Difference between revisions of "Aufgaben:Exercise 4.12: Calculations for the 16-QAM"

From LNTwww
Line 55: Line 55:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  Der Quotient $E_{\rm S}/E$ ergibt sich als der mittlere quadratische Abstand der $M = 16$ Signalraumpunkte $\boldsymbol{s}_i$ vom Ursprung.  
+
'''(1)'''  The quotient $E_{\rm S}/E$ is obtained as the mean square distance of the $M = 16$ signal space points $\boldsymbol{s}_i$ from the origin.  
*Mit der gegebenen Signalraumkonstellation der 16–QAM erhält man:
+
*With the given signal space constellation of the 16–QAM we obtain:
 
:$$E_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} { E}/{ 16} \cdot \left [ 4 \cdot (1^2 + 1^2) + 8 \cdot (1^2 + 3^2) + 4 \cdot (3^2 + 3^2)\right ]={ E}/{ 16} \cdot \left [ 4 \cdot 2 + 8 \cdot 10 + 4 \cdot 18\right ] = 10 \cdot E = \underline{10 \ {\rm mWs}}
 
:$$E_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} { E}/{ 16} \cdot \left [ 4 \cdot (1^2 + 1^2) + 8 \cdot (1^2 + 3^2) + 4 \cdot (3^2 + 3^2)\right ]={ E}/{ 16} \cdot \left [ 4 \cdot 2 + 8 \cdot 10 + 4 \cdot 18\right ] = 10 \cdot E = \underline{10 \ {\rm mWs}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*Zum gleichen Ergebnis kommt man mit der im [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation| Theorieteil]] angegebenen Gleichung
+
*The same result is obtained with the equation given in the [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation| "theory section"]]
 
:$$E_{\rm S} = \frac{ 2 \cdot (M-1)}{ 3 } \cdot  E = \frac{ 2 \cdot 15}{ 3 } \cdot  E = 10 E
 
:$$E_{\rm S} = \frac{ 2 \cdot (M-1)}{ 3 } \cdot  E = \frac{ 2 \cdot 15}{ 3 } \cdot  E = 10 E
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
'''(2)'''  Jedes einzelne Symbol stellt vier Binärsymbole dar. Damit ist die mittlere Energie pro Bit.
+
'''(2)'''  Each individual symbol represents four binary symbols. Thus, the average energy per bit is
 
:$$E_{\rm B} = \frac{ E_{\rm S}}{ {\rm log_2} \hspace{0.05cm}(M)} = 2.5 \cdot  E = \underline{2.5 \ {\rm mWs}}
 
:$$E_{\rm B} = \frac{ E_{\rm S}}{ {\rm log_2} \hspace{0.05cm}(M)} = 2.5 \cdot  E = \underline{2.5 \ {\rm mWs}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
[[File:P_ID2063__Dig_A_4_12c.png|right|frame|Zur Verdeutlichung der 16–QAM–Fehlerwahrscheinlichkeit]]  
+
[[File:P_ID2063__Dig_A_4_12c.png|right|frame|Illustration of the 16–QAM error probability]]  
'''(3)'''&nbsp; Die <i>Union Bound</i> ist eine obere Schranke für die Symbolfehlerwahrscheinlichkeit.  
+
'''(3)'''&nbsp; The <i>Union Bound</i> is an upper bound on the symbol error probability.
*Sie berücksichtigt nur den Übergang zu benachbarten Entscheidungsregionen aufgrund von AWGN&ndash;Rauschen.
+
*It only takes into account the transition to adjacent decision regions due to AWGN noise.
*Aus der Grafik geht hervor, dass die Ecksymbole (gelb gefüllt) nur zu zwei anderen Symbolen hin verfälscht werden können und die restlichen Randsymbole (grüne Füllung) in drei Richtungen.  
+
*From the graph, it can be seen that the corner symbols (filled in yellow) can only be biased towards two other symbols and the remaining edge symbols (filled in green) can be biased in three directions.
*Der "worst case" sind die vier inneren Symbole (mit blauer Füllung) mit jeweils vier Verfälschungsmöglichkeiten. Daraus folgt:
+
*The "worst case" are the four inner symbols (with blue filling) with four falsification possibilities each. From this follows:
 
:$$p_{\rm S} = {\rm Pr}({\cal{E}}) \le 4 \cdot p = \underline{1.6\%}= p_{\rm UB}
 
:$$p_{\rm S} = {\rm Pr}({\cal{E}}) \le 4 \cdot p = \underline{1.6\%}= p_{\rm UB}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; Zählt man die blauen Pfeile in obiger Grafik, so kommt man auf
+
'''(4)'''&nbsp; Counting the blue arrows in the above graph, we get
 
:$$4 \cdot 2 + 8 \cdot 3 + 4 \cdot 4 = 48.$$  
 
:$$4 \cdot 2 + 8 \cdot 3 + 4 \cdot 4 = 48.$$  
*Die mittlere Symbolfehlerwahrscheinlichkeit ist somit gleich
+
*Thus, the mean symbol error probability is equal to
 
:$$p_{\rm S} = { E}/{ 16}  \cdot 48 p = 3p = \underline{1.2\%}
 
:$$p_{\rm S} = { E}/{ 16}  \cdot 48 p = 3p = \underline{1.2\%}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*Zum gleichen Ergebnis kommt man mit der im [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation| Theorieteil]] angegebenen Gleichung
+
*The same result is obtained with the equation given in the [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation| "theory section"]]  
 
:$$p_{\rm S} = 4p \cdot \left [ 1 - { 1}/{ \sqrt{M}} \right ] = 4p \cdot \left [ 1 - { 1}/{ 4} \right ] = 3p
 
:$$p_{\rm S} = 4p \cdot \left [ 1 - { 1}/{ \sqrt{M}} \right ] = 4p \cdot \left [ 1 - { 1}/{ 4} \right ] = 3p
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*Beide Gleichungen gelten nur dann exakt, wenn man wie hier diagonale Verfälschungen ausschließt.
+
*Both equations hold exactly only if one excludes diagonal falsifications as here.
  
  
'''(5)'''&nbsp; Bei Graycodierung entsprechend der roten Beschriftung in der Grafik bewirkt jeder Symbolfehler genau einen Bitfehler.  
+
'''(5)'''&nbsp; With Gray coding according to the red labeling in the graph, each symbol error causes exactly one bit error.
*Da aber mit jedem Symbol $M = 4$ Binärsymbole übertragen werden, ist
+
*But since with each symbol $M = 4$ binary symbols are transmitted, is
 
:$$p_{\rm B} = \frac{ p_{\rm S}}{ {\rm log_2} \hspace{0.05cm}(M)}   
 
:$$p_{\rm B} = \frac{ p_{\rm S}}{ {\rm log_2} \hspace{0.05cm}(M)}   
 
= \frac{ 1.2\%}{ 4}  = \underline{0.3\%}
 
= \frac{ 1.2\%}{ 4}  = \underline{0.3\%}

Revision as of 11:31, 12 August 2022

Signal space constellation of 16–QAM

The graphic shows the signal space constellation of the  "quadrature amplitude modulation"  with  $M = 16$  signal space points.

The following should be calculated for this modulation method:

  • the average energy per symbol or per bit,
  • the mean symbol error probability  $p_{\rm S}$,
  • the  "Union Bound"  $p_{\rm UB}$  as upper bound,
  • the average bit error probability  $p_{\rm B}$  with Gray coding.



Notes:

  • The exercise deals with a partial aspect of the chapter  "Carrier Frequency Systems with Coherent Demodulation.
  • The Gray assignment is given in the graphic (red lettering).
  • The probability that the upper left symbol is falsified into one of the neighboring symbols is abbreviated to  $p$  (blue arrows in the graph).
  • A diagonal falsification  ⇒  two bit falsified (green arrow) is excluded.
  • For the AWGN channel, with the complementary Gaussian error integral for this auxiliary variable, the following applies:   $p = {\rm Q} \left ( \sqrt{ { 2E}/{ N_0} }\right )\hspace{0.05cm}.$
  • For numerical calculations, use  $E = 1 \ \rm mWs$  and  $p = 0.4\%$.
  • The AWGN noise power density  $N_0$  can be calculated approximately from these values:
$$p = {\rm Q} \left ( \sqrt{ { 2E}/{ N_0} }\right ) = 0.004 \hspace{0.1cm}\Rightarrow\hspace{0.1cm} { 2E}{ N_0} \approx 2.65^2 \approx 7 \hspace{0.1cm}\Rightarrow\hspace{0.1cm} N_0 = { E}/{ 3.5}\approx 1.4 \cdot 10^{-4}\,{\rm W/Hz} \hspace{0.05cm}.$$



Questions

1

Let  $E = 1 \ \rm mWs$. What is the average energy per symbol?

$E_{\rm S}\ = \ $

$\ \rm mWs$

2

What is the average energy per bit?

$E_{\rm B}\ = \ $

$\ \rm mWs$

3

Give the (improved) "Union Bound"  $(p_{\rm UB})$  for  $p = 0.4\%$. 

$p_{\rm UB} \ = \ $

$\ \%$

4

Calculate the actual symbol error probability  $p_{\rm S} < p_{\rm UB}$.

$p_{\rm S} \ = \ $

$\ \%$

5

Calculate the actual bit error rate for Gray coding.

$p_{\rm B} \ = \ $

$\ \%$


Solution

(1)  The quotient $E_{\rm S}/E$ is obtained as the mean square distance of the $M = 16$ signal space points $\boldsymbol{s}_i$ from the origin.

  • With the given signal space constellation of the 16–QAM we obtain:
$$E_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} { E}/{ 16} \cdot \left [ 4 \cdot (1^2 + 1^2) + 8 \cdot (1^2 + 3^2) + 4 \cdot (3^2 + 3^2)\right ]={ E}/{ 16} \cdot \left [ 4 \cdot 2 + 8 \cdot 10 + 4 \cdot 18\right ] = 10 \cdot E = \underline{10 \ {\rm mWs}} \hspace{0.05cm}.$$
$$E_{\rm S} = \frac{ 2 \cdot (M-1)}{ 3 } \cdot E = \frac{ 2 \cdot 15}{ 3 } \cdot E = 10 E \hspace{0.05cm}.$$


(2)  Each individual symbol represents four binary symbols. Thus, the average energy per bit is

$$E_{\rm B} = \frac{ E_{\rm S}}{ {\rm log_2} \hspace{0.05cm}(M)} = 2.5 \cdot E = \underline{2.5 \ {\rm mWs}} \hspace{0.05cm}.$$


Illustration of the 16–QAM error probability

(3)  The Union Bound is an upper bound on the symbol error probability.

  • It only takes into account the transition to adjacent decision regions due to AWGN noise.
  • From the graph, it can be seen that the corner symbols (filled in yellow) can only be biased towards two other symbols and the remaining edge symbols (filled in green) can be biased in three directions.
  • The "worst case" are the four inner symbols (with blue filling) with four falsification possibilities each. From this follows:
$$p_{\rm S} = {\rm Pr}({\cal{E}}) \le 4 \cdot p = \underline{1.6\%}= p_{\rm UB} \hspace{0.05cm}.$$


(4)  Counting the blue arrows in the above graph, we get

$$4 \cdot 2 + 8 \cdot 3 + 4 \cdot 4 = 48.$$
  • Thus, the mean symbol error probability is equal to
$$p_{\rm S} = { E}/{ 16} \cdot 48 p = 3p = \underline{1.2\%} \hspace{0.05cm}.$$
$$p_{\rm S} = 4p \cdot \left [ 1 - { 1}/{ \sqrt{M}} \right ] = 4p \cdot \left [ 1 - { 1}/{ 4} \right ] = 3p \hspace{0.05cm}.$$
  • Both equations hold exactly only if one excludes diagonal falsifications as here.


(5)  With Gray coding according to the red labeling in the graph, each symbol error causes exactly one bit error.

  • But since with each symbol $M = 4$ binary symbols are transmitted, is
$$p_{\rm B} = \frac{ p_{\rm S}}{ {\rm log_2} \hspace{0.05cm}(M)} = \frac{ 1.2\%}{ 4} = \underline{0.3\%} \hspace{0.05cm}.$$