Difference between revisions of "Aufgaben:Exercise 4.16: Comparison between Binary PSK and Binary FSK"

From LNTwww
m
Line 63: Line 63:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  Ein Vergleich der beiden ersten Gleichungen auf der Angabenseite macht deutlich, dass bei der MSK mit kohärenter Demodulation das AWGN–Verhältnis  $E_{\rm B}/N_0$  verdoppelt werden muss, damit die gleiche Fehlerwahrscheinlichkeit wie bei BPSK erreicht wird.  
+
'''(1)'''  A comparison of the first two equations on the exercise page makes it clear that for MSK with coherent demodulation, the AWGN ratio   $E_{\rm B}/N_0$  must be doubled to achieve the same error probability as for BPSK.
  
*In anderen Worten:  Die kohärente BFSK–Kurve liegt um  $10 · \lg (2) ≈ 3 \ \rm dB$  rechts von der BPSK–Kurve.  
+
*In other words:  the coherent BFSK curve is  $10 · \lg (2) ≈ 3 \ \rm dB$  to the right of the the BPSK curve.  
*Um  $p_{\rm B} \le 10^{–5}$  zu garantieren, muss daher gelten:
+
*Thus, to guarantee  $p_{\rm B} \le 10^{–5}$  it must hold that:
 
:$$10 \cdot {\rm lg}\hspace{0.05cm}{E_{\rm B}} /{N_{\rm 0}}= 9.6\,\,{\rm dB} + 3\,\,{\rm dB} = \underline{12.6\,\,{\rm dB}}\hspace{0.05cm}.$$
 
:$$10 \cdot {\rm lg}\hspace{0.05cm}{E_{\rm B}} /{N_{\rm 0}}= 9.6\,\,{\rm dB} + 3\,\,{\rm dB} = \underline{12.6\,\,{\rm dB}}\hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>:
+
'''(2)'''&nbsp; <u>Answer 2</u> is correct:
*Die angegebene Gleichung gilt nicht nur für die MSK&nbsp; $($diese ist eine FSK mit&nbsp; $h = 0.5)$, sondern für jede Form von orthogonaler FSK.  
+
*The equation given does not just hold for MSK&nbsp; $($this is a FSK with&nbsp; $h = 0.5)$, but also for every form of orthogonal  FSK.  
*Eine solche liegt vor, wenn der Modulationsindex&nbsp; $h$&nbsp; ein ganzzahliges Vielfaches von&nbsp; $0.5$&nbsp; ist, zum Beispiel für&nbsp; $h = 1$.  
+
*This is the case whenever the modulation index&nbsp; $h$&nbsp; is an integer multiple of $0.5$&nbsp;, such as when &nbsp; $h = 1$.  
*Mit&nbsp; $h = 0.7$&nbsp; liegt keine orthogonale FSK vor.&nbsp;  
+
*When &nbsp; $h = 0.7$&nbsp;, there is no orthogonal FSK.&nbsp;  
  
  
'''(3)'''&nbsp; Aus der Umkehrfunktion der angegebenen Gleichung erhält man:
+
'''(3)'''&nbsp; From the inverse function of the equation given we get:
 
:$$\frac{E_{\rm B}} {2 \cdot N_{\rm 0}}= {\rm ln}\hspace{0.05cm}\frac{1}{2 p_{\rm B}}= {\rm ln}(50000)\approx 10.82 \hspace{0.3cm}
 
:$$\frac{E_{\rm B}} {2 \cdot N_{\rm 0}}= {\rm ln}\hspace{0.05cm}\frac{1}{2 p_{\rm B}}= {\rm ln}(50000)\approx 10.82 \hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}{E_{\rm B}} /{N_{\rm 0}}= 21.64 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.05cm}{E_{\rm B}}/ {N_{\rm 0}}\approx \underline{13.4\,\,{\rm dB}}\hspace{0.05cm}.$$
 
\Rightarrow \hspace{0.3cm}{E_{\rm B}} /{N_{\rm 0}}= 21.64 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.05cm}{E_{\rm B}}/ {N_{\rm 0}}\approx \underline{13.4\,\,{\rm dB}}\hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp;   Aus $10 · \lg \ E_{\rm B}/N_0 = 12.6 \ \rm dB$ folgt:
+
'''(4)'''&nbsp; From  $10 · \lg \ E_{\rm B}/N_0 = 12.6 \ \rm dB$ it follows that:
 
:$${E_{\rm B}} /{N_{\rm 0}}= 10^{1.26} \approx 16.8 \hspace{0.25cm}\Rightarrow \hspace{0.25cm} ({E_{\rm B}} /{N_{\rm 0}})/2 \approx 8.4 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} p_{\rm B} = {1}/{2} \cdot {\rm e}^{- 8.4} \approx \underline{1.12 \cdot 10^{-4}}\hspace{0.05cm}.$$
 
:$${E_{\rm B}} /{N_{\rm 0}}= 10^{1.26} \approx 16.8 \hspace{0.25cm}\Rightarrow \hspace{0.25cm} ({E_{\rm B}} /{N_{\rm 0}})/2 \approx 8.4 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} p_{\rm B} = {1}/{2} \cdot {\rm e}^{- 8.4} \approx \underline{1.12 \cdot 10^{-4}}\hspace{0.05cm}.$$
Das heißt: &nbsp; Bei gleichem $E_{\rm B}/N_0$ wird die Fehlerwahrscheinlichkeit bei inkohärenter Demodulation gegenüber kohärenter Demodulation (siehe Teilaufgabe 1) um etwa den Faktor 11 vergrößert.
+
This means: &nbsp; for the same $E_{\rm B}/N_0$, the error probability of incoherent demodulation is increased by a factor of 11 compared to coherent demodulation (see answer to question '''1''') .
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 19:25, 21 March 2022

Bit error probability curves
of binary PSK and binary FSK KORREKTUR

KORREKTUR: Titel "Erercise" The graph shows the bit error probability for binary  FSK modulation  $\rm (BFSK)$  in


in comparison with  binary phase modulation  $\rm (BPSK)$.

Orthogonality is always assumed. For coherent demodulation, the modulation index can be a multiple of  $h = 0.5$ , so that the middle plot can also apply to   Minimum Shift Keying  $\rm (MSK)$ .  In contrast, for non-coherent demodulation of BFSK, the modulation index must be a multiple of  $h = 1$ .

This system comparison is once again based on the  AWGN channel , characterized by the relationship  $E_{\rm B}/N_0$. The equations for the bit error probabilities are as follows

  • for Binary Phase Shift Keying  $\rm (BPSK)$:
$$p_{\rm B} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ),$$
  • for Binary Frequency Shift Keying  $\rm (BFSK)$  with coherent demodulation:
$$p_{\rm B} = {\rm Q}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/(2 N_0 )} \hspace{0.1cm}\right ),$$
  • for Binary Frequency Shift Keying  $\rm (BFSK)$  with incoherent demodulation:
$$p_{\rm B} = {1}/{2} \cdot {\rm e}^{- E_{\rm B}/{(2N_0) }}\hspace{0.05cm}.$$

It was shown in  Exercise 4.8 , that for BPSK, the log ratio $10 · \lg \ E_{\rm B}/N_0$  must be at least  $9.6 \ \rm dB$  so that the bit error probability does not exceed  $p_{\rm B} = 10^{–5}$ .





Hints:

  • Use the approximation  $\lg(2) ≈ 0.3$.


Questions

1

What  $E_{\rm B}/N_0$  (in dB) is required in for MSK and coherent demodulation to satisfy  $p_{\rm B} \le 10^{–5}$ ?

$10 · \lg \ E_{\rm B}/N_0 \ = \ $

$\ \rm dB$

2

Which of the following statements is correct:   The same result is obtained for

FSK with modulation index  $h = 0.7$,
FSK with modulation index  $h = 1$?

3

What  $E_{\rm B}/N_0$  (in dB) is required for BFSK with  $h = 1$  and incoheren demodulation to satisfy  $p_{\rm B} \le 10^{–5}$ ?

$10 · \lg \ E_{\rm B}/N_0 \ = \ $

$\ \rm dB$

4

What is the bit error probability  $p_{\rm B}$  results from incoherent BFSK demodulation when  $10 · \lg \ E_{\rm B}/N_0 = 12.6 \ \rm dB$?

$p_{\rm B} \ = \ $

$\ \cdot 10^{-4}$


Solution

(1)  A comparison of the first two equations on the exercise page makes it clear that for MSK with coherent demodulation, the AWGN ratio   $E_{\rm B}/N_0$  must be doubled to achieve the same error probability as for BPSK.

  • In other words:  the coherent BFSK curve is  $10 · \lg (2) ≈ 3 \ \rm dB$  to the right of the the BPSK curve.
  • Thus, to guarantee  $p_{\rm B} \le 10^{–5}$  it must hold that:
$$10 \cdot {\rm lg}\hspace{0.05cm}{E_{\rm B}} /{N_{\rm 0}}= 9.6\,\,{\rm dB} + 3\,\,{\rm dB} = \underline{12.6\,\,{\rm dB}}\hspace{0.05cm}.$$


(2)  Answer 2 is correct:

  • The equation given does not just hold for MSK  $($this is a FSK with  $h = 0.5)$, but also for every form of orthogonal FSK.
  • This is the case whenever the modulation index  $h$  is an integer multiple of $0.5$ , such as when   $h = 1$.
  • When   $h = 0.7$ , there is no orthogonal FSK. 


(3)  From the inverse function of the equation given we get:

$$\frac{E_{\rm B}} {2 \cdot N_{\rm 0}}= {\rm ln}\hspace{0.05cm}\frac{1}{2 p_{\rm B}}= {\rm ln}(50000)\approx 10.82 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{E_{\rm B}} /{N_{\rm 0}}= 21.64 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.05cm}{E_{\rm B}}/ {N_{\rm 0}}\approx \underline{13.4\,\,{\rm dB}}\hspace{0.05cm}.$$


(4)  From $10 · \lg \ E_{\rm B}/N_0 = 12.6 \ \rm dB$ it follows that:

$${E_{\rm B}} /{N_{\rm 0}}= 10^{1.26} \approx 16.8 \hspace{0.25cm}\Rightarrow \hspace{0.25cm} ({E_{\rm B}} /{N_{\rm 0}})/2 \approx 8.4 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} p_{\rm B} = {1}/{2} \cdot {\rm e}^{- 8.4} \approx \underline{1.12 \cdot 10^{-4}}\hspace{0.05cm}.$$

This means:   for the same $E_{\rm B}/N_0$, the error probability of incoherent demodulation is increased by a factor of 11 compared to coherent demodulation (see answer to question 1) .