Difference between revisions of "Aufgaben:Exercise 3.7: Comparison of Two Convolutional Encoders"

From LNTwww
Line 20: Line 20:
  
  
 
+
<u>Hints:</u>
 
 
Hints:
 
 
*This exercise belongs to the chapter&nbsp; [[Channel_Coding/Code_Description_with_State_and_Trellis_Diagram| "Code description with state and trellis diagram"]].
 
*This exercise belongs to the chapter&nbsp; [[Channel_Coding/Code_Description_with_State_and_Trellis_Diagram| "Code description with state and trellis diagram"]].
  
Line 56: Line 54:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
  [[File:P_ID2673__KC_A_3_7a_neu.png|right|frame|Calculation of the code sequence]]  
 
  [[File:P_ID2673__KC_A_3_7a_neu.png|right|frame|Calculation of the code sequence]]  
'''(1)'''&nbsp; The calculation is based on the equations.
+
'''(1)'''&nbsp; The calculation is based on the equations  
 
:$$x_i^{(1)} = u_i + u_{i&ndash;2},$$
 
:$$x_i^{(1)} = u_i + u_{i&ndash;2},$$
 
:$$x_i^{(2)} = u_i + u_{i&ndash;1} + u_{i&ndash;2}.$$
 
:$$x_i^{(2)} = u_i + u_{i&ndash;1} + u_{i&ndash;2}.$$
*Initially, the two memories ($u_{i&ndash;1}$ and $u_{i&ndash;2}$) are preallocated with zeros &nbsp;&#8658;&nbsp; $s_1 = S_0$.  
+
*Initially,&nbsp; the two memories&nbsp; $(u_{i&ndash;1}$&nbsp; and&nbsp; $u_{i&ndash;2})$&nbsp; are preallocated with zeros &nbsp; &#8658; &nbsp; $s_1 = S_0$.
*With $u_1 = 0$, we get $\underline{x}_1 = (00)$ and $s_2 = S_0$.  
+
*With $u_2 = 1$ one obtains the output $\underline{x}_2 = (11)$ and the new state $s_3 = S_3$.
+
*With&nbsp; $u_1 = 0$,&nbsp; we get&nbsp; $\underline{x}_1 = (00)$&nbsp; and&nbsp; $s_2 = S_0$.  
 +
 
 +
*With&nbsp; $u_2 = 1$,&nbsp; one obtains the output&nbsp; $\underline{x}_2 = (11)$&nbsp; and the new state&nbsp; $s_3 = S_3$.
  
  
From the adjacent calculation scheme one recognizes the correctness of the <u>proposed solutions 1 and 4</u>.
+
From the adjacent calculation scheme one recognizes the correctness of the&nbsp; <u>proposed solutions 1 and 4</u>.
  
  
 
[[File:P_ID2674__KC_A_3_7b.png|right|frame|State transition diagram of encoder &nbsp;$\rm A$]]
 
[[File:P_ID2674__KC_A_3_7b.png|right|frame|State transition diagram of encoder &nbsp;$\rm A$]]
'''(2)'''&nbsp; <u>All proposed solutions</u> are correct:
+
'''(2)'''&nbsp; <u>All proposed solutions</u>&nbsp; are correct:
*This can be seen by evaluating the table at '''(1)'''.  
+
*This can be seen by evaluating the table at subtask&nbsp; '''(1)'''.
 +
 
*The results are shown in the adjacent graph.
 
*The results are shown in the adjacent graph.
 
<br clear=all>
 
<br clear=all>
 
[[File:P_ID2675__KC_A_3_7c.png|right|frame|State transition diagram of encoder &nbsp;$\rm B$]]
 
[[File:P_ID2675__KC_A_3_7c.png|right|frame|State transition diagram of encoder &nbsp;$\rm B$]]
'''(3)'''&nbsp; Correct is only <u>statement 3</u>:  
+
'''(3)'''&nbsp; Correct is only&nbsp; <u>statement 3</u>:  
*The state transition diagram of Coder &nbsp;$\rm B$&nbsp; is sketched on the right. For derivation and interpretation, see section [[Channel_Coding/Code_Description_with_State_and_Trellis_Diagram#Representation_in_the_state_transition_diagram|"Representation in the state transition diagram"]].
+
*The state transition diagram of encoder &nbsp;$\rm B$&nbsp; is sketched on the right.&nbsp; For derivation and interpretation,&nbsp; see section [[Channel_Coding/Code_Description_with_State_and_Trellis_Diagram#Representation_in_the_state_transition_diagram|"Representation in the state transition diagram"]].
*If we swap the two output bits $x_i^{(1)}$ and $x_i^{(2)}$, we get from the convolutional encoder &nbsp;$\rm A$&nbsp; to the convolutional encoder&nbsp; $\rm B$&nbsp; (and vice versa).
+
 
 +
*If we swap the two output bits&nbsp; $x_i^{(1)}$&nbsp; and&nbsp; $x_i^{(2)}$,&nbsp; we get from the convolutional encoder &nbsp;$\rm A$&nbsp; to the convolutional encoder&nbsp; $\rm B$&nbsp; $($and vice versa$)$.
  
  

Revision as of 17:03, 14 November 2022

Two convolutional encoders with parameters  $n = 2, \ k = 1, \ m = 2$

The graph shows two rate  $1/2$  convolutional encoders,  each with memory  $m = 2$:

  • The encoder  $\rm A$  has the transfer function matrix $\mathbf{G}(D) = (1 + D^2, \ 1 + D + D^2)$.
  • In encoder  $\rm B$  the two filters  $($top and bottom$)$  are interchanged,  and it holds:
$$\mathbf{G}(D) = (1 + D + D^2, \ 1 + D^2).$$


The lower encoder  $\rm B$  has already been treated in detail in the theory part.

In the present exercise, 

  • you are first to determine the state transition diagram for encoder  $\rm A$, 
  • and then work out the differences and the similarities between the two state diagrams.



Hints:

  • Reference is made in particular to the sections


Questions

1

  $\underline{u} = (0, \, 1, \, 1, \, 1, \, 0, \, 1, \, 0, \, 0, \, \text{...}\hspace{0.05cm})$  holds.  Which sequences does encoder  $\rm A$ generate?

$\underline{x}^{(1)} = (0, \, 1, \, 1, \, 0, \, 1, \, 0, \, 0, \, 1, \, \text{...}\hspace{0.05cm})$,
$\underline{x}^{(1)} = (0, \, 1, \, 0, \, 1, \, 0, \, 0, \, 1, \, 1, \, \text{...}\hspace{0.05cm})$,
$\underline{x}^{(2)} = (0, \, 1, \, 1, \, 0, \, 1, \, 0, \, 0, \, 1, \, \text{...}\hspace{0.05cm})$,
$\underline{x}^{(2)} = (0, \, 1, \, 0, \, 1, \, 0, \, 0, \, 1, \, 1, \, \text{...}\hspace{0.05cm})$.

2

Which of the above state transitions exist in encoder  $\rm A$?

$s_i = S_0, \ u_i = 0 \ ⇒ \ s_{i+1} = S_0; \hspace{1cm} s_i = S_0, \ u_i = 1 \ ⇒ \ s_{i+1} = S_1$.
$s_i = S_1, \ u_i = 0 \ ⇒ \ s_{i+1} = S_2; \hspace{1cm} s_i = S_1, \ u_i = 1 \ ⇒ \ s_{i+1} = S_3$.
$s_i = S_2, \ u_i = 0 \ ⇒ \ s_{i+1} = S_0; \hspace{1cm} s_i = S_2, \ u_i = 1 \ ⇒ \ s_{i+1} = S_1$.
$s_i = S_3, \ u_i = 0 \ ⇒ \ s_{i+1} = S_2; \hspace{1cm} s_i = S_3, \ u_i = 1 \ ⇒ \ s_{i+1} = S_3$.

3

How do the two state transition diagrams differ?

Other state transitions are possible.
All eight transitions have different code sequences.
Differences exist only for the code sequences  "$(01)$"  and  "$(10)$".


Solution

Calculation of the code sequence

(1)  The calculation is based on the equations

$$x_i^{(1)} = u_i + u_{i–2},$$
$$x_i^{(2)} = u_i + u_{i–1} + u_{i–2}.$$
  • Initially,  the two memories  $(u_{i–1}$  and  $u_{i–2})$  are preallocated with zeros   ⇒   $s_1 = S_0$.
  • With  $u_1 = 0$,  we get  $\underline{x}_1 = (00)$  and  $s_2 = S_0$.
  • With  $u_2 = 1$,  one obtains the output  $\underline{x}_2 = (11)$  and the new state  $s_3 = S_3$.


From the adjacent calculation scheme one recognizes the correctness of the  proposed solutions 1 and 4.


State transition diagram of encoder  $\rm A$

(2)  All proposed solutions  are correct:

  • This can be seen by evaluating the table at subtask  (1).
  • The results are shown in the adjacent graph.


State transition diagram of encoder  $\rm B$

(3)  Correct is only  statement 3:

  • If we swap the two output bits  $x_i^{(1)}$  and  $x_i^{(2)}$,  we get from the convolutional encoder  $\rm A$  to the convolutional encoder  $\rm B$  $($and vice versa$)$.