Difference between revisions of "Aufgaben:Exercise 3.7Z: Which Code is Catastrophic?"

From LNTwww
 
Line 94: Line 94:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Applicable are <u>solutions 2 and 4</u>:
+
'''(1)'''&nbsp; Applicable are the&nbsp; <u>solutions 2 and 4</u>:
*The $D$ transform of the code sequence $\underline{x}$ is given by $U(D) = 1/(1+ D)$ to be.  
+
*The D&ndash;transform of the code sequence&nbsp; $\underline{x}$&nbsp; is given by&nbsp; $U(D) = 1/(1+ D)$.  
 
:$$X(D)= \frac{1+D +D^2+D^3}{1+D}= 1 +D^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
:$$X(D)= \frac{1+D +D^2+D^3}{1+D}= 1 +D^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
   \underline{x}= (1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} ... \hspace{0.1cm})\hspace{0.05cm}.$$
 
   \underline{x}= (1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} ... \hspace{0.1cm})\hspace{0.05cm}.$$
*Consider $(1 + D) \cdot (1 + D^2) = 1 + D + D^2 + D^3$.
+
*Consider&nbsp; $(1 + D) \cdot (1 + D^2) = 1 + D + D^2 + D^3$.
  
  
  
'''(2)'''&nbsp; Because of $(1 + D) \cdot (1 + D + D^2) = 1 + D^3$, <u>solutions 3 and 4</u> are applicable here:
+
'''(2)'''&nbsp; Because of &nbsp; $(1 + D) \cdot (1 + D + D^2) = 1 + D^3$,&nbsp; <u>solutions 3 and 4</u>&nbsp; are applicable here:
 
:$$X(D)= \frac{1+D^3}{1+D}= 1 +D + D^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
:$$X(D)= \frac{1+D^3}{1+D}= 1 +D + D^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
   \underline{x}= (1,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} \text{...} \hspace{0.05cm})\hspace{0.05cm}.$$
 
   \underline{x}= (1,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} \text{...} \hspace{0.05cm})\hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Only the <u>proposed solution 1</u> is correct:
+
'''(3)'''&nbsp; Only the&nbsp; <u>proposed solution 1</u>&nbsp; is correct:
*The polynomial division $(1 + D + D^3)$ by $(1 + D)$ is not possible in the binary Galois field without a remainder.  
+
*The polynomial division&nbsp; $(1 + D + D^3)$&nbsp; by&nbsp; $(1 + D)$&nbsp; is not possible in the binary Galois field without a remainder.
*You get $X(D) = 1 + D^3 + D^4 + D^5 + \ \text{...} \hspace{0.05cm} $ &nbsp; &#8658; &nbsp; Output sequence $\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \,  \text{...} \hspace{0.05cm})$ which extends to infinity.  
+
 +
*You get&nbsp; $X(D) = 1 + D^3 + D^4 + D^5 + \ \text{...} \hspace{0.05cm} $ &nbsp; &#8658; &nbsp; output sequence&nbsp; $\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \,  \text{...} \hspace{0.05cm})$&nbsp; which extends to infinity.  
  
  
'''(4)'''&nbsp; Only the <u>proposed solution 1</u> is correct:
+
'''(4)'''&nbsp; Only the&nbsp; <u>proposed solution 1</u>&nbsp; is correct:
 
*The transfer function matrix of $\text{ coder A }$ is:
 
*The transfer function matrix of $\text{ coder A }$ is:
 
:$${\boldsymbol{\rm G}}_{\rm A}(D)= \left (1 +D + D^3\hspace{0.05cm}, \hspace{0.15cm} 1+D +D^2+D^3 \right ) \hspace{0.05cm}.$$
 
:$${\boldsymbol{\rm G}}_{\rm A}(D)= \left (1 +D + D^3\hspace{0.05cm}, \hspace{0.15cm} 1+D +D^2+D^3 \right ) \hspace{0.05cm}.$$
*The first code bit in each case is therefore given by the sequence corresponding to subtask (3) and the second bit by the sequence corresponding to subtask (1):
+
*The first code bit in each case is therefore given by the sequence corresponding to subtask&nbsp; '''(3)'''&nbsp; and the second bit by the sequence corresponding to subtask&nbsp; '''(1)''':
 
:$$\underline{x}^{(1)}\hspace{-0.15cm} \ = \ \hspace{-0.15cm}  (1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} ... \hspace{0.1cm})\hspace{0.05cm}, \hspace{1cm}
 
:$$\underline{x}^{(1)}\hspace{-0.15cm} \ = \ \hspace{-0.15cm}  (1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} ... \hspace{0.1cm})\hspace{0.05cm}, \hspace{1cm}
 
\underline{x}^{(2)}\hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm}  \text{...} \hspace{0.05cm} \hspace{0.01cm})\hspace{0.3cm}
 
\underline{x}^{(2)}\hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm}  \text{...} \hspace{0.05cm} \hspace{0.01cm})\hspace{0.3cm}
Line 123: Line 124:
  
  
'''(5)'''&nbsp; Applicable are <u>suggested solutions 2 and 4</u>:
+
'''(5)'''&nbsp; Applicable are the&nbsp; <u>suggested solutions 2 and 4</u>:
*The transfer function of $\text{ coder B }$ is $\mathbf{G}_{\rm B} = (1 + D^3, \ 1 + D + D^2 + D^3)$.  
+
*The transfer function of $\text{ encoder B }$ is&nbsp; $\mathbf{G}_{\rm B} = (1 + D^3, \ 1 + D + D^2 + D^3)$.
*The first code sequence now results according to subtask (2), while $\underline{x}^{(2)}$ still corresponds to subtask (1).  
+
*Thus we get here $\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$ &nbsp; &#8658; &nbsp; Solution suggestion 2.
+
*The first code sequence now results according to subtask&nbsp; '''(2)''',&nbsp; while&nbsp; $\underline{x}^{(2)}$&nbsp; still corresponds to subtask&nbsp; '''(1)'''.
*But solution proposition 4 is also correct. Under the assumption made here&nbsp; $\underline{u} = \underline{1}$&nbsp; the code sequence $\underline{x}$ contains only five ones.  
+
 +
*Thus we get here&nbsp; $\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$ &nbsp; &#8658; &nbsp; solution suggestion 2.
 +
 
 +
*But solution proposition 4 is also correct.&nbsp; Under the assumption&nbsp; $\underline{u} = \underline{1}$&nbsp; made here the code sequence&nbsp; $\underline{x}$&nbsp; contains only five&nbsp; "ones".  
 +
 
 
*In the next subtask this fact is taken up again.
 
*In the next subtask this fact is taken up again.
  
Line 133: Line 138:
  
  
'''(6)'''&nbsp; Correct are the <u>proposed solutions 2 and 3</u>:  
+
'''(6)'''&nbsp; Correct are the&nbsp; <u>proposed solutions 2 and 3</u>:  
 +
 
 +
As can be seen from state diagram 1,&nbsp; here the information sequence &nbsp; $\underline{u} = \underline{1} = (1, \, 1, \, 1, \, 1, \, 1, \, 1, \,  \text{...} \hspace{0.05cm})$ &nbsp; to the code sequence &nbsp; $\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, ...)$.&nbsp; This means:
 +
* The $\text{ diagram 1}$&nbsp; belongs to $\text{ encoder A}$.
  
WAs can be seen from state diagram 1, here the information sequence $\underline{u} = \underline{1} = (1, \, 1, \, 1, \, 1, \, 1, \, 1, \,  \text{...} \hspace{0.05cm})$ to the code sequence $\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, ...)$. This means:
+
* The $\text{ diagram 2}$&nbsp; belongs to $\text{ encoder B }$ &nbsp; &#8658; &nbsp; Proposed solution 2.
* To the $\text{ encoder A }$ belongs the state transition diagram 1.
 
* To $\text{ encoder B }$ belongs the state transition diagram 2 &nbsp; &#8658; &nbsp; Proposed solution 2.
 
  
  
For the $\text{ encoder B }$, the following statements hold:
+
For $\text{ encoder B }$,&nbsp; the following statements hold:
 
* $\underline{u} = \underline{0} = (0, \, 0, \, 0, \, 0, \, 0, \, 0, \,  \text{...} \hspace{0.05cm}) \hspace{0.35cm} \Rightarrow \hspace{0.35cm} \underline{x} = (00, \, 00, \, 00, \, 00, \, 00, \, 00, \,  \text{...} \hspace{0.05cm})$,
 
* $\underline{u} = \underline{0} = (0, \, 0, \, 0, \, 0, \, 0, \, 0, \,  \text{...} \hspace{0.05cm}) \hspace{0.35cm} \Rightarrow \hspace{0.35cm} \underline{x} = (00, \, 00, \, 00, \, 00, \, 00, \, 00, \,  \text{...} \hspace{0.05cm})$,
 
* $\underline{u} = \underline{1} = (1, \, 1, \, 1, \, 1, \, 1, \, 1, \,  \text{...} \hspace{0.05cm}) \hspace{0.35cm} \Rightarrow \hspace{0.35cm} \underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$.
 
* $\underline{u} = \underline{1} = (1, \, 1, \, 1, \, 1, \, 1, \, 1, \,  \text{...} \hspace{0.05cm}) \hspace{0.35cm} \Rightarrow \hspace{0.35cm} \underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$.
  
  
Das bedeutet:  
+
That means:  
*With only five bit errors at positions 1, 2, 3, 5, 6, the zero sequence is decoded as a one sequence and vice versa.  
+
*With only five bit errors at positions 1,&nbsp; 2,&nbsp; 3,&nbsp; 5,&nbsp; 6,&nbsp; the&nbsp; "zero sequence"&nbsp; is decoded as a&nbsp; "one sequence"&nbsp; and vice versa.
*Such a code is called <b>catastrophic</b> &nbsp; &#8658; &nbsp; Solution suggestion 3.
+
 +
*Such a code is called&nbsp; "<b>catastrophic</b>" &nbsp; &#8658; &nbsp; solution 3.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Latest revision as of 17:45, 14 November 2022

Encoder for  $m = 3$ 
and state transition diagram.

The adjacent graph shows

  • two different $\text{ encoder A }$ and $\text{ enoder B}$,  each with memory  $m = 3$  $($top$)$,
  • two state transition diagrams,  labeled $\text{ diagram 1 }$ and $\text{ diagram 2 }$  $($bottom$)$.


In the last subtask,  you are to decide which diagram belongs to $\text{ encoder A }$ and which to $\text{ encoder B}$.

First,  the three transfer functions

  • $G(D) = 1 + D + D^2 + D^3$,
  • $G(D) = 1 + D^3$,  and
  • $G(D) = 1 + D + D^3$


are analyzed and then the initial sequences  $\underline{x}$  is calculated under the condition

$$\underline{u}= \underline{1}= (1, 1, 1, \text{...} \hspace{0.05cm}) \hspace{0.35cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.35cm} U(D)= \frac{1}{1+D}.$$

These transfer functions are directly related to the outlined encoders.

  • Furthermore, it remains to be clarified which of the two codes is "catastrophic".
  • One speaks of such when a finite number of transmission errors leads to an infinite number of decoding errors.



Hints:

  • Two more polynomial products in  ${\rm GF}(2)$  are given:
$$(1+D) \cdot (1+D^2) = 1+D +D^2+D^3\hspace{0.05cm},$$
$$(1+D) \cdot (1+D+D^2) = 1+D^3\hspace{0.05cm}.$$





Questions

1

What output sequence   $\underline{x}$   results fo r  $\underline{u} = \underline{1}$   and   $G(D) = 1 + D + D^2 + D^3$?

$\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$.
The output sequence   $\underline{x}$   is time-limited.

2

What output sequence   $\underline{x}$   results for   $\underline{u} = \underline{1}$   and   $G(D) = 1 + D^3$?

$\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$,
The output sequence  $\underline{x}$  is time-limited.

3

What output sequence   $\underline{x}$   results for   $\underline{u} = \underline{1}$   and   $G(D) = 1 + D + D^3$?

$\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \,\text{...} \hspace{0.05cm})$,
$\underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm})$,
The output sequence   $\underline{x}$  is finite in time.

4

What is the code sequence  $\underline{x}$  of $\text{ encoder A }$ for the sequence of ones at the input?

$\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \,\text{...} \hspace{0.05cm})$,
$\underline{x} = (11, \, 11, \, 11, \, 11, \, 11, \, 11, \,\text{...} \hspace{0.05cm})$.
The code sequence  $\underline{x}$  contains finitely many  "ones".

5

What is the code sequence   $\underline{x}$   of $\text{ encoder B }$ for the  "sequence of ones"  at the input?

$\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, \text{...} \hspace{0.05cm})$,
$\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \, \text{...} \hspace{0.05cm}$,
$\underline{x} = (11, \, 11, \, 11, \, 11, \, 11, \, 11, \, \text{...} \hspace{0.05cm})$.
The code sequence $\underline{x}$ contains finitely many  "ones".

6

Which statements are true for $\text{ encoder B }$?

The $\text{ diagram 1}$  belongs to $\text{ encoder B }$.
The $\text{ diagram 2}$  belongs to $\text{ encoder B }$.
$\text{Encoder B }$ is catastrophic.


Solution

(1)  Applicable are the  solutions 2 and 4:

  • The D–transform of the code sequence  $\underline{x}$  is given by  $U(D) = 1/(1+ D)$.
$$X(D)= \frac{1+D +D^2+D^3}{1+D}= 1 +D^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \underline{x}= (1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} ... \hspace{0.1cm})\hspace{0.05cm}.$$
  • Consider  $(1 + D) \cdot (1 + D^2) = 1 + D + D^2 + D^3$.


(2)  Because of   $(1 + D) \cdot (1 + D + D^2) = 1 + D^3$,  solutions 3 and 4  are applicable here:

$$X(D)= \frac{1+D^3}{1+D}= 1 +D + D^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \underline{x}= (1,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} \text{...} \hspace{0.05cm})\hspace{0.05cm}.$$


(3)  Only the  proposed solution 1  is correct:

  • The polynomial division  $(1 + D + D^3)$  by  $(1 + D)$  is not possible in the binary Galois field without a remainder.
  • You get  $X(D) = 1 + D^3 + D^4 + D^5 + \ \text{...} \hspace{0.05cm} $   ⇒   output sequence  $\underline{x} = (1, \, 0, \, 0, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$  which extends to infinity.


(4)  Only the  proposed solution 1  is correct:

  • The transfer function matrix of $\text{ coder A }$ is:
$${\boldsymbol{\rm G}}_{\rm A}(D)= \left (1 +D + D^3\hspace{0.05cm}, \hspace{0.15cm} 1+D +D^2+D^3 \right ) \hspace{0.05cm}.$$
  • The first code bit in each case is therefore given by the sequence corresponding to subtask  (3)  and the second bit by the sequence corresponding to subtask  (1):
$$\underline{x}^{(1)}\hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} ... \hspace{0.1cm})\hspace{0.05cm}, \hspace{1cm} \underline{x}^{(2)}\hspace{-0.15cm} \ = \ \hspace{-0.15cm} (1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} 0,\hspace{0.05cm} \text{...} \hspace{0.05cm} \hspace{0.01cm})\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{x}= (11,\hspace{0.05cm} 00,\hspace{0.05cm} 01,\hspace{0.05cm} 10,\hspace{0.05cm} 10,\hspace{0.05cm} 10,\hspace{0.05cm} \text{...} \hspace{0.05cm} \hspace{0.01cm})\hspace{0.05cm}.$$


(5)  Applicable are the  suggested solutions 2 and 4:

  • The transfer function of $\text{ encoder B }$ is  $\mathbf{G}_{\rm B} = (1 + D^3, \ 1 + D + D^2 + D^3)$.
  • The first code sequence now results according to subtask  (2),  while  $\underline{x}^{(2)}$  still corresponds to subtask  (1).
  • Thus we get here  $\underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$   ⇒   solution suggestion 2.
  • But solution proposition 4 is also correct.  Under the assumption  $\underline{u} = \underline{1}$  made here the code sequence  $\underline{x}$  contains only five  "ones".
  • In the next subtask this fact is taken up again.



(6)  Correct are the  proposed solutions 2 and 3:

As can be seen from state diagram 1,  here the information sequence   $\underline{u} = \underline{1} = (1, \, 1, \, 1, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm})$   to the code sequence   $\underline{x} = (11, \, 00, \, 01, \, 10, \, 10, \, 10, \, ...)$.  This means:

  • The $\text{ diagram 1}$  belongs to $\text{ encoder A}$.
  • The $\text{ diagram 2}$  belongs to $\text{ encoder B }$   ⇒   Proposed solution 2.


For $\text{ encoder B }$,  the following statements hold:

  • $\underline{u} = \underline{0} = (0, \, 0, \, 0, \, 0, \, 0, \, 0, \, \text{...} \hspace{0.05cm}) \hspace{0.35cm} \Rightarrow \hspace{0.35cm} \underline{x} = (00, \, 00, \, 00, \, 00, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$,
  • $\underline{u} = \underline{1} = (1, \, 1, \, 1, \, 1, \, 1, \, 1, \, \text{...} \hspace{0.05cm}) \hspace{0.35cm} \Rightarrow \hspace{0.35cm} \underline{x} = (11, \, 10, \, 11, \, 00, \, 00, \, 00, \, \text{...} \hspace{0.05cm})$.


That means:

  • With only five bit errors at positions 1,  2,  3,  5,  6,  the  "zero sequence"  is decoded as a  "one sequence"  and vice versa.
  • Such a code is called  "catastrophic"   ⇒   solution 3.