Difference between revisions of "Aufgaben:Exercise 3.8: Once more Mutual Information"

From LNTwww
 
(25 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Informationstheorie/Verschiedene Entropien zweidimensionaler Zufallsgrößen
+
{{quiz-Header|Buchseite=Information_Theory/Different_Entropy_Measures_of_Two-Dimensional_Random_Variables
 
}}
 
}}
  
[[File:P_ID2768__Inf_A_3_7_neu.png|right|]]
+
[[File:P_ID2768__Inf_A_3_7_neu.png|right|frame|2D&ndash;Functions&nbsp; <br>&nbsp;$P_{ XY }$&nbsp; und&nbsp; $P_{ XW }$]]
Wir betrachten das Tupel $Z = (X, Y)$, wobei die Einzelkomponenten $X$ und $Y$ jeweils ternäre Zufallsgrößen darstellen:  
+
We consider the tuple&nbsp; $Z = (X, Y)$, where the individual components&nbsp; $X$&nbsp; and&nbsp; $Y$&nbsp; each represent ternary random variables:  
 +
:$$X = \{ 0 ,\ 1 ,\ 2 \} , \hspace{0.3cm}Y= \{ 0 ,\ 1 ,\ 2 \}.$$
  
$X = \{ 0 , 1 , 2 \}$ , $Y= \{ 0 , 1 , 2 \}$.  
+
The joint probability function&nbsp; $P_{ XY }(X, Y)$&nbsp; of both random variables is given in the upper graph.&nbsp;
  
 +
In&nbsp; [[Aufgaben:Exercise_3.8Z:_Tuples_from_Ternary_Random_Variables|Exercise 3.8Z]]&nbsp; this constellation is analyzed in detail.&nbsp; One obtains as a result (all data in "bit"):
 +
:* $H(X) = H(Y) = \log_2 (3) = 1.585,$
 +
:* $H(XY) = \log_2 (9) = 3.170,$
 +
:* $I(X, Y) = 0,$
 +
:* $H(Z) = H(XZ) = 3.170,$
 +
:* $I(X, Z) = 1.585.$
  
Die gemeinsame Wahrscheinlichkeitsfunktion $P_{ XY }(X, Y)$ beider Zufallsgrößen ist oben angegeben. In der [http://en.lntwww.de/Aufgaben:3.07Z_Tupel_aus_tern%C3%A4ren_Zufallsgr%C3%B6%C3%9Fen Zusatzaufgabe Z3.7] wird diese Konstellation ausführlich analysiert. Man erhält als Ergebnis:
+
Furthermore, we consider the random variable&nbsp; $W = \{ 0,\ 1,\ 2,\ 3,\ 4 \}$, whose properties result from the composite probability function&nbsp; $P_{ XW }(X, W)$&nbsp; according to the sketch below.&nbsp; The probabilities are zero in all fields with a white background.
:* $H(X) = H(Y) = log_2 (3) = 1.585 bit$
 
:*$H(XY) = log_2 (9) = 3.170 bit$,
 
:*$I(X, Y) = 0$,
 
:*$H(Z) = H(XZ) = 3.170 bit$,
 
:*$I(X, Z) = 1.585 bit$
 
  
Desweiteren betrachten wir hier die Zufallsgröße $W = \{ 0, 1, 2, 3, 4 \}$, deren Eigenschaften sich aus der Verbundwahrscheinlichkeitsfunktion $P_{ XW }(X, W)$ nach der unteren Skizze ergeben. Die Wahrscheinlichkeiten in allen weiß hinterlegten Feldern sind jeweils $0$.
+
What is sought in the present exercise is the mutual information between
 +
:*the random variables&nbsp; $X$&nbsp; and&nbsp; $W$ &nbsp; ⇒ &nbsp;  $I(X; W)$,
 +
:*the random variables&nbsp; $Z$&nbsp; and&nbsp; $W &nbsp; ⇒ &nbsp; I(Z; W)$.
  
Gesucht ist in der vorliegenden Aufgabe die Transinformation
 
:* zwischen den Zufallsgrößen $X$ und $W \Rightarrow  I(X; W)$,
 
:* zwischen den Zufallsgrößen $Z$ und $W  ⇒  I(Z; W)$.
 
  
'''Hinweis:'''  Die Aufgabe bezieht sich auf  [http://en.lntwww.de/Informationstheorie/Verschiedene_Entropien_zweidimensionaler_Zufallsgr%C3%B6%C3%9Fen Kapitel 3.2]
+
 
===Fragebogen===
+
 
 +
 
 +
Hints:  
 +
*The exercise belongs to the chapter&nbsp; [[Information_Theory/Verschiedene_Entropien_zweidimensionaler_Zufallsgrößen|Different entropies of two-dimensional random variables]].
 +
*In particular, reference is made to the sections <br> &nbsp; &nbsp;  [[Information_Theory/Verschiedene_Entropien_zweidimensionaler_Zufallsgrößen#Conditional_probability_and_conditional_entropy|Conditional probability and conditional entropy]] as well as <br> &nbsp; &nbsp;  [[Information_Theory/Verschiedene_Entropien_zweidimensionaler_Zufallsgrößen#Mutual_information_between_two_random_variables|Mutual information between two random variables]].
 +
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie könnten die Größen X, Y und W zusammenhängen? Es gilt
+
{How might the variables&nbsp; $X$,&nbsp; $Y$&nbsp; and&nbsp; $W$&nbsp; be related?  
 
|type="[]"}
 
|type="[]"}
+ $W = X + Y$
+
+ $W = X + Y$,
+$W = X Y + 2$
+
+$W = X - Y + 2$,
-$W = Y X + 2$
+
-$W = Y - X + 2$.
  
{Welche Transinformationen besteht zwischen den Zufallsgrößen $X$ und $W$?
+
{What is the mutual information between the random variables&nbsp; $X$&nbsp; and&nbsp; $W$?
 
|type="{}"}
 
|type="{}"}
$I(X; Y)$ = { 0.612 3%  } $bit$
+
$I(X; W) \ = \ $ { 0.612 3%  } $\ \rm bit$
  
{Welche Transinformation besteht zwischen den Zufallsgrößen $Z$ und $W$?
+
{What is the mutual information between the random variables&nbsp; $Z$&nbsp; and&nbsp; $W$?
 
|type="{}"}
 
|type="{}"}
$I(X; Z)$ = { 2.197 3%  } $bit$
+
$I(Z; W) \ = \ $ { 2.197 3%  } $\ \rm bit$
  
{Welche der nachfolgenden Aussagen sind zutreffend?
+
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
+ Es gilt $H(ZW) = H(XW)$.
+
+ &nbsp; $H(ZW) = H(XW)$&nbsp; is true.
+ Es gilt $H(W|Z) = 0$.
+
+ &nbsp; $H(W|Z) = 0$&nbsp; is true.
+ Es gilt $I(Z; W) > I(X; W)$.
+
+ &nbsp; $I(Z; W) > I(X; W)$&nbsp; is true.
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' Mit $X = \{0, 1, 2\}$, $Y = \{0, 1, 2\}$ gilt $X + Y = \{0, 1, 2, 3, 4\}$ und auch die Wahrscheinlichkeiten stimmen mit der vorgegebenen Wahrscheinlichkeitsfunktion überein. Die Überprüfung der beiden anderen Vorgaben zeigt, dass auch $W = X – Y + 2$ möglich ist  $\Rightarrow$ $Lösungsvorschläge 1$ und $2$.
+
'''(1)'''&nbsp; The <u>correct solutions are 1 and 2</u>:
 
+
*With&nbsp; $X = \{0,\ 1,\ 2\}$,&nbsp; $Y = \{0,\ 1,\ 2\}$&nbsp;, &nbsp; $X + Y = \{0,\ 1,\ 2,\ 3,\ 4\}$ holds.&nbsp;
'''2.'''Aus der 2D–Wahrscheinlichkeitsfunktion $P_{ XW }(X, W)$ auf der Angabenseite erhält man für
+
*The probabilities also agree with the given probability function.
:*die Verbundentropie:
+
*Checking the other two specifications shows that&nbsp; $W = X - Y + 2$&nbsp; is also possible, but not&nbsp; $W = Y - X + 2$.
 
 
$$H(XW) = log_2(9) = 3.170$$,
 
:* die Wahrsacheinlichkeitsfunktion der Zufallsgröße $W$:
 
$$P_W(W) = [ 1/9 , 2/9 ,  3/9 ,  2/9 ,  1/9]$$,
 
:*die Entropie der Zufallsgröße $W$:
 
$$H(W) = 2 . \frac{1}{9} .  log_2\frac{9}{1} + 2 . \frac{2}{9} .  log_2\frac{9}{2} + 2 . \frac{3}{9} .  log_2\frac{9}{3} = 2.197 ( bit)$$.
 
Mit $H(X) = 1.585$ bit (wurde angegeben) ergibt sich somit für die ''Mutual Information'':
 
$$I(X;W) = H(X) + H(W) - H(XW)=$$
 
$$=1.585+2.197-3.170=0.612(bit)$$
 
[[File:P_ID2769__Inf_A_3_7d.png|right|]]
 
Das Rechte Schaubild verdeutlicht die Berechnung der Transinformation $I(X; W)$ zwischen der ersten Komponente $X$ und der Summe $W$.
 
 
 
 
 
 
 
 
 
 
 
'''3.''' Die Grafik zeigt die Verbundwahrscheinlichkeit $P_{ ZW }(⋅)$. Das Schema besteht aus $5 · 9 = 45$ Feldern im Gegensatz zur Darstellung von $P_{ XW }(⋅)$ auf der Angabenseite mit $3 · 9 = 27$ Feldern.
 
[[File:P_ID2770__Inf_A_3_7c.png|right|]]
 
 
 
Von den $45$ Feldern sind aber auch nur neun mit Wahrscheinlichkeiten $≠ 0$ belegt. Für die Verbundentropie gilt:
 
  
$H(ZW) = 3.170(bit)$
 
  
Mit den weiteren Entropien
+
[[File:P_ID2769__Inf_A_3_7d.png|right|frame|To calculate the mutual information]]
  
$$H(Z) = 3.170 (bit)$$
 
$$H(W) = 2.197 (bit)$$
 
entsprechend der [http://en.lntwww.de/Aufgaben:3.07Z_Tupel_aus_tern%C3%A4ren_Zufallsgr%C3%B6%C3%9Fen Aufgabe Z3.7] bzw. der Teilaufgabe (b) erhält man für die Transinformation:
 
  
$$I(Z;W) = H(Z) + H(W) - H(ZW) = 2.197 (bit)$$
+
'''(2)'''&nbsp; From the two-dimensional probability mass function&nbsp; $P_{ XW }(X, W)$&nbsp; in the specification section, one obtains for
wie auch aus dem rechten oberen Schaubild hervorgeht.
+
*the joint entropy:
 +
:$$H(XW) = {\rm log}_2 \hspace{0.1cm} (9)
 +
= 3.170\ {\rm (bit)}
 +
\hspace{0.05cm},$$
 +
* the probability function of the random variable&nbsp; $W$:
 +
:$$P_W(W) = \big [\hspace{0.05cm}1/9\hspace{0.05cm}, \hspace{0.15cm} 2/9\hspace{0.05cm},\hspace{0.15cm} 3/9 \hspace{0.05cm}, \hspace{0.15cm} 2/9\hspace{0.05cm}, \hspace{0.15cm} 1/9\hspace{0.05cm} \big ]\hspace{0.05cm},$$
 +
*the entropy of the random variable&nbsp; $W$:
 +
:$$H(W) = 2 \cdot \frac{1}{9} \cdot {\rm log}_2 \hspace{0.1cm} \frac{9}{1} + 2 \cdot \frac{2}{9} \cdot {\rm log}_2 \hspace{0.1cm} \frac{9}{2} +
 +
\frac{3}{9} \cdot {\rm log}_2 \hspace{0.1cm} \frac{9}{3}
 +
{= 2.197\ {\rm (bit)}} \hspace{0.05cm}.$$
  
 +
Thus, with&nbsp; $H(X) = 1.585 \ \rm bit$&nbsp; (was given), the result for the&nbsp; mutual information:
 +
:$$I(X;W) = H(X) + H(W) - H(XW) = 1.585 + 2.197- 3.170\hspace{0.15cm} \underline {= 0.612\ {\rm (bit)}} \hspace{0.05cm}.$$
  
'''4.'''  $Alle$  $drei$  $Aussagen$ treffen zu, wie auch aus dem oberen Schaubild ersichtlich ist. Wir versuchen eine Interpretation dieser numerischen Ergebnisse:
+
The left of the two diagrams illustrates the calculation of the mutual information&nbsp; $I(X; W)$&nbsp; between the first component&nbsp; $X$&nbsp; and the sum&nbsp; $W$.
:* Die Verbundwahrscheinlichkeit $P_{ ZW }$ setzt sich ebenso wie $P_{ XW }$ aus neun gleichwahrscheinlichen Elementen $≠ 0$ zusammen. Damit ist offensichtlich, dass auch die Verbundentropien gleich sind:
 
  
$H(ZW) =  H(XW) = 3.170 (bit)$. 
 
  
:* Wenn ich das Tupel $Z = (X, Y)$ kenne, kenne ich natürlich auch die Summe $W = X + Y$. Damit ist $H(W|Z) = 0$. Dagegen ist $H(Z|W)$ ungleich $0$. Vielmehr gilt $H(Z|W) = H(X|W) = 0.973  bit$.
 
:* Die Zufallsgröße $W$ liefert also die genau gleiche Information hinsichtlich des Tupels $Z$ wie für die Einzelkomponente $X$. Dies ist die verbale Interpretation für die Aussage $H(Z|W) = H(X|W)$
 
:* Die gemeinsame Information von $Z$ und $W \Rightarrow  I(Z; W)$ ist größer als die von $X und W \Rightarrow  I(X; W)$, weil $H(W|Z)$ gleich $0$ ist, während $H(W|X)$ ungleich $0$ ist, nämlich genau so groß ist wie $H(X)$ :
 
  
$$I(Z;W) = H(W) - H(W|Z) = 2.197 - 0 = 2.197 (bit)$$
+
[[File:P_ID2770__Inf_A_3_7c.png|right|frame|Joint probability between&nbsp; $Z$&nbsp; and&nbsp; $W$]]
$$I(X;W) = H(W) - H(W|X) = 2.197 - 1.585 = 0.612 (bit)$$
+
'''(3)'''&nbsp;  The second graph shows the joint probability&nbsp; $P_{ ZW }(⋅)$.&nbsp;
 +
*The scheme consists of&nbsp; $5 · 9 = 45$&nbsp; fields in contrast to the plot of&nbsp; $P_{ XW }(⋅)$&nbsp; in the data section with&nbsp; $3 · 9 = 27$&nbsp; fields.
 +
*However, of the&nbsp; $45$&nbsp; fields, only nine are also assigned non-zero probabilities.&nbsp; The following applies to the joint entropy:  &nbsp; $H(ZW)  = 3.170\ {\rm (bit)} \hspace{0.05cm}.$
 +
*With the further entropies&nbsp; $H(Z)  = 3.170\ {\rm (bit)}\hspace{0.05cm}$&nbsp; and&nbsp; $H(W)  = 2.197\ {\rm (bit)}\hspace{0.05cm}$&nbsp; according to&nbsp; [[Aufgaben:Exercise_3.8Z:_Tuples_from_Ternary_Random_Variables| Exercise 3.8Z]]&nbsp; or the subquestion&nbsp; '''(2)'''&nbsp; of this exercise, one obtains for the mutual information:
 +
:$$I(Z;W) = H(Z) + H(W) - H(ZW) \hspace{0.15cm} \underline {= 2.197\,{\rm (bit)}} \hspace{0.05cm}.$$
 +
<br clear=all>
 +
'''(4)'''&nbsp; <u>All three statements</u> are true, as can also be seen from the right-hand side of the two upper diagrams.&nbsp; We attempt an interpretation of these numerical results:
 +
* The joint probability&nbsp; $P_{ ZW }(⋅)$&nbsp;is composed, like&nbsp; $P_{ XW }(⋅)$&nbsp;, of nine equally probable elements unequal to 0.&nbsp; It is thus obvious that the joint entropies are also equal &nbsp; ⇒ &nbsp; $H(ZW) =  H(XW) = 3.170 \ \rm (bit)$. 
 +
* If I know the tuple&nbsp; $Z = (X, Y)$,&nbsp; I naturally also know the sum&nbsp; $W = X + Y$.&nbsp; Thus&nbsp; $H(W|Z) = 0$.
 +
*In contrast,&nbsp; $H(Z|W) \ne 0$.&nbsp; Rather,&nbsp; $H(Z|W) = H(X|W) = 0.973  \ \rm (bit)$.
 +
*The random variable&nbsp; $W$&nbsp; thus provides exactly the same information with regard to the tuple&nbsp; $Z$&nbsp; as for the individual component&nbsp; $X$.&nbsp; This is the verbal interpretation of the statement&nbsp; $H(Z|W) = H(X|W)$.
 +
*The joint information of&nbsp; $Z$&nbsp; and&nbsp; $W$&nbsp; &nbsp; ⇒ &nbsp; $I(Z; W)$&nbsp; is greater than the joint information of&nbsp; $X$&nbsp; and&nbsp; $W$  &nbsp; ⇒ &nbsp; $I(X; W)$,&nbsp; because&nbsp; $H(W|Z) =0$,&nbsp; while&nbsp; $H(W|X)$&nbsp; is non-zero, namely exactly as great as&nbsp; $H(X)$ :
 +
:$$I(Z;W)  = H(W) - H(W|Z) = 2.197 - 0= 2.197\,{\rm (bit)} \hspace{0.05cm},$$
 +
:$$I(X;W) = H(W) - H(W|X) = 2.197 - 1.585= 0.612\,{\rm (bit)} \hspace{0.05cm}.$$
  
  
Line 104: Line 108:
  
  
[[Category:Aufgaben zu Informationstheorie |^3.2 Entropien von 2D-Zufallsgrößen^]]
+
[[Category:Information Theory: Exercises |^3.2 Entropies of 2D Random Variables^]]

Latest revision as of 14:50, 17 November 2022

2D–Functions 
 $P_{ XY }$  und  $P_{ XW }$

We consider the tuple  $Z = (X, Y)$, where the individual components  $X$  and  $Y$  each represent ternary random variables:

$$X = \{ 0 ,\ 1 ,\ 2 \} , \hspace{0.3cm}Y= \{ 0 ,\ 1 ,\ 2 \}.$$

The joint probability function  $P_{ XY }(X, Y)$  of both random variables is given in the upper graph. 

In  Exercise 3.8Z  this constellation is analyzed in detail.  One obtains as a result (all data in "bit"):

  • $H(X) = H(Y) = \log_2 (3) = 1.585,$
  • $H(XY) = \log_2 (9) = 3.170,$
  • $I(X, Y) = 0,$
  • $H(Z) = H(XZ) = 3.170,$
  • $I(X, Z) = 1.585.$

Furthermore, we consider the random variable  $W = \{ 0,\ 1,\ 2,\ 3,\ 4 \}$, whose properties result from the composite probability function  $P_{ XW }(X, W)$  according to the sketch below.  The probabilities are zero in all fields with a white background.

What is sought in the present exercise is the mutual information between

  • the random variables  $X$  and  $W$   ⇒   $I(X; W)$,
  • the random variables  $Z$  and  $W   ⇒   I(Z; W)$.



Hints:


Questions

1

How might the variables  $X$,  $Y$  and  $W$  be related?

$W = X + Y$,
$W = X - Y + 2$,
$W = Y - X + 2$.

2

What is the mutual information between the random variables  $X$  and  $W$?

$I(X; W) \ = \ $

$\ \rm bit$

3

What is the mutual information between the random variables  $Z$  and  $W$?

$I(Z; W) \ = \ $

$\ \rm bit$

4

Which of the following statements are true?

  $H(ZW) = H(XW)$  is true.
  $H(W|Z) = 0$  is true.
  $I(Z; W) > I(X; W)$  is true.


Solution

(1)  The correct solutions are 1 and 2:

  • With  $X = \{0,\ 1,\ 2\}$,  $Y = \{0,\ 1,\ 2\}$ ,   $X + Y = \{0,\ 1,\ 2,\ 3,\ 4\}$ holds. 
  • The probabilities also agree with the given probability function.
  • Checking the other two specifications shows that  $W = X - Y + 2$  is also possible, but not  $W = Y - X + 2$.


To calculate the mutual information


(2)  From the two-dimensional probability mass function  $P_{ XW }(X, W)$  in the specification section, one obtains for

  • the joint entropy:
$$H(XW) = {\rm log}_2 \hspace{0.1cm} (9) = 3.170\ {\rm (bit)} \hspace{0.05cm},$$
  • the probability function of the random variable  $W$:
$$P_W(W) = \big [\hspace{0.05cm}1/9\hspace{0.05cm}, \hspace{0.15cm} 2/9\hspace{0.05cm},\hspace{0.15cm} 3/9 \hspace{0.05cm}, \hspace{0.15cm} 2/9\hspace{0.05cm}, \hspace{0.15cm} 1/9\hspace{0.05cm} \big ]\hspace{0.05cm},$$
  • the entropy of the random variable  $W$:
$$H(W) = 2 \cdot \frac{1}{9} \cdot {\rm log}_2 \hspace{0.1cm} \frac{9}{1} + 2 \cdot \frac{2}{9} \cdot {\rm log}_2 \hspace{0.1cm} \frac{9}{2} + \frac{3}{9} \cdot {\rm log}_2 \hspace{0.1cm} \frac{9}{3} {= 2.197\ {\rm (bit)}} \hspace{0.05cm}.$$

Thus, with  $H(X) = 1.585 \ \rm bit$  (was given), the result for the  mutual information:

$$I(X;W) = H(X) + H(W) - H(XW) = 1.585 + 2.197- 3.170\hspace{0.15cm} \underline {= 0.612\ {\rm (bit)}} \hspace{0.05cm}.$$

The left of the two diagrams illustrates the calculation of the mutual information  $I(X; W)$  between the first component  $X$  and the sum  $W$.


Joint probability between  $Z$  and  $W$

(3)  The second graph shows the joint probability  $P_{ ZW }(⋅)$. 

  • The scheme consists of  $5 · 9 = 45$  fields in contrast to the plot of  $P_{ XW }(⋅)$  in the data section with  $3 · 9 = 27$  fields.
  • However, of the  $45$  fields, only nine are also assigned non-zero probabilities.  The following applies to the joint entropy:   $H(ZW) = 3.170\ {\rm (bit)} \hspace{0.05cm}.$
  • With the further entropies  $H(Z) = 3.170\ {\rm (bit)}\hspace{0.05cm}$  and  $H(W) = 2.197\ {\rm (bit)}\hspace{0.05cm}$  according to  Exercise 3.8Z  or the subquestion  (2)  of this exercise, one obtains for the mutual information:
$$I(Z;W) = H(Z) + H(W) - H(ZW) \hspace{0.15cm} \underline {= 2.197\,{\rm (bit)}} \hspace{0.05cm}.$$


(4)  All three statements are true, as can also be seen from the right-hand side of the two upper diagrams.  We attempt an interpretation of these numerical results:

  • The joint probability  $P_{ ZW }(⋅)$ is composed, like  $P_{ XW }(⋅)$ , of nine equally probable elements unequal to 0.  It is thus obvious that the joint entropies are also equal   ⇒   $H(ZW) = H(XW) = 3.170 \ \rm (bit)$.
  • If I know the tuple  $Z = (X, Y)$,  I naturally also know the sum  $W = X + Y$.  Thus  $H(W|Z) = 0$.
  • In contrast,  $H(Z|W) \ne 0$.  Rather,  $H(Z|W) = H(X|W) = 0.973 \ \rm (bit)$.
  • The random variable  $W$  thus provides exactly the same information with regard to the tuple  $Z$  as for the individual component  $X$.  This is the verbal interpretation of the statement  $H(Z|W) = H(X|W)$.
  • The joint information of  $Z$  and  $W$    ⇒   $I(Z; W)$  is greater than the joint information of  $X$  and  $W$   ⇒   $I(X; W)$,  because  $H(W|Z) =0$,  while  $H(W|X)$  is non-zero, namely exactly as great as  $H(X)$ :
$$I(Z;W) = H(W) - H(W|Z) = 2.197 - 0= 2.197\,{\rm (bit)} \hspace{0.05cm},$$
$$I(X;W) = H(W) - H(W|X) = 2.197 - 1.585= 0.612\,{\rm (bit)} \hspace{0.05cm}.$$