Exercise 4.16: Comparison between Binary PSK and Binary FSK

From LNTwww

Bit error probability curves
of binary PSK and binary FSK KORREKTUR

The graph shows the bit error probability for binary  FSK modulation  $\rm (BFSK)$  in


in comparison with  binary phase modulation  $\rm (BPSK)$.

Orthogonality is always assumed. For coherent demodulation, the modulation index can be a multiple of  $h = 0.5$ , so that the middle plot can also apply to   Minimum Shift Keying  $\rm (MSK)$ .  In contrast, for non-coherent demodulation of BFSK, the modulation index must be a multiple of  $h = 1$ .

This system comparison is once again based on the  AWGN channel , characterized by the relationship  $E_{\rm B}/N_0$. The equations for the bit error probabilities are as follows

  • for Binary Phase Shift Keying  $\rm (BPSK)$:
$$p_{\rm B} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ),$$
  • for Binary Frequency Shift Keying  $\rm (BFSK)$  with coherent demodulation:
$$p_{\rm B} = {\rm Q}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/(2 N_0 )} \hspace{0.1cm}\right ),$$
  • for Binary Frequency Shift Keying  $\rm (BFSK)$  with incoherent demodulation:
$$p_{\rm B} = {1}/{2} \cdot {\rm e}^{- E_{\rm B}/{(2N_0) }}\hspace{0.05cm}.$$

It was shown in  Exercise 4.8 , that for BPSK, the log ratio $10 · \lg \ E_{\rm B}/N_0$  must be at least  $9.6 \ \rm dB$  so that the bit error probability does not exceed  $p_{\rm B} = 10^{–5}$ .





Hints:

  • Use the approximation  $\lg(2) ≈ 0.3$.


Questions

1

What  $E_{\rm B}/N_0$  (in dB) is required in for MSK and coherent demodulation to satisfy  $p_{\rm B} \le 10^{–5}$ ?

$10 · \lg \ E_{\rm B}/N_0 \ = \ $

$\ \rm dB$

2

Which of the following statements is correct:   The same result is obtained for

FSK with modulation index  $h = 0.7$,
FSK with modulation index  $h = 1$?

3

What  $E_{\rm B}/N_0$  (in dB) is required for BFSK with  $h = 1$  and incoheren demodulation to satisfy  $p_{\rm B} \le 10^{–5}$ ?

$10 · \lg \ E_{\rm B}/N_0 \ = \ $

$\ \rm dB$

4

What is the bit error probability  $p_{\rm B}$  results from incoherent BFSK demodulation when  $10 · \lg \ E_{\rm B}/N_0 = 12.6 \ \rm dB$?

$p_{\rm B} \ = \ $

$\ \cdot 10^{-4}$


Solution

(1)  A comparison of the first two equations on the exercise page makes it clear that for MSK with coherent demodulation, the AWGN ratio   $E_{\rm B}/N_0$  must be doubled to achieve the same error probability as for BPSK.

  • In other words:  the coherent BFSK curve is  $10 · \lg (2) ≈ 3 \ \rm dB$  to the right of the the BPSK curve.
  • Thus, to guarantee  $p_{\rm B} \le 10^{–5}$  it must hold that:
$$10 \cdot {\rm lg}\hspace{0.05cm}{E_{\rm B}} /{N_{\rm 0}}= 9.6\,\,{\rm dB} + 3\,\,{\rm dB} = \underline{12.6\,\,{\rm dB}}\hspace{0.05cm}.$$


(2)  Answer 2 is correct:

  • The equation given does not just hold for MSK  $($this is a FSK with  $h = 0.5)$, but also for every form of orthogonal FSK.
  • This is the case whenever the modulation index  $h$  is an integer multiple of $0.5$ , such as when   $h = 1$.
  • When   $h = 0.7$ , there is no orthogonal FSK. 


(3)  From the inverse function of the equation given we get:

$$\frac{E_{\rm B}} {2 \cdot N_{\rm 0}}= {\rm ln}\hspace{0.05cm}\frac{1}{2 p_{\rm B}}= {\rm ln}(50000)\approx 10.82 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{E_{\rm B}} /{N_{\rm 0}}= 21.64 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.05cm}{E_{\rm B}}/ {N_{\rm 0}}\approx \underline{13.4\,\,{\rm dB}}\hspace{0.05cm}.$$


(4)  From $10 · \lg \ E_{\rm B}/N_0 = 12.6 \ \rm dB$ it follows that:

$${E_{\rm B}} /{N_{\rm 0}}= 10^{1.26} \approx 16.8 \hspace{0.25cm}\Rightarrow \hspace{0.25cm} ({E_{\rm B}} /{N_{\rm 0}})/2 \approx 8.4 \hspace{0.25cm} \Rightarrow \hspace{0.25cm} p_{\rm B} = {1}/{2} \cdot {\rm e}^{- 8.4} \approx \underline{1.12 \cdot 10^{-4}}\hspace{0.05cm}.$$

This means that for the same $E_{\rm B}/N_0$, the error probability of incoherent demodulation is increased by a factor of $11$ compared to that of coherent demodulation (see answer to question 1) .