Difference between revisions of "Aufgaben:Exercise 4.11: On-Off Keying and Binary Phase Shift Keying"

From LNTwww
m (Text replacement - "„" to """)
 
(8 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Trägerfrequenzsysteme mit kohärenter Demodulation}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation}}
  
[[File:P_ID2060__Dig_A_4_11.png|right|frame|Zwei Signalraumkonstellation für OOK und BPSK]]
+
[[File:P_ID2060__Dig_A_4_11.png|right|frame|Two signal space constellations for OOK and BPSK]]
Die Grafik zeigt Signalraumkonstellationen für trägermodulierte Modulationsverfahren:
+
The graphic shows signal space constellations for carrier-modulated modulation methods:
* ''On&ndash;Off&ndash;Keying''&nbsp; (OOK), in manchen Büchern auch als <i>Amplitude Shift Keying</i>&nbsp; (ASK) bezeichnet,
+
* "On&ndash;Off Keying"&nbsp; $\rm (OOK)$,&nbsp; also known as&nbsp; "Amplitude Shift Keying"&nbsp; $\rm (ASK)$&nbsp; in some books,
* ''Binary Phase Shift Keying''&nbsp; (BPSK).
 
  
 +
* "Binary Phase Shift Keying"&nbsp; $\rm (BPSK)$.
  
Für die Berechnung der Fehlerwahrscheinlichkeit gehen wir vom AWGN&ndash;Kanal aus. In diesem Fall ist die Fehlerwahrscheinlichkeit (bezogen auf Symbole oder auf Bit gleichermaßen):
+
 
 +
For the error probability  calculation we start from the AWGN channel.&nbsp; In this case the error probability is&nbsp; <br>$($related to symbols or to bits alike$)$:
 
:$$p_{\rm S} = p_{\rm B} =  {\rm Q} \left (  \frac{ d/2}{ \sigma_n}\right )
 
:$$p_{\rm S} = p_{\rm B} =  {\rm Q} \left (  \frac{ d/2}{ \sigma_n}\right )
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Hierbei bezeichnet
+
Here
* $d$&nbsp; den Abstand der Signalraumpunkte, und
+
* $d$&nbsp; denotes the distance between the signal space points,&nbsp; and
* $\sigma_n^2 = N_0/2$&nbsp; die Varianz des AWGN&ndash;Rauschens.
 
  
 +
* $\sigma_n^2 = N_0/2$&nbsp; the variance of the AWGN noise.
  
In den Teilfragen ab '''(3)''' wird zudem auf die mittlere Symbollenergie&nbsp; $E_{\rm S}$&nbsp; Bezug genommen.
 
  
 +
In the questions from&nbsp; '''(3)'''&nbsp; onwards,&nbsp; reference is also made to the mean symbol energy&nbsp; $E_{\rm S}$.&nbsp;
  
  
Line 24: Line 25:
  
  
''Hinweise:''
+
Notes:
* Die Aufgabe gehört zum Kapitel&nbsp; [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation| Trägerfrequenzsysteme mit kohärenter Demodulation]].
+
*The exercise belongs to the chapter&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation|"Carrier Frequency Systems with Coherent Demodulation"]].
* Bezug genommen wird auch auf das Kapitel&nbsp; [[Digitalsignal%C3%BCbertragung/Lineare_digitale_Modulation_%E2%80%93_Koh%C3%A4rente_Demodulation| Lineare digitale Modulation &ndash; Kohärente Demodulation]]&nbsp; sowie das Kapitel&nbsp; [[Modulation_Methods/Lineare_digitale_Modulation| Lineare digitale Modulation]]&nbsp; des Buches "Modulationsverfahren".
+
 
 +
*Reference is also made to the chapter&nbsp; [[Digital_Signal_Transmission/Linear_Digital_Modulation_-_Coherent_Demodulation|"Linear Digital Modulation &ndash; Coherent Demodulation"]]&nbsp; and the chapter&nbsp; [[Modulation_Methods/Linear_Digital_Modulation|"Linear Digital Modulation"]]&nbsp; in the book&nbsp; "Modulation Methods".
 
   
 
   
* Verwenden Sie für die komplementäre Gaußsche Fehlerfunktion die folgende Näherung:
+
*For the complementary Gaussian error function,&nbsp; use the following approximation:
 
:$${\rm Q}(x)  \approx  \frac{1}{\sqrt{2\pi} \cdot x} \cdot {\rm e}^{-x^2/2}
 
:$${\rm Q}(x)  \approx  \frac{1}{\sqrt{2\pi} \cdot x} \cdot {\rm e}^{-x^2/2}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
Line 35: Line 37:
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Wieviele Bit &nbsp;$(b)$&nbsp; stellt jeweils ein Symbol dar? Wie groß ist die Stufenzahl&nbsp; $M$?
+
{How many bits &nbsp;$(b)$&nbsp; does each symbol represent?&nbsp; What is the level number&nbsp; $M$?
 
|type="{}"}
 
|type="{}"}
 
$b \hspace{0.35cm} = \ $ { 1 3% }
 
$b \hspace{0.35cm} = \ $ { 1 3% }
 
$M  \ = \ $ { 2 3% }
 
$M  \ = \ $ { 2 3% }
  
{Welche Darstellung zeigen die Signalraumkonstellationen?
+
{Which representation do the signal space constellations show?
 
|type="()"}
 
|type="()"}
- Die Darstellung im (tatsächlichen) Bandpassbereich,
+
- The representation in the (actual) band-pass range,
+ die Darstellung im (äquivalenten) Tiefpassbereich.
+
+ the representation in the (equivalent) low-pass range.
  
{Welche Fehlerwahrscheinlichkeit ergibt sich für ''On&ndash;Off&ndash;Keying''&nbsp; abhängig von&nbsp; $E_{\rm S}/N_0$?
+
{What error probability results for&nbsp; "On&ndash;Off Keying"&nbsp; depending on&nbsp; $E_{\rm S}/N_0$?
 
|type="{}"}
 
|type="{}"}
 
$E_{\rm S}/N_0 = 9 \text{:} \hspace{2.3cm} p_{\rm S} \ = \ $ { 14.8 3% } $\ \cdot 10^{\rm &ndash;4}$
 
$E_{\rm S}/N_0 = 9 \text{:} \hspace{2.3cm} p_{\rm S} \ = \ $ { 14.8 3% } $\ \cdot 10^{\rm &ndash;4}$
 
$10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 12 \ {\rm dB} \text{:} \hspace{0.2cm} p_{\rm S} \ = \ $ { 0.362 3% } $\ \cdot 10^{\rm &ndash;4}$
 
$10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 12 \ {\rm dB} \text{:} \hspace{0.2cm} p_{\rm S} \ = \ $ { 0.362 3% } $\ \cdot 10^{\rm &ndash;4}$
  
{Welche Fehlerwahrscheinlichkeit ergibt sich für ''Binary Phase Shift Keying'' abhängig von&nbsp; $E_{\rm S}/N_0$?
+
{What is the error probability for&nbsp; "Binary Phase Shift Keying"&nbsp; depending on&nbsp; $E_{\rm S}/N_0$?
 
|type="{}"}
 
|type="{}"}
 
$E_{\rm S}/N_0 = 9 \text{:} \hspace{2.3cm} p_{\rm S} \ = \ $ { 117 3% } $\ \cdot 10^{\rm &ndash;8}$
 
$E_{\rm S}/N_0 = 9 \text{:} \hspace{2.3cm} p_{\rm S} \ = \ $ { 117 3% } $\ \cdot 10^{\rm &ndash;8}$
Line 58: Line 60:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Sowohl ''On&ndash;Off&ndash;Keying'' (OOK) als auch ''Binary Phase Shift Keying'' (BPSK) sind binäre Modulationsverfahren:
+
'''(1)'''&nbsp; Both&nbsp; "'On&ndash;Off Keying"&nbsp; $\rm (OOK)$&nbsp; and&nbsp; "Binary Phase Shift Keying"&nbsp; $\rm (BPSK)$&nbsp; are binary modulation methods:
 
:$$\underline{b = 1 }\hspace{0.05cm},\hspace{0.5cm} \underline{M = 2} \hspace{0.05cm}.$$
 
:$$\underline{b = 1 }\hspace{0.05cm},\hspace{0.5cm} \underline{M = 2} \hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>, erkennbar an der imaginären Basisfunktion $\varphi_2(t) = {\rm j} \cdot \varphi_1(t)$.  
+
'''(2)'''&nbsp; <u>Solution 2</u>&nbsp; is correct,&nbsp; recognizable by the imaginary basis function&nbsp; $\varphi_2(t) = {\rm j} \cdot \varphi_1(t)$.  
*Bei Beschreibung im Bandpassbereich wären die Basisfunktionen cosinus&ndash; und (minus&ndash;)sinusförmig reell.
+
*If described in the band-pass range,&nbsp; the basis functions would be real:&nbsp; "cosine"&nbsp; and&nbsp; "(minus) sine".
  
  
  
'''(3)'''&nbsp; Die vorgegebene Gleichung lautet bei ''On&ndash;Off&ndash;Keying'' (OOK) mit
+
'''(3)'''&nbsp; The given equation is for&nbsp; "On&ndash;Off Keying"&nbsp; with
*$d = \sqrt {E}$,  
+
*$d = \sqrt {E}$,
*$E_{\rm S} = E/2$ (wobei gleichwahrscheinliche Symbole $\boldsymbol{s}_0$ und $\boldsymbol{s}_1$ vorausgesetzt sind) und
+
 +
*$E_{\rm S} = E/2$&nbsp; (assuming equally probable symbols&nbsp; $\boldsymbol{s}_0$&nbsp; and&nbsp; $\boldsymbol{s}_1$),
 +
 
*$\sigma_n^2 = N_0/2$:
 
*$\sigma_n^2 = N_0/2$:
 
:$$p_{\rm S} \hspace{-0.1cm} = \hspace{-0.1cm}  {\rm Q} \left (  \frac{ d/2}{ \sigma_n}\right )=  {\rm Q} \left (  \frac{ \sqrt{E}/2}{ \sqrt{N_0/2}}\right ) = {\rm Q} \left ( \sqrt{ \frac{ E/2}{ N_0} }\right ) = {\rm Q} \left ( \sqrt{ { E_{\rm S}}/{ N_0} }\right )
 
:$$p_{\rm S} \hspace{-0.1cm} = \hspace{-0.1cm}  {\rm Q} \left (  \frac{ d/2}{ \sigma_n}\right )=  {\rm Q} \left (  \frac{ \sqrt{E}/2}{ \sqrt{N_0/2}}\right ) = {\rm Q} \left ( \sqrt{ \frac{ E/2}{ N_0} }\right ) = {\rm Q} \left ( \sqrt{ { E_{\rm S}}/{ N_0} }\right )
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*Für $E_{\rm S}/N_0 = 9 = 3^2$ ergibt sich somit:
+
*For&nbsp; $E_{\rm S}/N_0 = 9 = 3^2$&nbsp; this results in:
 
:$$p_{\rm S} = {\rm Q} (3) \approx  \frac{1}{\sqrt{2\pi} \cdot 3} \cdot {\rm e}^{-9/2} = \underline{14.8 \cdot 10^{-4}}
 
:$$p_{\rm S} = {\rm Q} (3) \approx  \frac{1}{\sqrt{2\pi} \cdot 3} \cdot {\rm e}^{-9/2} = \underline{14.8 \cdot 10^{-4}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*Entsprechend gilt für $10 \cdot {\rm lg} \, (E_{\rm S}/N_0) = 12 \ \rm dB$ &nbsp;&#8658;&nbsp; $E_{\rm S}/N_0 = 15.85$:
+
*Accordingly,&nbsp; for&nbsp; $10 \cdot {\rm lg} \, (E_{\rm S}/N_0) = 12 \ \rm dB$ &nbsp; &#8658; &nbsp; $E_{\rm S}/N_0 = 15.85$:
 
:$$p_{\rm S} = {\rm Q} (\sqrt{15.85}) \approx  \frac{1}{\sqrt{2\pi\cdot 15.85} } \cdot {\rm e}^{-15.85/2} = \underline{0.362 \cdot 10^{-4}}
 
:$$p_{\rm S} = {\rm Q} (\sqrt{15.85}) \approx  \frac{1}{\sqrt{2\pi\cdot 15.85} } \cdot {\rm e}^{-15.85/2} = \underline{0.362 \cdot 10^{-4}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; Im Unterschied zur Teilaufgabe '''(3)''' gilt ''Binary Phase Shift Keying'' (BPSK)   
+
'''(4)'''&nbsp; In contrast to subtask&nbsp; '''(3)''',&nbsp; "Binary Phase Shift Keying" $\rm (BPSK)$&nbsp; applies  
*$d = 2 \cdot \sqrt {E}$,  
+
*$d = 2 \cdot \sqrt {E}$,
 +
 
*$E_{\rm S} = E$,  
 
*$E_{\rm S} = E$,  
  
  
beides sogar unabhängig von den Auftrittswahrscheinlichkeiten für $\boldsymbol{s}_0$ und $\boldsymbol{s}_1$.  
+
both even independent of the occurrence probabilities for&nbsp; $\boldsymbol{s}_0$&nbsp; and&nbsp; $\boldsymbol{s}_1$.
*Daraus folgt:
+
 +
*It follows:
 
:$$p_{\rm S} =  {\rm Q} \left (  \frac{ \sqrt{E_{\rm S}}}{ \sqrt{N_0/2}}\right ) =  {\rm Q} \left ( \sqrt{ { 2E_{\rm S}}/{ N_0} }\right )
 
:$$p_{\rm S} =  {\rm Q} \left (  \frac{ \sqrt{E_{\rm S}}}{ \sqrt{N_0/2}}\right ) =  {\rm Q} \left ( \sqrt{ { 2E_{\rm S}}/{ N_0} }\right )
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*Mit $E_{\rm S}/N_0 = 9$ ergibt sich daraus der Zahlenwert:
+
*With&nbsp; $E_{\rm S}/N_0 = 9$,&nbsp; this results in the numerical value:
 
:$$p_{\rm S} = {\rm Q} (\sqrt{18}) \approx  \frac{1}{\sqrt{2\pi\cdot 18} } \cdot {\rm e}^{-18/2} = \underline{117 \cdot 10^{-8}} \hspace{0.05cm}.$$
 
:$$p_{\rm S} = {\rm Q} (\sqrt{18}) \approx  \frac{1}{\sqrt{2\pi\cdot 18} } \cdot {\rm e}^{-18/2} = \underline{117 \cdot 10^{-8}} \hspace{0.05cm}.$$
  
*Und mit $10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 12 \ \rm dB$ &nbsp;&#8658;&nbsp; $2E_{\rm S}/N_0 = 31.7$:  
+
*And with&nbsp; $10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 12 \ \rm dB$ &nbsp; &#8658; &nbsp; $2E_{\rm S}/N_0 = 31.7$:  
 
:$$p_{\rm S} = {\rm Q} (\sqrt{31.7}) \approx  \frac{1}{\sqrt{2\pi\cdot 31.7} } \cdot {\rm e}^{-31.7/2} = \underline{0.926 \cdot 10^{-8}}\hspace{0.05cm}.$$
 
:$$p_{\rm S} = {\rm Q} (\sqrt{31.7}) \approx  \frac{1}{\sqrt{2\pi\cdot 31.7} } \cdot {\rm e}^{-31.7/2} = \underline{0.926 \cdot 10^{-8}}\hspace{0.05cm}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 104: Line 110:
  
  
[[Category:Digital Signal Transmission: Exercises|^4.4 Kohärente Demodulation^]]
+
[[Category:Digital Signal Transmission: Exercises|^4.4 Coherent Demodulation^]]

Latest revision as of 20:48, 1 September 2022

Two signal space constellations for OOK and BPSK

The graphic shows signal space constellations for carrier-modulated modulation methods:

  • "On–Off Keying"  $\rm (OOK)$,  also known as  "Amplitude Shift Keying"  $\rm (ASK)$  in some books,
  • "Binary Phase Shift Keying"  $\rm (BPSK)$.


For the error probability calculation we start from the AWGN channel.  In this case the error probability is 
$($related to symbols or to bits alike$)$:

$$p_{\rm S} = p_{\rm B} = {\rm Q} \left ( \frac{ d/2}{ \sigma_n}\right ) \hspace{0.05cm}.$$

Here

  • $d$  denotes the distance between the signal space points,  and
  • $\sigma_n^2 = N_0/2$  the variance of the AWGN noise.


In the questions from  (3)  onwards,  reference is also made to the mean symbol energy  $E_{\rm S}$. 



Notes:

  • For the complementary Gaussian error function,  use the following approximation:
$${\rm Q}(x) \approx \frac{1}{\sqrt{2\pi} \cdot x} \cdot {\rm e}^{-x^2/2} \hspace{0.05cm}.$$



Questions

1

How many bits  $(b)$  does each symbol represent?  What is the level number  $M$?

$b \hspace{0.35cm} = \ $

$M \ = \ $

2

Which representation do the signal space constellations show?

The representation in the (actual) band-pass range,
the representation in the (equivalent) low-pass range.

3

What error probability results for  "On–Off Keying"  depending on  $E_{\rm S}/N_0$?

$E_{\rm S}/N_0 = 9 \text{:} \hspace{2.3cm} p_{\rm S} \ = \ $

$\ \cdot 10^{\rm –4}$
$10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 12 \ {\rm dB} \text{:} \hspace{0.2cm} p_{\rm S} \ = \ $

$\ \cdot 10^{\rm –4}$

4

What is the error probability for  "Binary Phase Shift Keying"  depending on  $E_{\rm S}/N_0$?

$E_{\rm S}/N_0 = 9 \text{:} \hspace{2.3cm} p_{\rm S} \ = \ $

$\ \cdot 10^{\rm –8}$
$10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 12 \ {\rm dB} \text{:} \hspace{0.2cm} p_{\rm S} \ = \ $

$\ \cdot 10^{\rm –8}$


Solution

(1)  Both  "'On–Off Keying"  $\rm (OOK)$  and  "Binary Phase Shift Keying"  $\rm (BPSK)$  are binary modulation methods:

$$\underline{b = 1 }\hspace{0.05cm},\hspace{0.5cm} \underline{M = 2} \hspace{0.05cm}.$$


(2)  Solution 2  is correct,  recognizable by the imaginary basis function  $\varphi_2(t) = {\rm j} \cdot \varphi_1(t)$.

  • If described in the band-pass range,  the basis functions would be real:  "cosine"  and  "(minus) sine".


(3)  The given equation is for  "On–Off Keying"  with

  • $d = \sqrt {E}$,
  • $E_{\rm S} = E/2$  (assuming equally probable symbols  $\boldsymbol{s}_0$  and  $\boldsymbol{s}_1$),
  • $\sigma_n^2 = N_0/2$:
$$p_{\rm S} \hspace{-0.1cm} = \hspace{-0.1cm} {\rm Q} \left ( \frac{ d/2}{ \sigma_n}\right )= {\rm Q} \left ( \frac{ \sqrt{E}/2}{ \sqrt{N_0/2}}\right ) = {\rm Q} \left ( \sqrt{ \frac{ E/2}{ N_0} }\right ) = {\rm Q} \left ( \sqrt{ { E_{\rm S}}/{ N_0} }\right ) \hspace{0.05cm}.$$
  • For  $E_{\rm S}/N_0 = 9 = 3^2$  this results in:
$$p_{\rm S} = {\rm Q} (3) \approx \frac{1}{\sqrt{2\pi} \cdot 3} \cdot {\rm e}^{-9/2} = \underline{14.8 \cdot 10^{-4}} \hspace{0.05cm}.$$
  • Accordingly,  for  $10 \cdot {\rm lg} \, (E_{\rm S}/N_0) = 12 \ \rm dB$   ⇒   $E_{\rm S}/N_0 = 15.85$:
$$p_{\rm S} = {\rm Q} (\sqrt{15.85}) \approx \frac{1}{\sqrt{2\pi\cdot 15.85} } \cdot {\rm e}^{-15.85/2} = \underline{0.362 \cdot 10^{-4}} \hspace{0.05cm}.$$


(4)  In contrast to subtask  (3),  "Binary Phase Shift Keying" $\rm (BPSK)$  applies

  • $d = 2 \cdot \sqrt {E}$,
  • $E_{\rm S} = E$,


both even independent of the occurrence probabilities for  $\boldsymbol{s}_0$  and  $\boldsymbol{s}_1$.

  • It follows:
$$p_{\rm S} = {\rm Q} \left ( \frac{ \sqrt{E_{\rm S}}}{ \sqrt{N_0/2}}\right ) = {\rm Q} \left ( \sqrt{ { 2E_{\rm S}}/{ N_0} }\right ) \hspace{0.05cm}.$$
  • With  $E_{\rm S}/N_0 = 9$,  this results in the numerical value:
$$p_{\rm S} = {\rm Q} (\sqrt{18}) \approx \frac{1}{\sqrt{2\pi\cdot 18} } \cdot {\rm e}^{-18/2} = \underline{117 \cdot 10^{-8}} \hspace{0.05cm}.$$
  • And with  $10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 12 \ \rm dB$   ⇒   $2E_{\rm S}/N_0 = 31.7$:
$$p_{\rm S} = {\rm Q} (\sqrt{31.7}) \approx \frac{1}{\sqrt{2\pi\cdot 31.7} } \cdot {\rm e}^{-31.7/2} = \underline{0.926 \cdot 10^{-8}}\hspace{0.05cm}.$$