Difference between revisions of "Aufgaben:Exercise 4.08: Decision Regions at Three Symbols"

From LNTwww
 
(19 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Approximation der Fehlerwahrscheinlichkeit}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Approximation_of_the_Error_Probability}}
  
[[File:P_ID2018__Dig_A_4_8.png|right|frame|Signalraumkonstellationen mit <i>M</i> = 3]]
+
[[File:P_ID2018__Dig_A_4_8.png|right|frame|Signal space constellations with&nbsp; $M = 3$&nbsp; symbols]]
Wir betrachten in dieser Aufgabe eine Signalraumkonstellation im zweidimensionalen Raum ($N = 2$) mit der Signalmenge:
+
We consider a signal space constellation in the two-dimensional space&nbsp; $(N = 2)$&nbsp; with the signal set:
 
:$$\boldsymbol{ s }_0 = (-1, 1)\hspace{0.05cm}, \hspace{0.2cm}  
 
:$$\boldsymbol{ s }_0 = (-1, 1)\hspace{0.05cm}, \hspace{0.2cm}  
 
   \boldsymbol{ s }_1 = (1, 2)\hspace{0.05cm}, \hspace{0.2cm}
 
   \boldsymbol{ s }_1 = (1, 2)\hspace{0.05cm}, \hspace{0.2cm}
 
   \boldsymbol{ s }_2 = (2, -1)\hspace{0.05cm},$$
 
   \boldsymbol{ s }_2 = (2, -1)\hspace{0.05cm},$$
  
jeweils bezogen auf den Normierungswert $E^{\rm 1/2}$.
+
in each case referred to the normalization value&nbsp; $\sqrt {E}$.
  
Gesucht sind hierzu die Entscheidungsregionen $I_0$, $I_1$ und $I_2$, wobei folgende Gesichtspunkte zu beachten sind:
+
The decision regions&nbsp; $I_0$,&nbsp; $I_1$&nbsp; and&nbsp; $I_2$ are sought,&nbsp; with the following considerations:
* Die Region $I_i$ soll den Signalraumpunkt $\boldsymbol{s}_i$ beinhalten ($i = 0, 1, 2$).
+
# The region&nbsp; $I_i$&nbsp; should contain the signal space point&nbsp; $\boldsymbol{s}_i$ &nbsp; ($i = 0,\ 1,\ 2$).
* Die Signale $\boldsymbol{s}_0$, $\boldsymbol{s}_1$ und $\boldsymbol{s}_2$ sind gleichwahrscheinlich
+
# The signals&nbsp; $\boldsymbol{s}_0$,&nbsp; $\boldsymbol{s}_1$&nbsp; and&nbsp; $\boldsymbol{s}_2$&nbsp; are equally probable.
* Die Regionen sollen so bestimmt werden, dass sich beispielsweise für den AWGN&ndash;Kanal die kleinste Fehlerwahrscheinlichkeit ergibt.
+
# The regions are to be determined in such a way that the smallest error probability results for the AWGN channel.
  
  
Mit diesen Voraussetzungen sind die Entscheidergrenzen $G_{\it ik}$ zwischen den Regionen $I_i$ und $I_k$ jeweils Geraden, die genau in der Mitte zwischen $\boldsymbol{s}_i$ und $\boldsymbol{s}_k$ verlaufen ($i = 0, 1, 2, k = 0, 1, 2, i &ne; k$).
+
With these preconditions,&nbsp; the decision boundaries&nbsp; $G_{\it ik}$&nbsp; between regions&nbsp; $I_i$&nbsp; and&nbsp; $I_k$&nbsp; are respectively straight lines exactly midway between&nbsp; $\boldsymbol{s}_i$&nbsp; and&nbsp; $\boldsymbol{s}_k$&nbsp; &nbsp;$(i = 0,\ 1,\ 2; \ \ k = 0,\ 1,\ 2; \ \  i &ne; k)$.
  
Mit Kreuzen sind in obiger Grafik drei Empfangswerte
+
With crosses in the above graph are three received values
 
:$$\boldsymbol{ A } = (0.50, \hspace{0.1cm}0.25)\hspace{0.05cm}, \hspace{0.2cm}  
 
:$$\boldsymbol{ A } = (0.50, \hspace{0.1cm}0.25)\hspace{0.05cm}, \hspace{0.2cm}  
 
   \boldsymbol{ B } = (1, \hspace{0.1cm}0)\hspace{0.05cm}, \hspace{0.2cm}
 
   \boldsymbol{ B } = (1, \hspace{0.1cm}0)\hspace{0.05cm}, \hspace{0.2cm}
 
   \boldsymbol{ C } = (0.75, \hspace{0.1cm}0.50)$$
 
   \boldsymbol{ C } = (0.75, \hspace{0.1cm}0.50)$$
  
eingezeichnet, die in der Teilaufgabe (5) jeweils einer Region $I_i$ zugeordnet werden sollen.
+
are drawn,nbsp; each of which is to be assigned to a region $I_i$&nbsp; in subtask&nbsp; '''(5)'''.
  
''Hinweise:''
+
 
* Die Aufgabe gehört zum Themengebiet von Kapitel [[Digitalsignal%C3%BCbertragung/Approximation_der_Fehlerwahrscheinlichkeit| Approximation der Fehlerwahrscheinlichkeit]].
+
 
* Zur Vereinfachung der Schreibweise wird nachfolgend verwendet:
+
Notes:
 +
* The exercise belongs to the chapter&nbsp; [[Digital_Signal_Transmission/Approximation_of_the_Error_Probability|"Approximation of the Error Probability"]].  
 +
 +
* To simplify the notation, the following is used:
 
:$$x = {\varphi_1(t)}/{\sqrt{E}}\hspace{0.05cm}, \hspace{0.2cm}  
 
:$$x = {\varphi_1(t)}/{\sqrt{E}}\hspace{0.05cm}, \hspace{0.2cm}  
 
   y = {\varphi_2(t)}/{\sqrt{E}}\hspace{0.05cm}.$$
 
   y = {\varphi_2(t)}/{\sqrt{E}}\hspace{0.05cm}.$$
Line 33: Line 36:
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lautet die Gleichung der Entscheidergrenze $G_{\rm 01}$?
+
{What is the equation of the decision boundary&nbsp; $G_{\rm 01}$?
|type="[]"}
+
|type="()"}
+ $y = 3/2 \, &ndash;2 \cdot x$,
+
+ $y = 3/2 \, -2 \cdot x$,
 
- $y = x/3$,
 
- $y = x/3$,
- $y = \, &ndash;3/4 + 3/2 \cdot x$.
+
- $y = \, -3/4 + 3/2 \cdot x$.
  
{Wie lautet die Gleichung der Entscheidergrenze $G_{\rm 02}$?
+
{What is the equation of the decision boundary&nbsp; $G_{\rm 02}$?
|type="[]"}
+
|type="()"}
- $y = 3/2 \, &ndash;2 \cdot x$,
+
- $y = 3/2 \, -2 \cdot x$,
 
- $y = x/3$,
 
- $y = x/3$,
+ $y = \, &ndash;3/4 + 3/2 \cdot x$.
+
+ $y = \, -3/4 + 3/2 \cdot x$.
  
{Wie lautet die Gleichung der Entscheidergrenze $G_{\rm 12}$?
+
{What is the equation of the decision boundary&nbsp; $G_{\rm 12}$?
|type="[]"}
+
|type="()"}
- $y = 3/2 \, &ndash;2 \cdot x$,
+
- $y = 3/2 \, -2 \cdot x$,
 
+ $y = x/3$,
 
+ $y = x/3$,
- $y = \, &ndash;3/4 + 3/2 \cdot x$.
+
- $y = \, -3/4 + 3/2 \cdot x$.
  
{Skizzieren Sie die drei Entscheidungsregionen $I_0$, $I_1$ und $I_2$. Schneiden sich die Entscheidungsgrenzen $G_{\rm 01}$, $G_{\rm 02}$ und $G_{\rm 12}$ in einem Punkt?
+
{Sketch the three decision regions&nbsp; $I_0$,&nbsp; $I_1$&nbsp; and&nbsp; $I_2$.&nbsp; Do the decision boundaries&nbsp; $G_{\rm 01}$,&nbsp; $G_{\rm 02}$&nbsp; and&nbsp; $G_{\rm 12}$&nbsp; intersect at a point?
 
|type="()"}
 
|type="()"}
+ ja,
+
+ Yes.
- nein.
+
- No.
  
{Welche der folgenden Entscheidungen sind richtig?
+
{Which of the following decisions are correct?
 
|type="[]"}
 
|type="[]"}
+ $\boldsymbol{A} = (0.5, 0.25)$ gehört zur Region $I_0$.
+
+ $\boldsymbol{A} = (0.5,\ 0.25)$&nbsp; belongs to region &nbsp;$I_0$.
+ $\boldsymbol{B} = (1, 0)$ gehört zur Region $I_2$.
+
+ $\boldsymbol{B} = (1,\ 0)$&nbsp; belongs to region &nbsp;$I_2$.
+ $\boldsymbol{C} = (0.75, 0.5)$ gehört zur Region $I_1$.
+
+ $\boldsymbol{C} = (0.75,\ 0.5)$&nbsp; belongs to region&nbsp; $I_1$.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die Verbindungslinie zwischen den Signalpunkten $\boldsymbol{s}_0 = (&ndash;1, 1)$ und $\boldsymbol{s}_1 = (1, 2)$ hat die Steigung $1/2$ (siehe Grafik bei Teilfrage (4)). Die Entscheidungsgrenze schneidet die Verbindungslinie bei $(\boldsymbol{s}_0 + \boldsymbol{s}_1)/2 = (0, 1.5)$ und weist die Steigung $2$ auf (Drehung der Verbindungslinie um 90°). Daraus folgt:
+
[[File:P_ID2038__Dig_A_4_8d.png|right|frame|Decision regions]]
:$$y  = 1.5 - 2 x \hspace{0.05cm}.$$
+
'''(1)'''&nbsp; <u>Solution 1</u>&nbsp; is correct:
 +
*The connecting line between the signal points&nbsp; $\boldsymbol{s}_0 = (&ndash;1,\ 1)$&nbsp; and&nbsp; $\boldsymbol{s}_1 = (1,\ 2)$&nbsp; has the gradient&nbsp; $1/2$&nbsp; (see diagram).
 +
*The decision boundary intersects the connecting line at&nbsp; $(\boldsymbol{s}_0 + \boldsymbol{s}_1)/2 = (0,\ 1.5)$&nbsp; and has the gradient&nbsp; $2$&nbsp; $($rotation of the connecting line by&nbsp; $90^\circ)$.  
 +
*From this follows: &nbsp; $y  = 1.5 - 2 x \hspace{0.05cm}.$
  
Richtig ist also der <u>Lösungsvorschlag 1</u>.
 
  
  
'''(2)'''&nbsp; Die Verbindungslinie zwischen $\boldsymbol{s}_0 = (&ndash;1, 1)$ und $\boldsymbol{s}_2 = (2, 1)$ besitzt die Steigung $&ndash;2/3$ und schneidet die Entscheidergrenze $G_{\rm 02}$ (mit der Steigung $3/2$) bei $(0.5, 0)$. Daraus folgt:
+
'''(2)'''&nbsp; <u>Solution 3</u>&nbsp; is correct:
:$$y = {3}/{2} \left ( x - {1}/{2} \right )
+
*The connecting line between&nbsp; $\boldsymbol{s}_0 = (&ndash;1,\ 1)$&nbsp; and&nbsp; $\boldsymbol{s}_2 = (2,\ 1)$&nbsp; has the gradient&nbsp; $&ndash;2/3$&nbsp; and intersects the decision boundary&nbsp; $G_{\rm 02}$&nbsp; $($with gradient $3/2)$&nbsp; at $(0.5,\ 0)$.  
   = -{3}/{4} + {3}/{2} \cdot x\hspace{0.05cm}.$$
+
*From this follows: &nbsp; $y = {3}/{2} \left ( x - {1}/{2} \right )
 +
   = -{3}/{4} + {3}/{2} \cdot x\hspace{0.05cm}.$
  
Dies ist der <u>Lösungsvorschlag 3</u>.
 
  
  
'''(3)'''&nbsp; Die Verbindungslinie zwischen $\boldsymbol{s}_1 = (1, 2)$ und $\boldsymbol{s}_2 = (2, \, &ndash;1)$ schneidet die Entscheidungsgrenze $G_{\rm 12}$ bei $(1.5, 0.5)$ und besitzt die Steigung $&ndash;3$. Demzufolge ist die Steigung von $G_{\rm 12} = 1/3$ und die Gleichung der Entscheidungsgrenze $G_{\rm 12}$ lautet:
+
'''(3)'''&nbsp; Here&nbsp; <u>solution 2</u>&nbsp; is applicable:
 +
*The line connecting&nbsp; $\boldsymbol{s}_1 = (1,\ 2)$&nbsp; and&nbsp; $\boldsymbol{s}_2 = (2, \, &ndash;1)$&nbsp; intersects the decision boundary&nbsp; $G_{\rm 12}$&nbsp; at&nbsp; $(1.5,\ 0.5)$&nbsp; and has gradient&nbsp; $&ndash;3$.  
 +
*Consequently,&nbsp; the gradient of&nbsp; $G_{\rm 12} = 1/3$&nbsp; and the equation of the decision boundary $G_{\rm 12}$ is:
 
:$$y - {1}/{2} = {1}/{3} \cdot \left ( x - {3}/{2} \right )
 
:$$y - {1}/{2} = {1}/{3} \cdot \left ( x - {3}/{2} \right )
 
     = {x}/{3} - {1}/{2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}y =  {x}/{3}  
 
     = {x}/{3} - {1}/{2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}y =  {x}/{3}  
 
     \hspace{0.05cm}.$$
 
     \hspace{0.05cm}.$$
  
Hier ist der <u>Lösungsvorschlag 2</u> zutreffend.
 
 
 
'''(4)'''&nbsp; Die nachfolgende Grafik zeigt bereits, dass die <u>Antwort JA</u> ist. Der Schnittpunkt von $G_{\rm 01}$ und $G_{\rm 12}$ (weißer Kreis) liegt bei $(9/14, 3/14)$, wegen
 
 
[[File:P_ID2038__Dig_A_4_8d.png|right|frame|Entscheidungsregionen]]
 
  
 +
'''(4)'''&nbsp; The graph already shows the correct answer &nbsp; &rArr; &nbsp;  <u>YES</u>.
 +
*The intersection of&nbsp; $G_{\rm 01}$&nbsp; and&nbsp; $G_{\rm 12}$&nbsp; (white circle)&nbsp; is at&nbsp; $(9/14,\ 3/14)$,&nbsp; because of
 
:$${3}/{2} - 2 x = {x}/{3} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
:$${3}/{2} - 2 x = {x}/{3} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
     {3}/{2} = {7}/{3} \cdot x $$
+
     {3}/{2} = {7}/{3} \cdot x \hspace{0.3cm}
:$$ \Rightarrow \hspace{0.3cm} y = {3}/{14}  
+
\Rightarrow \hspace{0.3cm} y = {3}/{14}  
 
     \hspace{0.05cm}.$$
 
     \hspace{0.05cm}.$$
  
Auch die Gerade $G_{\rm 02}$ geht durch diesen Punkt:
+
*The straight line&nbsp; $G_{\rm 02}$&nbsp; also passes through this point:
:$$y(x = {9}/{14}) \hspace{-0.1cm}  \ = \ \hspace{-0.1cm}-{3}/{4} + {3}/{2} \cdot x =$$
+
:$$y(x = {9}/{14}) =-{3}/{4} + {3}/{2} \cdot x = -{3}/{4} + {3}/{2} \cdot {9}/{14} =\frac{-21+27}{28}= {3}/{14}
:$$ \hspace{2.2cm}  \ =  \ \hspace{-0.1cm} -{3}/{4} + {3}/{2} \cdot {9}/{14} =$$
 
:$$ \hspace{2.2cm}  \ =  \ \hspace{-0.1cm}\frac{-21+27}{28}= {3}/{14}
 
 
     \hspace{0.05cm}.$$
 
     \hspace{0.05cm}.$$
  
  
'''(5)'''&nbsp; Gemäß der Grafik sind <u>alle genannten Aussagen richtig</u>.
+
'''(5)'''&nbsp; According to the graph:&nbsp; <u>all statements mentioned are correct</u>.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^4.3 BER-Approximation^]]
+
[[Category:Digital Signal Transmission: Exercises|^4.3 BER Approximation^]]

Latest revision as of 13:56, 3 September 2022

Signal space constellations with  $M = 3$  symbols

We consider a signal space constellation in the two-dimensional space  $(N = 2)$  with the signal set:

$$\boldsymbol{ s }_0 = (-1, 1)\hspace{0.05cm}, \hspace{0.2cm} \boldsymbol{ s }_1 = (1, 2)\hspace{0.05cm}, \hspace{0.2cm} \boldsymbol{ s }_2 = (2, -1)\hspace{0.05cm},$$

in each case referred to the normalization value  $\sqrt {E}$.

The decision regions  $I_0$,  $I_1$  and  $I_2$ are sought,  with the following considerations:

  1. The region  $I_i$  should contain the signal space point  $\boldsymbol{s}_i$   ($i = 0,\ 1,\ 2$).
  2. The signals  $\boldsymbol{s}_0$,  $\boldsymbol{s}_1$  and  $\boldsymbol{s}_2$  are equally probable.
  3. The regions are to be determined in such a way that the smallest error probability results for the AWGN channel.


With these preconditions,  the decision boundaries  $G_{\it ik}$  between regions  $I_i$  and  $I_k$  are respectively straight lines exactly midway between  $\boldsymbol{s}_i$  and  $\boldsymbol{s}_k$   $(i = 0,\ 1,\ 2; \ \ k = 0,\ 1,\ 2; \ \ i ≠ k)$.

With crosses in the above graph are three received values

$$\boldsymbol{ A } = (0.50, \hspace{0.1cm}0.25)\hspace{0.05cm}, \hspace{0.2cm} \boldsymbol{ B } = (1, \hspace{0.1cm}0)\hspace{0.05cm}, \hspace{0.2cm} \boldsymbol{ C } = (0.75, \hspace{0.1cm}0.50)$$

are drawn,nbsp; each of which is to be assigned to a region $I_i$  in subtask  (5).


Notes:

  • To simplify the notation, the following is used:
$$x = {\varphi_1(t)}/{\sqrt{E}}\hspace{0.05cm}, \hspace{0.2cm} y = {\varphi_2(t)}/{\sqrt{E}}\hspace{0.05cm}.$$


Questions

1

What is the equation of the decision boundary  $G_{\rm 01}$?

$y = 3/2 \, -2 \cdot x$,
$y = x/3$,
$y = \, -3/4 + 3/2 \cdot x$.

2

What is the equation of the decision boundary  $G_{\rm 02}$?

$y = 3/2 \, -2 \cdot x$,
$y = x/3$,
$y = \, -3/4 + 3/2 \cdot x$.

3

What is the equation of the decision boundary  $G_{\rm 12}$?

$y = 3/2 \, -2 \cdot x$,
$y = x/3$,
$y = \, -3/4 + 3/2 \cdot x$.

4

Sketch the three decision regions  $I_0$,  $I_1$  and  $I_2$.  Do the decision boundaries  $G_{\rm 01}$,  $G_{\rm 02}$  and  $G_{\rm 12}$  intersect at a point?

Yes.
No.

5

Which of the following decisions are correct?

$\boldsymbol{A} = (0.5,\ 0.25)$  belongs to region  $I_0$.
$\boldsymbol{B} = (1,\ 0)$  belongs to region  $I_2$.
$\boldsymbol{C} = (0.75,\ 0.5)$  belongs to region  $I_1$.


Solution

Decision regions

(1)  Solution 1  is correct:

  • The connecting line between the signal points  $\boldsymbol{s}_0 = (–1,\ 1)$  and  $\boldsymbol{s}_1 = (1,\ 2)$  has the gradient  $1/2$  (see diagram).
  • The decision boundary intersects the connecting line at  $(\boldsymbol{s}_0 + \boldsymbol{s}_1)/2 = (0,\ 1.5)$  and has the gradient  $2$  $($rotation of the connecting line by  $90^\circ)$.
  • From this follows:   $y = 1.5 - 2 x \hspace{0.05cm}.$


(2)  Solution 3  is correct:

  • The connecting line between  $\boldsymbol{s}_0 = (–1,\ 1)$  and  $\boldsymbol{s}_2 = (2,\ 1)$  has the gradient  $–2/3$  and intersects the decision boundary  $G_{\rm 02}$  $($with gradient $3/2)$  at $(0.5,\ 0)$.
  • From this follows:   $y = {3}/{2} \left ( x - {1}/{2} \right ) = -{3}/{4} + {3}/{2} \cdot x\hspace{0.05cm}.$


(3)  Here  solution 2  is applicable:

  • The line connecting  $\boldsymbol{s}_1 = (1,\ 2)$  and  $\boldsymbol{s}_2 = (2, \, –1)$  intersects the decision boundary  $G_{\rm 12}$  at  $(1.5,\ 0.5)$  and has gradient  $–3$.
  • Consequently,  the gradient of  $G_{\rm 12} = 1/3$  and the equation of the decision boundary $G_{\rm 12}$ is:
$$y - {1}/{2} = {1}/{3} \cdot \left ( x - {3}/{2} \right ) = {x}/{3} - {1}/{2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}y = {x}/{3} \hspace{0.05cm}.$$


(4)  The graph already shows the correct answer   ⇒   YES.

  • The intersection of  $G_{\rm 01}$  and  $G_{\rm 12}$  (white circle)  is at  $(9/14,\ 3/14)$,  because of
$${3}/{2} - 2 x = {x}/{3} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} {3}/{2} = {7}/{3} \cdot x \hspace{0.3cm} \Rightarrow \hspace{0.3cm} y = {3}/{14} \hspace{0.05cm}.$$
  • The straight line  $G_{\rm 02}$  also passes through this point:
$$y(x = {9}/{14}) =-{3}/{4} + {3}/{2} \cdot x = -{3}/{4} + {3}/{2} \cdot {9}/{14} =\frac{-21+27}{28}= {3}/{14} \hspace{0.05cm}.$$


(5)  According to the graph:  all statements mentioned are correct.