Difference between revisions of "Aufgaben:Exercise 3.8: Rate Compatible Punctured Convolutional Codes"

From LNTwww
Line 32: Line 32:
  
 
Hints:
 
Hints:
* This exercise refers to the section  [[Channel_Coding/Code_Description_with_State_and_Trellis_Diagram#Punctured_convolutional_codes|"punctured convolutional codes"]]  in the chapter "Code description with state and trellis diagram".
+
* This exercise refers to the section  [[Channel_Coding/Code_Description_with_State_and_Trellis_Diagram#Punctured_convolutional_codes|"Punctured convolutional codes"]]  in the chapter  "Code description with state and trellis diagram".
 
   
 
   
 
*The reference  '''[Hag88]''' refers to the paper  "Hagenauer, J.:  Rate Compatible Punctured Convolutional Codes (RCPC codes) and their Applications. In:  IEEE Transactions on Communications,  vol COM-36, pp 389 - 400, 1988."
 
*The reference  '''[Hag88]''' refers to the paper  "Hagenauer, J.:  Rate Compatible Punctured Convolutional Codes (RCPC codes) and their Applications. In:  IEEE Transactions on Communications,  vol COM-36, pp 389 - 400, 1988."

Revision as of 18:40, 14 November 2022

RCPC Puncturing Matrices

An important application for  $\text{punctured convolutional codes}$  are the  "Rate Compatible Punctured Convolutional Codes"  $($for short:  RCPC–Codes$)$  proposed by Joachim Hagenauer in  [Hag88].

Starting from a mother code   $\mathcal{C}_0$   with rate  $R_0 = 1/n$,  other codes   $\mathcal{C}_l$   with higher code rate  $(R_l > R_0)$  are determined by different puncturing matrices  $\mathbf{P}_l$.

The puncturing matrices   $\mathbf{P}_0, \hspace{0.05cm}\text{ ...} \hspace{0.05cm} , \ \mathbf{P}_4$  to be analyzed are shown on the right.

  • If for the matrix  $\mathbf{P}_l$  the matrix element  $P_{ij} = 1$,  the corresponding code bit is transmitted,  while  $P_{ij} = 0$  indicates puncturing.
  • In the questionnaire,  we also use the shorter notation  $P_{ij}^{(l)}$  for the element  $P_{ij}$  of the matrix  $\mathbf{P}_l$.
  • In the graph:  All the zeros in the matrix  $\mathbf{P}_l$  that were still ones in the matrix  $\mathbf{P}_{l–1}$  are marked in red.  This measure increases the code rate  $R_{l}$  compared to  $R_{l-1}$.


The RCPC–codes are well suited for the realization of

  • "unequal error protection"  for hybrid ARQ procedures,
  • systems with  "incremental redundancy".  This means that after conventional convolutional coding,  bits corresponding to the puncturing matrix  $\mathbf{P}_l$  are omitted from the code word  $\underline{x}^{(0)}$  and the shortened code word  $\underline{x}^{(l)}$  is transmitted:
  • If the punctured code word cannot be correctly decoded in the receiver,  the receiver requests further redundancy from the transmitter in the form of the previously punctured bits.
  • This prevents the transmission of redundancy that is not required and adapts the throughput to the channel conditions.



Joachim Hagenauer




Hints:

  • The reference  [Hag88] refers to the paper  "Hagenauer, J.:  Rate Compatible Punctured Convolutional Codes (RCPC codes) and their Applications. In:  IEEE Transactions on Communications,  vol COM-36, pp 389 - 400, 1988."
  • Professor  $\text{Joachim Hagenauer}$  was head of the Institute of Communications Engineering  $\rm(LNT)$  at the Technical University of Munich from 1993 to 2006.  The initiators of the learning tutorial  $($Günter Söder and Klaus Eichin$)$  thank their long-time boss for supporting and promoting our  $\rm LNTwww$  project during the first six years.




Questions

1

What statements do the given puncturing matrices provide?

The rate of the RCPC mother code is  $R_0 = 1/3$.
The puncturing period is  $p = 8$.
The memory of the RCPC code class is  $M = 4$.

2

Which code rates do the codes   $\mathcal{C}_1$, ... , $\mathcal{C}_4$   have?

${\rm matrix \ P_1} \ \Rightarrow \ {\rm code \ \mathcal{C}_1} \text{:} \hspace{0.4cm} R_1 \ = \ $

${\rm matrix \ P_2} \ \Rightarrow ß {\rm code \ \mathcal{C}_2} \text{:} \hspace{0.4cm}R_2 \ = \ $

${\rm matrix \ P_3} \ \Rightarrow \ {\rm code \ \mathcal{C}_3} \text{:} \hspace{0.4cm} R_3 \ = \ $

${\rm matrix \ P_4} \ \Rightarrow \ {\rm code \ \mathcal{C}_4} \text{:} \hspace{0.4cm} R_4 \ = \ $

3

Which statements are valid for the matrix elements  $P_{ij}^{(l)}$?

From  $P_{ij}^{(l)} = 1$  follows  $P_{ij}^{(\lambda)} = 1$  for all  $\lambda < l$.
From  $P_{ij}^{(l)} = 1$  follows  $P_{ij}^{(\lambda)} = 1$  for all  $\lambda > l$.
From  $P_{ij}^{(l)} = 0$  follows  $P_{ij}^{(\lambda)} = 0$  for all  $\lambda < l$.
From  $P_{ij}^{(l)} = 0$  follows  $P_{ij}^{(\lambda)} = 0$  for all  $\lambda > l$.


Solution

(1)  Correct are solutions 1 and 2:

  • The number of rows of the puncturing matrices gives the parameter $n$ of the $(n, \ k = 1)$–RCPC mother code.
  • From this, its rate is $R_0 = 1/3$. The column number is equal to the puncturing period $p$. For the class of codes under consideration, $p = 8$.
  • In contrast, the puncturing matrices do not provide any information about the memory of the code  ⇒ 


(2)  For the rate of the code $\mathcal{C}_l = p/N_l$, where $N_l$ denotes the number of all ones in the puncturing matrix $\mathbf{P}_l$ and $p$ denotes the puncturing period. Starting from the rate $R_0 = 1/3$ of the mother code $\mathcal{C}_0$, we obtain:

  • $R_1 = 8/20 = 2/5 = \underline{0.400}$,
  • $R_2 = 8/16 = 1/2 = \underline{0.500}$,
  • $R_3 = 8/12 = 2/3 = \underline{0.667}$,
  • $R_4 = 8/9 = \underline{0.889}$.


(3)  Correct are the solutions 1 and 4:

  • All ones in the matrix $\mathbf{P}_4$ are also in the matrices $\mathbf{P}_3, \hspace{0.05cm}\text{ ...} above it. \hspace{0.05cm}, \ \mathbf{P}_0$.
  • In the matrix $\mathbf{P}_3$ three ones are added compared to $\mathbf{P}_4$, in the matrix $\mathbf{P}_2$ compared to $\mathbf{P}_3$ again four, etc.