Difference between revisions of "Aufgaben:Exercise 4.11: On-Off Keying and Binary Phase Shift Keying"

From LNTwww
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Trägerfrequenzsysteme mit kohärenter Demodulation}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation}}
  
[[File:P_ID2060__Dig_A_4_11.png|right|frame|Zwei Signalraumkonstellation für OOK und BPSK]]
+
[[File:P_ID2060__Dig_A_4_11.png|right|frame|Two signal space constellations for OOK and BPSK]]
Die Grafik zeigt Signalraumkonstellationen für trägermodulierte Modulationsverfahren:
+
The graphic shows signal space constellations for carrier-modulated modulation methods:
* ''On&ndash;Off&ndash;Keying''&nbsp; (OOK), in manchen Büchern auch als <i>Amplitude Shift Keying</i>&nbsp; (ASK) bezeichnet,  
+
* ''On&ndash;off keying''&nbsp; (OOK), also known as <i>Amplitude Shift Keying</i>&nbsp; (ASK) in some books,
 
* ''Binary Phase Shift Keying''&nbsp; (BPSK).
 
* ''Binary Phase Shift Keying''&nbsp; (BPSK).
  
  
Für die Berechnung der Fehlerwahrscheinlichkeit gehen wir vom AWGN&ndash;Kanal aus. In diesem Fall ist die Fehlerwahrscheinlichkeit (bezogen auf Symbole oder auf Bit gleichermaßen):
+
For the calculation of the error probability we start from the AWGN channel. In this case the error probability is (related to symbols or to bits alike):
 
:$$p_{\rm S} = p_{\rm B} =  {\rm Q} \left (  \frac{ d/2}{ \sigma_n}\right )
 
:$$p_{\rm S} = p_{\rm B} =  {\rm Q} \left (  \frac{ d/2}{ \sigma_n}\right )
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Hierbei bezeichnet
+
Here
* $d$&nbsp; den Abstand der Signalraumpunkte, und
+
* $d$&nbsp; denotes the distance between the signal space points, and
* $\sigma_n^2 = N_0/2$&nbsp; die Varianz des AWGN&ndash;Rauschens.
+
* $\sigma_n^2 = N_0/2$&nbsp; the variance of the AWGN noise.
  
  
In den Teilfragen ab '''(3)''' wird zudem auf die mittlere Symbollenergie&nbsp; $E_{\rm S}$&nbsp; Bezug genommen.
+
In the questions from '''(3)''' onwards, reference is also made to the mean symbol energy&nbsp; $E_{\rm S}$.&nbsp;  
  
  
Line 24: Line 24:
  
  
''Hinweise:''
+
''Notes:''
* Die Aufgabe gehört zum Kapitel&nbsp; [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation| Trägerfrequenzsysteme mit kohärenter Demodulation]].
+
*The exercise belongs to the chapter&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation|"Carrier Frequency Systems with Coherent Demodulation"]].
* Bezug genommen wird auch auf das Kapitel&nbsp; [[Digitalsignal%C3%BCbertragung/Lineare_digitale_Modulation_%E2%80%93_Koh%C3%A4rente_Demodulation| Lineare digitale Modulation &ndash; Kohärente Demodulation]]&nbsp; sowie das Kapitel&nbsp; [[Modulation_Methods/Lineare_digitale_Modulation| Lineare digitale Modulation]]&nbsp; des Buches "Modulationsverfahren".
+
*Reference is also made to the chapter&nbsp; [[Digital_Signal_Transmission/Linear_Digital_Modulation_-_Coherent_Demodulation|"Linear Digital Modulation &ndash; Coherent Demodulation"]]&nbsp; and the chapter&nbsp; [[Modulation_Methods/Linear_Digital_Modulation|"Linear Digital Modulation"]]&nbsp; in the book "Modulation Methods".
 
   
 
   
* Verwenden Sie für die komplementäre Gaußsche Fehlerfunktion die folgende Näherung:
+
*For the complementary Gaussian error function, use the following approximation:
 
:$${\rm Q}(x)  \approx  \frac{1}{\sqrt{2\pi} \cdot x} \cdot {\rm e}^{-x^2/2}
 
:$${\rm Q}(x)  \approx  \frac{1}{\sqrt{2\pi} \cdot x} \cdot {\rm e}^{-x^2/2}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
Line 35: Line 35:
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Wieviele Bit &nbsp;$(b)$&nbsp; stellt jeweils ein Symbol dar? Wie groß ist die Stufenzahl&nbsp; $M$?
+
{How many bits &nbsp;$(b)$&nbsp; does each symbol represent? What is the level number&nbsp; $M$?
 
|type="{}"}
 
|type="{}"}
 
$b \hspace{0.35cm} = \ $ { 1 3% }
 
$b \hspace{0.35cm} = \ $ { 1 3% }
 
$M  \ = \ $ { 2 3% }
 
$M  \ = \ $ { 2 3% }
  
{Welche Darstellung zeigen die Signalraumkonstellationen?
+
{Which representation do the signal space constellations show?
 
|type="()"}
 
|type="()"}
- Die Darstellung im (tatsächlichen) Bandpassbereich,
+
- The representation in the (actual) band-pass range,
+ die Darstellung im (äquivalenten) Tiefpassbereich.
+
+ the representation in the (equivalent) low-pass range.
  
{Welche Fehlerwahrscheinlichkeit ergibt sich für ''On&ndash;Off&ndash;Keying''&nbsp; abhängig von&nbsp; $E_{\rm S}/N_0$?
+
{What error probability results for ''On&ndash;Off Keying''&nbsp; depending on&nbsp; $E_{\rm S}/N_0$?
 
|type="{}"}
 
|type="{}"}
 
$E_{\rm S}/N_0 = 9 \text{:} \hspace{2.3cm} p_{\rm S} \ = \ $ { 14.8 3% } $\ \cdot 10^{\rm &ndash;4}$
 
$E_{\rm S}/N_0 = 9 \text{:} \hspace{2.3cm} p_{\rm S} \ = \ $ { 14.8 3% } $\ \cdot 10^{\rm &ndash;4}$
 
$10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 12 \ {\rm dB} \text{:} \hspace{0.2cm} p_{\rm S} \ = \ $ { 0.362 3% } $\ \cdot 10^{\rm &ndash;4}$
 
$10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 12 \ {\rm dB} \text{:} \hspace{0.2cm} p_{\rm S} \ = \ $ { 0.362 3% } $\ \cdot 10^{\rm &ndash;4}$
  
{Welche Fehlerwahrscheinlichkeit ergibt sich für ''Binary Phase Shift Keying'' abhängig von&nbsp; $E_{\rm S}/N_0$?
+
{What is the error probability for ''Binary Phase Shift Keying'' depending on&nbsp; $E_{\rm S}/N_0$?
 
|type="{}"}
 
|type="{}"}
 
$E_{\rm S}/N_0 = 9 \text{:} \hspace{2.3cm} p_{\rm S} \ = \ $ { 117 3% } $\ \cdot 10^{\rm &ndash;8}$
 
$E_{\rm S}/N_0 = 9 \text{:} \hspace{2.3cm} p_{\rm S} \ = \ $ { 117 3% } $\ \cdot 10^{\rm &ndash;8}$
Line 58: Line 58:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Sowohl ''On&ndash;Off&ndash;Keying'' (OOK) als auch ''Binary Phase Shift Keying'' (BPSK) sind binäre Modulationsverfahren:
+
'''(1)'''&nbsp; Both ''On&ndash;Off Keying'' (OOK) and ''Binary Phase Shift Keying'' (BPSK) are binary modulation methods:
 
:$$\underline{b = 1 }\hspace{0.05cm},\hspace{0.5cm} \underline{M = 2} \hspace{0.05cm}.$$
 
:$$\underline{b = 1 }\hspace{0.05cm},\hspace{0.5cm} \underline{M = 2} \hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>, erkennbar an der imaginären Basisfunktion $\varphi_2(t) = {\rm j} \cdot \varphi_1(t)$.  
+
'''(2)'''&nbsp; <u>Solution 2</u> is correct, recognizable by the imaginary basis function $\varphi_2(t) = {\rm j} \cdot \varphi_1(t)$.  
*Bei Beschreibung im Bandpassbereich wären die Basisfunktionen cosinus&ndash; und (minus&ndash;)sinusförmig reell.
+
*If described in the band-pass range, the basis functions would be cosine and (minus)sine real.
  
  
  
'''(3)'''&nbsp; Die vorgegebene Gleichung lautet bei ''On&ndash;Off&ndash;Keying'' (OOK) mit
+
'''(3)'''&nbsp; The given equation is for ''On&ndash;Off Keying'' (OOK) with
 
*$d = \sqrt {E}$,  
 
*$d = \sqrt {E}$,  
*$E_{\rm S} = E/2$ (wobei gleichwahrscheinliche Symbole $\boldsymbol{s}_0$ und $\boldsymbol{s}_1$ vorausgesetzt sind) und
+
*$E_{\rm S} = E/2$ (assuming equally probable symbols $\boldsymbol{s}_0$ and $\boldsymbol{s}_1$) and
 
*$\sigma_n^2 = N_0/2$:
 
*$\sigma_n^2 = N_0/2$:
 
:$$p_{\rm S} \hspace{-0.1cm} = \hspace{-0.1cm}  {\rm Q} \left (  \frac{ d/2}{ \sigma_n}\right )=  {\rm Q} \left (  \frac{ \sqrt{E}/2}{ \sqrt{N_0/2}}\right ) = {\rm Q} \left ( \sqrt{ \frac{ E/2}{ N_0} }\right ) = {\rm Q} \left ( \sqrt{ { E_{\rm S}}/{ N_0} }\right )
 
:$$p_{\rm S} \hspace{-0.1cm} = \hspace{-0.1cm}  {\rm Q} \left (  \frac{ d/2}{ \sigma_n}\right )=  {\rm Q} \left (  \frac{ \sqrt{E}/2}{ \sqrt{N_0/2}}\right ) = {\rm Q} \left ( \sqrt{ \frac{ E/2}{ N_0} }\right ) = {\rm Q} \left ( \sqrt{ { E_{\rm S}}/{ N_0} }\right )
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*Für $E_{\rm S}/N_0 = 9 = 3^2$ ergibt sich somit:
+
*For $E_{\rm S}/N_0 = 9 = 3^2$ this results in:
 
:$$p_{\rm S} = {\rm Q} (3) \approx  \frac{1}{\sqrt{2\pi} \cdot 3} \cdot {\rm e}^{-9/2} = \underline{14.8 \cdot 10^{-4}}
 
:$$p_{\rm S} = {\rm Q} (3) \approx  \frac{1}{\sqrt{2\pi} \cdot 3} \cdot {\rm e}^{-9/2} = \underline{14.8 \cdot 10^{-4}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*Entsprechend gilt für $10 \cdot {\rm lg} \, (E_{\rm S}/N_0) = 12 \ \rm dB$ &nbsp;&#8658;&nbsp; $E_{\rm S}/N_0 = 15.85$:
+
*Accordingly, for $10 \cdot {\rm lg} \, (E_{\rm S}/N_0) = 12 \ \rm dB$ &nbsp;&#8658;&nbsp; $E_{\rm S}/N_0 = 15.85$:
 
:$$p_{\rm S} = {\rm Q} (\sqrt{15.85}) \approx  \frac{1}{\sqrt{2\pi\cdot 15.85} } \cdot {\rm e}^{-15.85/2} = \underline{0.362 \cdot 10^{-4}}
 
:$$p_{\rm S} = {\rm Q} (\sqrt{15.85}) \approx  \frac{1}{\sqrt{2\pi\cdot 15.85} } \cdot {\rm e}^{-15.85/2} = \underline{0.362 \cdot 10^{-4}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; Im Unterschied zur Teilaufgabe '''(3)''' gilt ''Binary Phase Shift Keying'' (BPSK)   
+
'''(4)'''&nbsp; In contrast to subtask '''(3)''', ''Binary Phase Shift Keying'' (BPSK) applies  
 
*$d = 2 \cdot \sqrt {E}$,  
 
*$d = 2 \cdot \sqrt {E}$,  
 
*$E_{\rm S} = E$,  
 
*$E_{\rm S} = E$,  
  
  
beides sogar unabhängig von den Auftrittswahrscheinlichkeiten für $\boldsymbol{s}_0$ und $\boldsymbol{s}_1$.  
+
both even independent of the occurrence probabilities for $\boldsymbol{s}_0$ and $\boldsymbol{s}_1$.  
*Daraus folgt:
+
*It follows:
 
:$$p_{\rm S} =  {\rm Q} \left (  \frac{ \sqrt{E_{\rm S}}}{ \sqrt{N_0/2}}\right ) =  {\rm Q} \left ( \sqrt{ { 2E_{\rm S}}/{ N_0} }\right )
 
:$$p_{\rm S} =  {\rm Q} \left (  \frac{ \sqrt{E_{\rm S}}}{ \sqrt{N_0/2}}\right ) =  {\rm Q} \left ( \sqrt{ { 2E_{\rm S}}/{ N_0} }\right )
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*Mit $E_{\rm S}/N_0 = 9$ ergibt sich daraus der Zahlenwert:
+
*With $E_{\rm S}/N_0 = 9$, this results in the numerical value:
 
:$$p_{\rm S} = {\rm Q} (\sqrt{18}) \approx  \frac{1}{\sqrt{2\pi\cdot 18} } \cdot {\rm e}^{-18/2} = \underline{117 \cdot 10^{-8}} \hspace{0.05cm}.$$
 
:$$p_{\rm S} = {\rm Q} (\sqrt{18}) \approx  \frac{1}{\sqrt{2\pi\cdot 18} } \cdot {\rm e}^{-18/2} = \underline{117 \cdot 10^{-8}} \hspace{0.05cm}.$$
  
*Und mit $10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 12 \ \rm dB$ &nbsp;&#8658;&nbsp; $2E_{\rm S}/N_0 = 31.7$:  
+
*And with $10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 12 \ \rm dB$ &nbsp;&#8658;&nbsp; $2E_{\rm S}/N_0 = 31.7$:  
 
:$$p_{\rm S} = {\rm Q} (\sqrt{31.7}) \approx  \frac{1}{\sqrt{2\pi\cdot 31.7} } \cdot {\rm e}^{-31.7/2} = \underline{0.926 \cdot 10^{-8}}\hspace{0.05cm}.$$
 
:$$p_{\rm S} = {\rm Q} (\sqrt{31.7}) \approx  \frac{1}{\sqrt{2\pi\cdot 31.7} } \cdot {\rm e}^{-31.7/2} = \underline{0.926 \cdot 10^{-8}}\hspace{0.05cm}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 15:28, 19 July 2022

Two signal space constellations for OOK and BPSK

The graphic shows signal space constellations for carrier-modulated modulation methods:

  • On–off keying  (OOK), also known as Amplitude Shift Keying  (ASK) in some books,
  • Binary Phase Shift Keying  (BPSK).


For the calculation of the error probability we start from the AWGN channel. In this case the error probability is (related to symbols or to bits alike):

$$p_{\rm S} = p_{\rm B} = {\rm Q} \left ( \frac{ d/2}{ \sigma_n}\right ) \hspace{0.05cm}.$$

Here

  • $d$  denotes the distance between the signal space points, and
  • $\sigma_n^2 = N_0/2$  the variance of the AWGN noise.


In the questions from (3) onwards, reference is also made to the mean symbol energy  $E_{\rm S}$. 




Notes:

  • For the complementary Gaussian error function, use the following approximation:
$${\rm Q}(x) \approx \frac{1}{\sqrt{2\pi} \cdot x} \cdot {\rm e}^{-x^2/2} \hspace{0.05cm}.$$



Questions

1

How many bits  $(b)$  does each symbol represent? What is the level number  $M$?

$b \hspace{0.35cm} = \ $

$M \ = \ $

2

Which representation do the signal space constellations show?

The representation in the (actual) band-pass range,
the representation in the (equivalent) low-pass range.

3

What error probability results for On–Off Keying  depending on  $E_{\rm S}/N_0$?

$E_{\rm S}/N_0 = 9 \text{:} \hspace{2.3cm} p_{\rm S} \ = \ $

$\ \cdot 10^{\rm –4}$
$10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 12 \ {\rm dB} \text{:} \hspace{0.2cm} p_{\rm S} \ = \ $

$\ \cdot 10^{\rm –4}$

4

What is the error probability for Binary Phase Shift Keying depending on  $E_{\rm S}/N_0$?

$E_{\rm S}/N_0 = 9 \text{:} \hspace{2.3cm} p_{\rm S} \ = \ $

$\ \cdot 10^{\rm –8}$
$10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 12 \ {\rm dB} \text{:} \hspace{0.2cm} p_{\rm S} \ = \ $

$\ \cdot 10^{\rm –8}$


Solution

(1)  Both On–Off Keying (OOK) and Binary Phase Shift Keying (BPSK) are binary modulation methods:

$$\underline{b = 1 }\hspace{0.05cm},\hspace{0.5cm} \underline{M = 2} \hspace{0.05cm}.$$


(2)  Solution 2 is correct, recognizable by the imaginary basis function $\varphi_2(t) = {\rm j} \cdot \varphi_1(t)$.

  • If described in the band-pass range, the basis functions would be cosine and (minus)sine real.


(3)  The given equation is for On–Off Keying (OOK) with

  • $d = \sqrt {E}$,
  • $E_{\rm S} = E/2$ (assuming equally probable symbols $\boldsymbol{s}_0$ and $\boldsymbol{s}_1$) and
  • $\sigma_n^2 = N_0/2$:
$$p_{\rm S} \hspace{-0.1cm} = \hspace{-0.1cm} {\rm Q} \left ( \frac{ d/2}{ \sigma_n}\right )= {\rm Q} \left ( \frac{ \sqrt{E}/2}{ \sqrt{N_0/2}}\right ) = {\rm Q} \left ( \sqrt{ \frac{ E/2}{ N_0} }\right ) = {\rm Q} \left ( \sqrt{ { E_{\rm S}}/{ N_0} }\right ) \hspace{0.05cm}.$$
  • For $E_{\rm S}/N_0 = 9 = 3^2$ this results in:
$$p_{\rm S} = {\rm Q} (3) \approx \frac{1}{\sqrt{2\pi} \cdot 3} \cdot {\rm e}^{-9/2} = \underline{14.8 \cdot 10^{-4}} \hspace{0.05cm}.$$
  • Accordingly, for $10 \cdot {\rm lg} \, (E_{\rm S}/N_0) = 12 \ \rm dB$  ⇒  $E_{\rm S}/N_0 = 15.85$:
$$p_{\rm S} = {\rm Q} (\sqrt{15.85}) \approx \frac{1}{\sqrt{2\pi\cdot 15.85} } \cdot {\rm e}^{-15.85/2} = \underline{0.362 \cdot 10^{-4}} \hspace{0.05cm}.$$


(4)  In contrast to subtask (3), Binary Phase Shift Keying (BPSK) applies

  • $d = 2 \cdot \sqrt {E}$,
  • $E_{\rm S} = E$,


both even independent of the occurrence probabilities for $\boldsymbol{s}_0$ and $\boldsymbol{s}_1$.

  • It follows:
$$p_{\rm S} = {\rm Q} \left ( \frac{ \sqrt{E_{\rm S}}}{ \sqrt{N_0/2}}\right ) = {\rm Q} \left ( \sqrt{ { 2E_{\rm S}}/{ N_0} }\right ) \hspace{0.05cm}.$$
  • With $E_{\rm S}/N_0 = 9$, this results in the numerical value:
$$p_{\rm S} = {\rm Q} (\sqrt{18}) \approx \frac{1}{\sqrt{2\pi\cdot 18} } \cdot {\rm e}^{-18/2} = \underline{117 \cdot 10^{-8}} \hspace{0.05cm}.$$
  • And with $10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 12 \ \rm dB$  ⇒  $2E_{\rm S}/N_0 = 31.7$:
$$p_{\rm S} = {\rm Q} (\sqrt{31.7}) \approx \frac{1}{\sqrt{2\pi\cdot 31.7} } \cdot {\rm e}^{-31.7/2} = \underline{0.926 \cdot 10^{-8}}\hspace{0.05cm}.$$