is only  statement 3:

  • If we swap the two output bits  $x_i^{(1)}$  and  $x_i^{(2)}$,  we get from the convolutional encoder  $\rm A$  to the convolutional encoder  $\rm B$  $($and vice versa$)$.