Difference between revisions of "Aufgaben:Exercise 4.11: Frequency Domain Consideration of the 4-QAM"

From LNTwww
m (Text replacement - "Category:Aufgaben zu Modulationsverfahren" to "Category:Modulation Methods: Exercises")
 
(11 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:Mod_A_4_10_vers2.png|right|frame|Leistungsdichtespektren von <br>BPSK und 4-QAM]]
+
[[File:Mod_A_4_10_vers2.png|right|frame|Power-spectral densities of <br>BPSK and 4-QAM]]
Ausgehend von der &nbsp;[[Modulation_Methods/Lineare_digitale_Modulation#BPSK_.E2.80.93_Binary_Phase_Shift_Keying|BPSK]]&nbsp; (binäre Phasenmodulation) mit rechteckförmigem Grundimpuls &nbsp;$g_s(t)$&nbsp; der Breite &nbsp;$T_{\rm B} = 1 \ \rm &micro; s$&nbsp; und der Amplitude &nbsp;$s_0 = 2 \ \rm  V$&nbsp; soll  in dieser Aufgabe das Leistungsdichtespektrum (LDS) der &nbsp;[[Modulation_Methods/Quadratur–Amplitudenmodulation#Signalverl.C3.A4ufe_der_4.E2.80.93QAM|4–QAM]]&nbsp; schrittweise ermittelt werden.
+
Taking as our starting point &nbsp;[[Modulation_Methods/Linear_Digital_Modulation#BPSK_.E2.80.93_Binary_Phase_Shift_Keying|$\rm BPSK$]]&nbsp; ("binary phase modulation")&nbsp; with a rectangular basic pulse &nbsp;$g_s(t)$&nbsp; of width &nbsp;$T_{\rm B} = 1 \ \rm &micro; s$&nbsp; and amplitude &nbsp;$s_0 = 2 \ \rm  V$,&nbsp; this exercise aims to determine the power-spectral density&nbsp; $\rm (PSD)$&nbsp; of the [[Modulation_Methods/Quadrature_Amplitude_Modulation#Signal_waveforms_for_4.E2.80.93QAM|4–QAM]] step by step.
  
In der &nbsp;[[Aufgaben:4.7_Spektren_von_ASK_und_BPSK| Aufgabe 4.7]]&nbsp; wurde das Leistungdichtespektrum &nbsp;${\it Φ}_s(f)$&nbsp; der BPSK für genau diese Parameterwerte ermittelt. Mit
+
In &nbsp;[[Aufgaben:Exercise_4.7:_Spectra_of_ASK_and_BPSK|Exercise 4.7]],&nbsp; the power-spectral density &nbsp;${\it Φ}_s(f)$&nbsp; of the BPSK was determined for exactly these parameters.&nbsp; Using
:$$A = s_0^2 \cdot T_{\rm B} = 4 \cdot 10^{-6}\,{\rm V^2/Hz}$$
+
:$$A = s_0^2 \cdot T_{\rm B} = 4 \cdot 10^{-6}\,{\rm V^2/Hz},$$
erhält man für das tatsächliche Leistungsdichtespektrum (im Bandpassbereich):
+
one obtains the actual power-spectral density&nbsp; (in the bandpass range):
:$${{\it \Phi}_s(f)} = {A}/{4} \cdot {\big [ {\rm si}^2(\pi \cdot T_{\rm B}\cdot (f - f_{\rm T})) + {\rm si}^2(\pi \cdot T_{\rm B}\cdot (f + f_{\rm T}))\big ]}\hspace{0.05cm}.$$
+
:$${{\it \Phi}_s(f)} = {A}/{4} \cdot {\big [ {\rm sinc}^2( T_{\rm B}\cdot (f - f_{\rm T})) + {\rm sinc}^2( T_{\rm B}\cdot (f + f_{\rm T}))\big ]}\hspace{0.05cm}.$$
In der oberen Grafik ist allerdings das Leistungsdichtespektrum &nbsp;${{\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f)}$&nbsp; des äquivalenten Tiefpass–Signals dargestellt. Dieses ergibt sich aus &nbsp;${\it Φ}_s(f)$&nbsp; durch
+
However,&nbsp; the top graph shows the power-spectral density &nbsp;${{\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f)}$&nbsp; of the equivalent low-pass signal&nbsp; German:&nbsp; "äquivalentes Tiefpass&ndash;Signal" &nbsp; &rArr; &nbsp; subscript:&nbsp; "TP).&nbsp; This is obtained from &nbsp;${\it Φ}_s(f)$&nbsp; by
*Abschneiden aller Anteile bei negativen Frequenzen,  
+
*truncating all components at negative frequencies,
*Vervierfachen der Anteile bei positiven Frequenzen
+
*quadrupling the components at positive frequencies&nbsp; (note: a spectrum must be doubled, a PSD quadrupled),
:(beachten Sie: &nbsp; ein Spektrum muss verdoppelt werden, ein Leistungsdichtespektrum vervierfacht) und
+
*shifting by  &nbsp;$f_{\rm T}$&nbsp;to the left:
*Verschieben um &nbsp;$f_{\rm T}$&nbsp; nach links:
+
:$${{\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f)} = A \cdot {\rm sinc}^2(f \cdot T_{\rm B}). \hspace{0.2cm}$$
:$${{\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f)} = A \cdot {\rm si}^2(\pi f T_{\rm B}). \hspace{0.2cm}$$
 
  
Die 4–QAM unterscheidet sich von der BPSK in folgenden Details:
+
4–QAM differs from the BPSK regarding the following details:
* Aufspaltung des binären Quellensignals in zwei Teilsignale mit jeweils halber Bitrate, das heißt mit der Symboldauer &nbsp;$T = 2 · T_{\rm B}$.
+
* Splitting the binary source signal into two partial signals,&nbsp; each with half the bit rate,&nbsp; that is,&nbsp; with symbol duration &nbsp;$T = 2 · T_{\rm B}$.
* Multiplikation der Teilsignale mit Cosinus und Minus–Sinus, deren Amplituden &nbsp;$g_0$&nbsp; jeweils um den Faktor &nbsp;$\sqrt{2}$&nbsp; kleiner sind als &nbsp;$s_0$.  
+
* Multiplication of the partial signals with cosine and minus-sine,&nbsp; whose amplitudes &nbsp;$g_0$&nbsp; are each smaller than &nbsp;$s_0$  by a factor of  &nbsp;$\sqrt{2}$.
* Summation der beiden Teilsignale, die mit &nbsp;$s_{\cos}(t)$&nbsp; und &nbsp;$s_{–\sin}(t)$&nbsp; bezeichnet werden:
+
* Summation of the two partial signals denoted by &nbsp;$s_{\cos}(t)$&nbsp; nd &nbsp;$s_{–\sin}(t)$&nbsp;:
 
:$$s(t) = s_{\rm cos}(t)+ s_{\rm -sin}(t) \hspace{0.05cm}.$$
 
:$$s(t) = s_{\rm cos}(t)+ s_{\rm -sin}(t) \hspace{0.05cm}.$$
  
Line 27: Line 26:
  
  
 
+
Hints:  
 
+
*This exercise belongs to the chapter&nbsp; [[Modulation_Methods/Quadrature_Amplitude_Modulation|"Quadrature Amplitude Modulation"]]&nbsp; $\rm (QAM)$.
 
+
*Reference is also made to the page&nbsp; [[Modulation_Methods/Linear_Digital_Modulation#BPSK_.E2.80.93_Binary_Phase_Shift_Keying|"Binary Phase Shift Keying"]]&nbsp; $\rm (BPSK)$&nbsp;  in the previous chapter.
''Hinweise:''
+
* The power-spectral density&nbsp; $\rm (PSD)$&nbsp; of a QAM component is identical to the comparable BPSK PSD:
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Modulation_Methods/Quadratur%E2%80%93Amplitudenmodulation|Quadratur&ndash;Amplitudenmodulation]].
+
*Energies are to be specified in &nbsp;$\rm V^2s$;&nbsp; they thus refer to the reference resistance&nbsp;$R = 1 \ \rm \Omega$.
*Bezug genommen wird aber auch auf die Seite&nbsp; [[Modulation_Methods/Lineare_digitale_Modulation#BPSK_.E2.80.93_Binary_Phase_Shift_Keying|BPSK &ndash; Binary Phase Shift Keying]]&nbsp; im vorherigen Kapitel.
 
* Das Leistungsdichtespektrum (LDS) einer QAM-Komponente ist identisch mit dem vergleichbaren BPSK&ndash;LDS. 
 
*Energien sind in &nbsp;$\rm V^2s$&nbsp; anzugeben; sie beziehen sich somit auf den Bezugswiderstand &nbsp;$R = 1 \ \rm \Omega$.
 
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß ist die Energie pro Bit &nbsp; &rArr; &nbsp; $E_{\rm B}$&nbsp; bei  &nbsp;''Binary Phase Shift Keying''&nbsp; (BPSK)?
+
{What is the energy per bit ⇒ $E_{\rm B}$&nbsp; for&nbsp; "binary phase shift keying"&nbsp; (BPSK)?
 
|type="{}"}
 
|type="{}"}
 
$E_{\rm B} \ = \ $ { 2 3% } $\ \cdot 10^{-6}\ \rm V^2/Hz$
 
$E_{\rm B} \ = \ $ { 2 3% } $\ \cdot 10^{-6}\ \rm V^2/Hz$
  
{Wie lautet das Leistungsdichtespektrum &nbsp;${\it \Phi}_{s,\hspace{0.08cm} \cos, \hspace{0.08cm}{\rm TP}}(f )$ des 4–QAM–Teilsignals&nbsp; $s_{\cos}(t)$&nbsp; in der äquivalenten Tiefpassdarstellung? <br>Welcher Wert &nbsp;$B_0 = {\it \Phi}_{s, \hspace{0.08cm}\cos, \hspace{0.08cm}{\rm TP}}(f = 0) $&nbsp; ergibt sich bei der Frequenz  &nbsp;$f = 0$?
+
{What is the power-spectral density  &nbsp;${\it \Phi}_{s,\hspace{0.08cm} \cos, \hspace{0.08cm}{\rm TP}}(f )$&nbsp; of the 4–QAM subsignal &nbsp; $s_{\cos}(t)$&nbsp; in the equivalent low-pass representation? <br>What value&nbsp;$B_0 = {\it \Phi}_{s, \hspace{0.08cm}\cos, \hspace{0.08cm}{\rm TP}}(f = 0) $&nbsp; is obtained at frquency &nbsp;$f = 0$?
 
|type="{}"}
 
|type="{}"}
 
$B_0 \ = \ $ { 4 3% } $\ \cdot 10^{-6}\ \rm V^2/Hz$
 
$B_0 \ = \ $ { 4 3% } $\ \cdot 10^{-6}\ \rm V^2/Hz$
  
{Wie lautet das Leistungsdichtespektrum &nbsp;${\it \Phi}_{s,\hspace{0.08cm}{\rm TP}}(f )$&nbsp; des gesamten 4–QAM–Signals $s(t)$?  
+
{What is the power-spectral density &nbsp;${\it \Phi}_{s,\hspace{0.08cm}{\rm TP}}(f )$&nbsp; of the total 4–QAM signal $s(t)$?  
<br>Welcher Wert &nbsp;$Q_0 = {\it \Phi}_{s, \hspace{0.08cm}{\rm TP}}(f = 0) $&nbsp; ergibt sich hier bei der Frequenz &nbsp;$f = 0$?
+
<br>What value &nbsp;$Q_0 = {\it \Phi}_{s, \hspace{0.08cm}{\rm TP}}(f = 0) $&nbsp; results here at frequency &nbsp;$f = 0$?
 
|type="{}"}
 
|type="{}"}
 
$Q_0 \ = \ $ { 8 3% } $\ \cdot 10^{-6}\ \rm V^2/Hz$
 
$Q_0 \ = \ $ { 8 3% } $\ \cdot 10^{-6}\ \rm V^2/Hz$
  
{Wie groß ist die Energie pro Bit &nbsp; &rArr; &nbsp; $E_{\rm B}$&nbsp; bei der &nbsp;''Quadratur&ndash;Amplitudenmodulation''&nbsp; (4–QAM)?
+
{What is the energy per bit &nbsp; &rArr; &nbsp; $E_{\rm B}$&nbsp; for&nbsp; "quadrature amplitude modulation"&nbsp; (4-QAM)?
 
|type="{}"}
 
|type="{}"}
 
$E_{\rm B} \ = \ $ { 2 3% } $\ \cdot 10^{-6}\ \rm V^2/Hz$
 
$E_{\rm B} \ = \ $ { 2 3% } $\ \cdot 10^{-6}\ \rm V^2/Hz$
Line 62: Line 58:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die Leistung des BPSK–Sendesignals ist gleich dem Intergral über das Leistungsdichtespektrum.  
+
'''(1)'''&nbsp; The power of the BPSK transmitted signal is equal to the intergral over the power-spectral density.  
*Integriert man über das äquivalente Tiefpass–LDS, so ist noch der Faktor&nbsp; $1/2$&nbsp; zu berücksichtigen:
+
*If one integrates over the equivalent low-pass PSD,&nbsp; the factor&nbsp; $1/2$&nbsp;must still be taken into account:
:$$P_{\rm BPSK}  =  \int_{ - \infty }^{+\infty} {{\it \Phi}_{s}(f)}\hspace{0.1cm} {\rm d}f = \frac{1}{2} \cdot \int_{ - \infty }^{+\infty} {{\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f)}\hspace{0.1cm} {\rm d}f = \frac{A}{2} \cdot \int_{ - \infty }^{+\infty} {\rm si}^2(\pi f T_{\rm B})\hspace{0.1cm} {\rm d}f =  \frac{A}{2T_{\rm B}} \cdot \int_{ - \infty }^{+\infty} {\rm si}^2(\pi x)\hspace{0.1cm} {\rm d}x =\frac{A}{2T_{\rm B}}$$
+
:$$P_{\rm BPSK}  =  \int_{ - \infty }^{+\infty} {{\it \Phi}_{s}(f)}\hspace{0.1cm} {\rm d}f = \frac{1}{2} \cdot \int_{ - \infty }^{+\infty} {{\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f)}\hspace{0.1cm} {\rm d}f = \frac{A}{2} \cdot \int_{ - \infty }^{+\infty} {\rm sinc}^2(f T_{\rm B})\hspace{0.1cm} {\rm d}f =  \frac{A}{2T_{\rm B}} \cdot \int_{ - \infty }^{+\infty} {\rm sinc}^2(x)\hspace{0.1cm} {\rm d}x =\frac{A}{2T_{\rm B}}$$
:$$\text{Mit} \ \ A = 4 \cdot 10^{-6}\,{\rm V^2/Hz}\hspace{0.05cm}, \hspace{0.2cm} T_{\rm B}= 10^{-6}\,{\rm s} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm BPSK} = 2\,{\rm V^2} ( = {s_0^2 }/{2})\hspace{0.05cm}.$$
+
:$$\text{With} \ \ A = 4 \cdot 10^{-6}\,{\rm V^2/Hz}\hspace{0.05cm}, \hspace{0.2cm} T_{\rm B}= 10^{-6}\,{\rm s} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm BPSK} = 2\,{\rm V^2} ( = {s_0^2 }/{2})\hspace{0.05cm}.$$
*Die Energie pro Bit ist dementsprechend bei der BPSK:
+
*Accordingly,&nbsp; the energy per bit is for BPSK:
 
:$$E_{\rm B} = {P_{\rm BPSK} \cdot T_{\rm B}}\hspace{0.15cm}\underline {= 2 \cdot 10^{-6}\,{\rm V^2/Hz}}\hspace{0.05cm}.$$
 
:$$E_{\rm B} = {P_{\rm BPSK} \cdot T_{\rm B}}\hspace{0.15cm}\underline {= 2 \cdot 10^{-6}\,{\rm V^2/Hz}}\hspace{0.05cm}.$$
*Hierbei ist wieder der Bezugswiderstand $1\ \rm Ω$ zugrunde gelegt.
+
*Here again,&nbsp; the reference resistance is&nbsp; $1\ \rm Ω$.
  
  
  
  
'''(2)'''&nbsp; Aufgrund der doppelten Symboldauer der 4–QAM&nbsp; $(T = 2 · T_{\rm B})$&nbsp; ist die Spektralfunktion gegenüber der BPSK nur halb so breit, aber doppelt so hoch, und anstelle von&nbsp; $s_0$&nbsp; ist nun der kleinere Wert&nbsp; $g_0$&nbsp; zu berücksichtigen.  
+
'''(2)'''&nbsp; Due to the double symbol duration of 4-QAM &nbsp; $(T = 2 · T_{\rm B})$,&nbsp; the spectral function is only half as wide as compared to BPSK,&nbsp; but twice as high,&nbsp; and instead of&nbsp; $s_0$,&nbsp; the smaller value&nbsp; $g_0$&nbsp; must now be considered.
*Der LDS–Wert bei der Frequenz&nbsp; $f = 0$&nbsp; lautet damit:
+
*The PSD value at frequency&nbsp; $f = 0$&nbsp; is thus:
 
:$${\it \Phi}_{s, \hspace{0.05cm}\rm cos,\hspace{0.05cm}\rm TP}(f = 0 ) = \left ({s_0}/{\sqrt{2}} \right )^2 \cdot 2 \cdot T_{\rm B} ={s_0^2 \cdot T_{\rm B}} = B_0 \hspace{0.05cm}.$$
 
:$${\it \Phi}_{s, \hspace{0.05cm}\rm cos,\hspace{0.05cm}\rm TP}(f = 0 ) = \left ({s_0}/{\sqrt{2}} \right )^2 \cdot 2 \cdot T_{\rm B} ={s_0^2 \cdot T_{\rm B}} = B_0 \hspace{0.05cm}.$$
*Es ergibt sich somit genau der gleiche Wert wie bei der BPSK:
+
*Therefore,&nbsp; the result is exactly the same as for BPSK:
 
:$$B_0 = {\it \Phi}_{s, \hspace{0.05cm}\rm cos,\hspace{0.05cm}\rm TP}(f = 0 ) \hspace{0.15cm}\underline {= 4 \cdot 10^{-6}\,{\rm V^2/Hz}}$$
 
:$$B_0 = {\it \Phi}_{s, \hspace{0.05cm}\rm cos,\hspace{0.05cm}\rm TP}(f = 0 ) \hspace{0.15cm}\underline {= 4 \cdot 10^{-6}\,{\rm V^2/Hz}}$$
  
  
  
'''(3)'''&nbsp; Das zweite Teilsignal&nbsp; $s_{–\sin}(t)$&nbsp; liefert den genau gleichen Beitrag wie das gerade betrachtete Signal&nbsp; $s_{\cos}(t)$.  
+
'''(3)'''&nbsp; The second partial signal&nbsp; $s_{–\sin}(t)$&nbsp; yields exactly the same contribution as the signal&nbsp; $s_{\cos}(t)$&nbsp; just considered.  
*Aufgrund der Orthogonalität zwischen der Cosinus– und der Minus–Sinusfunktion können die Leistungen addiert werden und man erhält:
+
*Due to the orthogonality between the cosine and the minus-sine functions,&nbsp; the powers can be added and we get:
 
:$$Q_0 = {\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f = 0 ) = 2 \cdot B_0 \hspace{0.15cm}\underline {= 8 \cdot 10^{-6}\,{\rm V^2/Hz}}\hspace{0.05cm}.$$
 
:$$Q_0 = {\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f = 0 ) = 2 \cdot B_0 \hspace{0.15cm}\underline {= 8 \cdot 10^{-6}\,{\rm V^2/Hz}}\hspace{0.05cm}.$$
  
  
  
'''(4)'''&nbsp; Analog zur Teilaufgabe&nbsp; '''(1)'''&nbsp; erhält man für die Energie pro Bit:
+
'''(4)'''&nbsp; Analogously to question&nbsp; '''(1)''',&nbsp; we get an energy per bit of:
:$$E_{\rm B}  =  \frac{1}{2} \cdot T_{\rm B} \cdot \int_{ - \infty }^{+\infty} {{\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f)}\hspace{0.1cm} {\rm d}f = \frac{Q_0 \cdot T_{\rm B}}{2T} \cdot \int_{ - \infty }^{+\infty} {\rm si}^2(\pi f T_{\rm B})\hspace{0.1cm} {\rm d}f =  
+
:$$E_{\rm B}  =  \frac{1}{2} \cdot T_{\rm B} \cdot \int_{ - \infty }^{+\infty} {{\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f)}\hspace{0.1cm} {\rm d}f = \frac{Q_0 \cdot T_{\rm B}}{2T} \cdot \int_{ - \infty }^{+\infty} {\rm sinc}^2(f T_{\rm B})\hspace{0.1cm} {\rm d}f =  
 
  \frac{Q_0 \cdot T_{\rm B}}{2T} = \frac{8 \cdot 10^{-6}\,{\rm V^2/Hz} \cdot 1\,{\rm \mu s}}{ 2 \cdot 2\,{\rm \mu s}}\hspace{0.15cm}\underline {= 2 \cdot 10^{-6}\,{\rm V^2/Hz}}\hspace{0.05cm}.$$
 
  \frac{Q_0 \cdot T_{\rm B}}{2T} = \frac{8 \cdot 10^{-6}\,{\rm V^2/Hz} \cdot 1\,{\rm \mu s}}{ 2 \cdot 2\,{\rm \mu s}}\hspace{0.15cm}\underline {= 2 \cdot 10^{-6}\,{\rm V^2/Hz}}\hspace{0.05cm}.$$
*Man erkennt, dass bei den hier getroffenen Voraussetzungen die „Energie pro Bit” von BPSK und 4–QAM übereinstimmen.
+
*It can be seen that with the assumptions made here,&nbsp; the "energy per bit" of BPSK and 4-QAM coincide.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 98: Line 94:
  
  
[[Category:Modulation Methods: Exercises|^4.3 Quadratur–Amplitudenmodulation^]]
+
[[Category:Modulation Methods: Exercises|^4.3 Quadrature Amplitude Modulation^]]

Latest revision as of 07:03, 18 April 2022

Power-spectral densities of
BPSK and 4-QAM

Taking as our starting point  $\rm BPSK$  ("binary phase modulation")  with a rectangular basic pulse  $g_s(t)$  of width  $T_{\rm B} = 1 \ \rm µ s$  and amplitude  $s_0 = 2 \ \rm V$,  this exercise aims to determine the power-spectral density  $\rm (PSD)$  of the 4–QAM step by step.

In  Exercise 4.7,  the power-spectral density  ${\it Φ}_s(f)$  of the BPSK was determined for exactly these parameters.  Using

$$A = s_0^2 \cdot T_{\rm B} = 4 \cdot 10^{-6}\,{\rm V^2/Hz},$$

one obtains the actual power-spectral density  (in the bandpass range):

$${{\it \Phi}_s(f)} = {A}/{4} \cdot {\big [ {\rm sinc}^2( T_{\rm B}\cdot (f - f_{\rm T})) + {\rm sinc}^2( T_{\rm B}\cdot (f + f_{\rm T}))\big ]}\hspace{0.05cm}.$$

However,  the top graph shows the power-spectral density  ${{\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f)}$  of the equivalent low-pass signal  German:  "äquivalentes Tiefpass–Signal"   ⇒   subscript:  "TP).  This is obtained from  ${\it Φ}_s(f)$  by

  • truncating all components at negative frequencies,
  • quadrupling the components at positive frequencies  (note: a spectrum must be doubled, a PSD quadrupled),
  • shifting by  $f_{\rm T}$ to the left:
$${{\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f)} = A \cdot {\rm sinc}^2(f \cdot T_{\rm B}). \hspace{0.2cm}$$

4–QAM differs from the BPSK regarding the following details:

  • Splitting the binary source signal into two partial signals,  each with half the bit rate,  that is,  with symbol duration  $T = 2 · T_{\rm B}$.
  • Multiplication of the partial signals with cosine and minus-sine,  whose amplitudes  $g_0$  are each smaller than  $s_0$ by a factor of  $\sqrt{2}$.
  • Summation of the two partial signals denoted by  $s_{\cos}(t)$  nd  $s_{–\sin}(t)$ :
$$s(t) = s_{\rm cos}(t)+ s_{\rm -sin}(t) \hspace{0.05cm}.$$



Hints:

  • This exercise belongs to the chapter  "Quadrature Amplitude Modulation"  $\rm (QAM)$.
  • Reference is also made to the page  "Binary Phase Shift Keying"  $\rm (BPSK)$  in the previous chapter.
  • The power-spectral density  $\rm (PSD)$  of a QAM component is identical to the comparable BPSK PSD:
  • Energies are to be specified in  $\rm V^2s$;  they thus refer to the reference resistance $R = 1 \ \rm \Omega$.


Questions

1

What is the energy per bit ⇒ $E_{\rm B}$  for  "binary phase shift keying"  (BPSK)?

$E_{\rm B} \ = \ $

$\ \cdot 10^{-6}\ \rm V^2/Hz$

2

What is the power-spectral density  ${\it \Phi}_{s,\hspace{0.08cm} \cos, \hspace{0.08cm}{\rm TP}}(f )$  of the 4–QAM subsignal   $s_{\cos}(t)$  in the equivalent low-pass representation?
What value $B_0 = {\it \Phi}_{s, \hspace{0.08cm}\cos, \hspace{0.08cm}{\rm TP}}(f = 0) $  is obtained at frquency  $f = 0$?

$B_0 \ = \ $

$\ \cdot 10^{-6}\ \rm V^2/Hz$

3

What is the power-spectral density  ${\it \Phi}_{s,\hspace{0.08cm}{\rm TP}}(f )$  of the total 4–QAM signal $s(t)$?
What value  $Q_0 = {\it \Phi}_{s, \hspace{0.08cm}{\rm TP}}(f = 0) $  results here at frequency  $f = 0$?

$Q_0 \ = \ $

$\ \cdot 10^{-6}\ \rm V^2/Hz$

4

What is the energy per bit   ⇒   $E_{\rm B}$  for  "quadrature amplitude modulation"  (4-QAM)?

$E_{\rm B} \ = \ $

$\ \cdot 10^{-6}\ \rm V^2/Hz$


Solution

(1)  The power of the BPSK transmitted signal is equal to the intergral over the power-spectral density.

  • If one integrates over the equivalent low-pass PSD,  the factor  $1/2$ must still be taken into account:
$$P_{\rm BPSK} = \int_{ - \infty }^{+\infty} {{\it \Phi}_{s}(f)}\hspace{0.1cm} {\rm d}f = \frac{1}{2} \cdot \int_{ - \infty }^{+\infty} {{\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f)}\hspace{0.1cm} {\rm d}f = \frac{A}{2} \cdot \int_{ - \infty }^{+\infty} {\rm sinc}^2(f T_{\rm B})\hspace{0.1cm} {\rm d}f = \frac{A}{2T_{\rm B}} \cdot \int_{ - \infty }^{+\infty} {\rm sinc}^2(x)\hspace{0.1cm} {\rm d}x =\frac{A}{2T_{\rm B}}$$
$$\text{With} \ \ A = 4 \cdot 10^{-6}\,{\rm V^2/Hz}\hspace{0.05cm}, \hspace{0.2cm} T_{\rm B}= 10^{-6}\,{\rm s} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm BPSK} = 2\,{\rm V^2} ( = {s_0^2 }/{2})\hspace{0.05cm}.$$
  • Accordingly,  the energy per bit is for BPSK:
$$E_{\rm B} = {P_{\rm BPSK} \cdot T_{\rm B}}\hspace{0.15cm}\underline {= 2 \cdot 10^{-6}\,{\rm V^2/Hz}}\hspace{0.05cm}.$$
  • Here again,  the reference resistance is  $1\ \rm Ω$.



(2)  Due to the double symbol duration of 4-QAM   $(T = 2 · T_{\rm B})$,  the spectral function is only half as wide as compared to BPSK,  but twice as high,  and instead of  $s_0$,  the smaller value  $g_0$  must now be considered.

  • The PSD value at frequency  $f = 0$  is thus:
$${\it \Phi}_{s, \hspace{0.05cm}\rm cos,\hspace{0.05cm}\rm TP}(f = 0 ) = \left ({s_0}/{\sqrt{2}} \right )^2 \cdot 2 \cdot T_{\rm B} ={s_0^2 \cdot T_{\rm B}} = B_0 \hspace{0.05cm}.$$
  • Therefore,  the result is exactly the same as for BPSK:
$$B_0 = {\it \Phi}_{s, \hspace{0.05cm}\rm cos,\hspace{0.05cm}\rm TP}(f = 0 ) \hspace{0.15cm}\underline {= 4 \cdot 10^{-6}\,{\rm V^2/Hz}}$$


(3)  The second partial signal  $s_{–\sin}(t)$  yields exactly the same contribution as the signal  $s_{\cos}(t)$  just considered.

  • Due to the orthogonality between the cosine and the minus-sine functions,  the powers can be added and we get:
$$Q_0 = {\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f = 0 ) = 2 \cdot B_0 \hspace{0.15cm}\underline {= 8 \cdot 10^{-6}\,{\rm V^2/Hz}}\hspace{0.05cm}.$$


(4)  Analogously to question  (1),  we get an energy per bit of:

$$E_{\rm B} = \frac{1}{2} \cdot T_{\rm B} \cdot \int_{ - \infty }^{+\infty} {{\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f)}\hspace{0.1cm} {\rm d}f = \frac{Q_0 \cdot T_{\rm B}}{2T} \cdot \int_{ - \infty }^{+\infty} {\rm sinc}^2(f T_{\rm B})\hspace{0.1cm} {\rm d}f = \frac{Q_0 \cdot T_{\rm B}}{2T} = \frac{8 \cdot 10^{-6}\,{\rm V^2/Hz} \cdot 1\,{\rm \mu s}}{ 2 \cdot 2\,{\rm \mu s}}\hspace{0.15cm}\underline {= 2 \cdot 10^{-6}\,{\rm V^2/Hz}}\hspace{0.05cm}.$$
  • It can be seen that with the assumptions made here,  the "energy per bit" of BPSK and 4-QAM coincide.