Difference between revisions of "Aufgaben:Exercise 4.16: Comparison between Binary PSK and Binary FSK"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Modualtionsverfahren/Nichtlineare Modulationsverfahren }} [[File:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choic…“)
 
 
(37 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modualtionsverfahren/Nichtlineare Modulationsverfahren
+
{{quiz-Header|Buchseite=Modulationsverfahren/Nichtlineare_digitale_Modulation
 
}}
 
}}
  
[[File:|right|]]
+
[[File:EN_Mod_A_4_15_neu.png|right|frame|Bit error probability curves: <br>Binary PSK and binary FSK]]
 +
The graph shows the bit error probability for binary&nbsp;[[Modulation_Methods/Nonlinear_Digital_Modulation#FSK_.E2.80.93_Frequency_Shift_Keying| FSK modulation]]&nbsp; $\rm (BFSK)$&nbsp; in
 +
*[[Modulation_Methods/Nonlinear_Digital_Modulation#Coherent_demodulation_of_FSK|coherent demodulation]]&nbsp;, as well as in
 +
*[[Modulation_Methods/Nonlinear_Digital_Modulation#Error_probability_of_orthogonal_FSK|non-coherent demodulation]]
  
  
===Fragebogen===
+
in comparison with &nbsp;[[Modulation_Methods/Lineare_digitale_Modulation#BPSK_.E2.80.93_Binary_Phase_Shift_Keying|binary phase modulation]]&nbsp; $\rm (BPSK)$.
 +
 
 +
Orthogonality is always assumed.  For coherent demodulation, the modulation index can be a multiple of &nbsp;$h = 0.5$&nbsp;, so that the middle plot can also apply to &nbsp; [[Modulation_Methods/Nonlinear_Digital_Modulation#MSK_.E2.80.93_Minimum_Shift_Keying|Minimum Shift Keying]]&nbsp; $\rm (MSK)$&nbsp;.&nbsp; In contrast, for non-coherent demodulation of BFSK, the modulation index must be a multiple of &nbsp;$h = 1$&nbsp;.
 +
 
 +
This system comparison is once again based on the &nbsp;[[Modulation_Methods/Quality_Criteria#Some_remarks_on_the_AWGN_channel_model|AWGN channel]]&nbsp;, characterized by the relationship &nbsp;$E_{\rm B}/N_0$. The equations for the bit error probabilities are as follows
 +
* for ''Binary Phase Shift Keying''&nbsp; $\rm (BPSK)$:
 +
:$$p_{\rm B} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ),$$
 +
* for ''Binary Frequency Shift Keying''&nbsp; $\rm (BFSK)$&nbsp; with ''coherent'' demodulation:
 +
:$$p_{\rm B} = {\rm Q}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/(2  N_0 )} \hspace{0.1cm}\right ),$$
 +
* for ''Binary Frequency Shift Keying''&nbsp; $\rm (BFSK)$&nbsp; with ''incoherent'' demodulation:
 +
:$$p_{\rm B} = {1}/{2} \cdot {\rm e}^{- E_{\rm B}/{(2N_0) }}\hspace{0.05cm}.$$
 +
 
 +
It was shown in &nbsp;[[Aufgaben:Exercise_4.8:_Different_Error_Probabilities|Exercise 4.8]]&nbsp;, that for BPSK, the log ratio&nbsp;$10 · \lg \ E_{\rm B}/N_0$&nbsp; must be at least &nbsp;$9.6 \ \rm dB$&nbsp; so that the bit error probability does not exceed &nbsp;$p_{\rm B} = 10^{–5}$&nbsp;.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hints:''
 +
*This exercise belongs to the chapter&nbsp; [[Modulation_Methods/Nonlinear_Digital_Modulation|Nonlinear_Digital_Modulation]].
 +
*However, reference is also made to the page&nbsp;  [[Modulation_Methods/Lineare_digitale_Modulation|Linear Digital Modulation]].
 +
 +
*Use the approximation &nbsp;$\lg(2) ≈ 0.3$.
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{What &nbsp;$E_{\rm B}/N_0$&nbsp; (in dB) is required in for MSK and coherent demodulation to satisfy &nbsp;$p_{\rm B} \le 10^{–5}$&nbsp;?
 +
|type="{}"}
 +
$10 · \lg \ E_{\rm B}/N_0 \ = \ $ { 12.6 3% } $\ \rm dB$
 +
 
 +
 
 +
{Which of the following statements is correct: &nbsp; The same result is obtained for
 
|type="[]"}
 
|type="[]"}
- Falsch
+
- FSK with modulation index &nbsp;$h = 0.7$,
+ Richtig
+
+ FSK with modulation index &nbsp;$h = 1$?
  
 +
{What &nbsp;$E_{\rm B}/N_0$&nbsp; (in dB) is required for BFSK with &nbsp;$h = 1$&nbsp; and incoheren demodulation to satisfy &nbsp;$p_{\rm B} \le 10^{–5}$&nbsp;?
 +
|type="{}"}
 +
$10 · \lg \ E_{\rm B}/N_0 \ = \ $ { 13.4 3% } $\ \rm dB$ 
  
{Input-Box Frage
+
{What is the bit error probability  &nbsp;$p_{\rm B}$&nbsp; results from incoherent BFSK demodulation when &nbsp;$10 · \lg \ E_{\rm B}/N_0 = 12.6 \ \rm dB$?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$p_{\rm B} \ = \ $ { 1.12 3% } $\ \cdot 10^{-4}$
 +
</quiz>
  
 +
===Solution===
 +
{{ML-Kopf}}
 +
'''(1)'''&nbsp; A comparison of the first two equations on the exercise page makes it clear that for MSK with coherent demodulation, the AWGN ratio &nbsp; $E_{\rm B}/N_0$&nbsp; must be doubled to achieve the same error probability as for BPSK.
  
 +
*In other words:&nbsp; the coherent BFSK curve is&nbsp; $10 · \lg (2) ≈ 3 \ \rm dB$&nbsp; to the right of the the BPSK curve.
 +
*Thus, to guarantee&nbsp; $p_{\rm B} \le 10^{–5}$&nbsp; it must hold that:
 +
:$$10 \cdot {\rm lg}\hspace{0.05cm}{E_{\rm B}} /{N_{\rm 0}}= 9.6\,\,{\rm dB} + 3\,\,{\rm dB} = \underline{12.6\,\,{\rm dB}}\hspace{0.05cm}.$$
  
</quiz>
 
  
===Musterlösung===
+
'''(2)'''&nbsp; <u>Answer 2</u> is correct:
{{ML-Kopf}}
+
*The equation given does not just hold for MSK&nbsp; $($this is a FSK with&nbsp; $h = 0.5)$, but also for every form of orthogonal  FSK.
'''1.'''
+
*This is the case whenever the modulation index&nbsp; $h$&nbsp; is an integer multiple of $0.5$&nbsp;, such as when &nbsp; $h = 1$.
'''2.'''
+
*When &nbsp; $h = 0.7$&nbsp;, there is no orthogonal FSK.&nbsp;
'''3.'''
+
 
'''4.'''
+
 
'''5.'''
+
'''(3)'''&nbsp; From the inverse function of the equation given we get:
'''6.'''
+
:$$\frac{E_{\rm B}} {2 \cdot N_{\rm 0}}= {\rm ln}\hspace{0.05cm}\frac{1}{2 p_{\rm B}}= {\rm ln}(50000)\approx 10.82 \hspace{0.3cm}
'''7.'''
+
\Rightarrow \hspace{0.3cm}{E_{\rm B}} /{N_{\rm 0}}= 21.64 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.05cm}{E_{\rm B}}/ {N_{\rm 0}}\approx \underline{13.4\,\,{\rm dB}}\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(4)'''&nbsp; From  $10 · \lg \ E_{\rm B}/N_0 = 12.6 \ \rm dB$ it follows that:
 +
:$${E_{\rm B}} /{N_{\rm 0}}= 10^{1.26} \approx 16.8 \hspace{0.25cm}\Rightarrow \hspace{0.25cm} ({E_{\rm B}} /{N_{\rm 0}})/2 \approx 8.4 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} p_{\rm B} = {1}/{2} \cdot {\rm e}^{- 8.4} \approx \underline{1.12 \cdot 10^{-4}}\hspace{0.05cm}.$$
 +
This means that for the same $E_{\rm B}/N_0$, the error probability of incoherent demodulation is increased by a factor of  $11$ compared to that of coherent demodulation (see answer to question '''1''') .
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Modulationsverfahren|^4.4 Nichtlineare Modulationsverfahren^]]
+
[[Category:Modulation Methods: Exercises|^4.4 Non-linear Digital Modulation^]]

Latest revision as of 11:52, 12 April 2022

Bit error probability curves:
Binary PSK and binary FSK

The graph shows the bit error probability for binary  FSK modulation  $\rm (BFSK)$  in


in comparison with  binary phase modulation  $\rm (BPSK)$.

Orthogonality is always assumed. For coherent demodulation, the modulation index can be a multiple of  $h = 0.5$ , so that the middle plot can also apply to   Minimum Shift Keying  $\rm (MSK)$ .  In contrast, for non-coherent demodulation of BFSK, the modulation index must be a multiple of  $h = 1$ .

This system comparison is once again based on the  AWGN channel , characterized by the relationship  $E_{\rm B}/N_0$. The equations for the bit error probabilities are as follows

  • for Binary Phase Shift Keying  $\rm (BPSK)$:
$$p_{\rm B} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ),$$
  • for Binary Frequency Shift Keying  $\rm (BFSK)$  with coherent demodulation:
$$p_{\rm B} = {\rm Q}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/(2 N_0 )} \hspace{0.1cm}\right ),$$
  • for Binary Frequency Shift Keying  $\rm (BFSK)$  with incoherent demodulation:
$$p_{\rm B} = {1}/{2} \cdot {\rm e}^{- E_{\rm B}/{(2N_0) }}\hspace{0.05cm}.$$

It was shown in  Exercise 4.8 , that for BPSK, the log ratio $10 · \lg \ E_{\rm B}/N_0$  must be at least  $9.6 \ \rm dB$  so that the bit error probability does not exceed  $p_{\rm B} = 10^{–5}$ .





Hints:

  • Use the approximation  $\lg(2) ≈ 0.3$.


Questions

1

What  $E_{\rm B}/N_0$  (in dB) is required in for MSK and coherent demodulation to satisfy  $p_{\rm B} \le 10^{–5}$ ?

$10 · \lg \ E_{\rm B}/N_0 \ = \ $

$\ \rm dB$

2

Which of the following statements is correct:   The same result is obtained for

FSK with modulation index  $h = 0.7$,
FSK with modulation index  $h = 1$?

3

What  $E_{\rm B}/N_0$  (in dB) is required for BFSK with  $h = 1$  and incoheren demodulation to satisfy  $p_{\rm B} \le 10^{–5}$ ?

$10 · \lg \ E_{\rm B}/N_0 \ = \ $

$\ \rm dB$

4

What is the bit error probability  $p_{\rm B}$  results from incoherent BFSK demodulation when  $10 · \lg \ E_{\rm B}/N_0 = 12.6 \ \rm dB$?

$p_{\rm B} \ = \ $

$\ \cdot 10^{-4}$


Solution

(1)  A comparison of the first two equations on the exercise page makes it clear that for MSK with coherent demodulation, the AWGN ratio   $E_{\rm B}/N_0$  must be doubled to achieve the same error probability as for BPSK.

  • In other words:  the coherent BFSK curve is  $10 · \lg (2) ≈ 3 \ \rm dB$  to the right of the the BPSK curve.
  • Thus, to guarantee  $p_{\rm B} \le 10^{–5}$  it must hold that:
$$10 \cdot {\rm lg}\hspace{0.05cm}{E_{\rm B}} /{N_{\rm 0}}= 9.6\,\,{\rm dB} + 3\,\,{\rm dB} = \underline{12.6\,\,{\rm dB}}\hspace{0.05cm}.$$


(2)  Answer 2 is correct:

  • The equation given does not just hold for MSK  $($this is a FSK with  $h = 0.5)$, but also for every form of orthogonal FSK.
  • This is the case whenever the modulation index  $h$  is an integer multiple of $0.5$ , such as when   $h = 1$.
  • When   $h = 0.7$ , there is no orthogonal FSK. 


(3)  From the inverse function of the equation given we get:

$$\frac{E_{\rm B}} {2 \cdot N_{\rm 0}}= {\rm ln}\hspace{0.05cm}\frac{1}{2 p_{\rm B}}= {\rm ln}(50000)\approx 10.82 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{E_{\rm B}} /{N_{\rm 0}}= 21.64 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.05cm}{E_{\rm B}}/ {N_{\rm 0}}\approx \underline{13.4\,\,{\rm dB}}\hspace{0.05cm}.$$


(4)  From $10 · \lg \ E_{\rm B}/N_0 = 12.6 \ \rm dB$ it follows that:

$${E_{\rm B}} /{N_{\rm 0}}= 10^{1.26} \approx 16.8 \hspace{0.25cm}\Rightarrow \hspace{0.25cm} ({E_{\rm B}} /{N_{\rm 0}})/2 \approx 8.4 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} p_{\rm B} = {1}/{2} \cdot {\rm e}^{- 8.4} \approx \underline{1.12 \cdot 10^{-4}}\hspace{0.05cm}.$$

This means that for the same $E_{\rm B}/N_0$, the error probability of incoherent demodulation is increased by a factor of $11$ compared to that of coherent demodulation (see answer to question 1) .