Difference between revisions of "Aufgaben:Exercise 4.18Z: BER of Coherent and Non-Coherent FSK"

From LNTwww
Line 53: Line 53:
 
$10 \cdot {\rm lg} \, E_{\rm B}/N_0 \ = \ ${ 13.4 3% } $\ \rm dB$
 
$10 \cdot {\rm lg} \, E_{\rm B}/N_0 \ = \ ${ 13.4 3% } $\ \rm dB$
  
{Welche Fehlerwahrscheinlichkeit ergibt sich mit  $10 \cdot {\rm lg} \, E_{\rm B}/N_0 = 12.6 \ \rm dB$  für FSK und nichtkohärente Demodulation?
+
{What is the error probability with  $10 \cdot {\rm lg} \, E_{\rm B}/N_0 = 12.6 \ \rm dB$  for FSK and non-coherent demodulation?
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm B} \ = \ ${ 0.012 5% } $\ \%$
 
$p_{\rm B} \ = \ ${ 0.012 5% } $\ \%$
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Ein Vergleich der Gleichungen auf der Angabenseite macht deutlich, dass bei binärer FSK mit kohärenter Demodulation das AWGN&ndash;Verhältnis $E_{\rm B}/N_0$ verdoppelt werden muss, damit die gleiche Fehlerwahrscheinlichkeit wie bei BPSK erreicht wird.  
+
'''(1)'''&nbsp; A comparison of the equations in the information section makes it clear that for binary FSK with coherent demodulation, the AWGN ratio $E_{\rm B}/N_0$ must be doubled to achieve the same error probability as for BPSK.
  
*In anderen Worten: &nbsp; Die kohärente BFSK&ndash;Kurve liegt um $10 \cdot {\rm lg} \, (2) \approx 3 \ \rm dB$ rechts von der BPSK&ndash;Kurve. Um $p_{\rm B} &#8804; 10^{\rm &ndash;5}$ zu garantieren, muss gelten:
+
*In other words: &nbsp; The coherent BFSK curve is $10 \cdot {\rm lg} \, (2) \approx 3 \ \rm dB$ to the right of the BPSK curve. To guarantee $p_{\rm B} &#8804; 10^{\rm &ndash;5}$, it must hold:
 
:$$10 \cdot {\rm lg}\hspace{0.05cm} {E_{\rm B}}/ {N_{\rm 0}}\approx
 
:$$10 \cdot {\rm lg}\hspace{0.05cm} {E_{\rm B}}/ {N_{\rm 0}}\approx
 
  9.6\,\,{\rm dB} + 3\,\,{\rm dB}\hspace{0.15cm} \underline{=12.6\,\,{\rm dB}}\hspace{0.05cm}.$$
 
  9.6\,\,{\rm dB} + 3\,\,{\rm dB}\hspace{0.15cm} \underline{=12.6\,\,{\rm dB}}\hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>:
+
'''(2)'''&nbsp; <u>Solution 2</u> is correct:
*Die angegebene Gleichung gilt nicht nur für die MSK (diese ist eine FSK mit $h = 0.5$), sondern für jede Form von orthogonaler FSK.  
+
*The given equation is valid not only for the MSK (this is an FSK with $h = 0.5$), but for any form of orthogonal FSK.
*Eine solche liegt vor, wenn der Modulationsindex $h$ ein ganzzahliges Vielfaches von $0.5$ ist, zum Beispiel für $h = 1$.  
+
*Such a FSK exists if the modulation index $h$ is an integer multiple of $0.5$, for example for $h = 1$.  
*Mit $h = 0.7$ ergibt sich keine orthogonale FSK.  
+
*With $h = 0.7$ there is no orthogonal FSK.
*Es kann gezeigt werden, dass sich für $h = 0.7$ sogar eine kleinere Fehlerwahrscheinlichkeit als bei orthogonaler FSK ergibt.  
+
*It can be shown that for $h = 0.7$ there is even a smaller error probability than with orthogonal FSK.
*Mit $10 \cdot {\rm lg} \, E_{\rm B}/N_0 = 12.6 \ \rm dB$ erreicht man hier sogar $p_{\rm B} \approx 10^{\rm &ndash;6}$, also eine Verbesserung um eine Zehnerpotenz.
+
*With $10 \cdot {\rm lg} \, E_{\rm B}/N_0 = 12.6 \ \rm dB$ one even achieves $p_{\rm B} \approx 10^{\rm &ndash;6}$, here, i.e. an improvement by one power of ten.
  
  
  
  
'''(3)'''&nbsp; Aus der Umkehrfunktion der angegebenen Gleichung erhält man:
+
'''(3)'''&nbsp; From the inverse function of the given equation one obtains:
 
:$$\frac{E_{\rm B}} {2 \cdot N_{\rm 0}}= {\rm ln}\hspace{0.05cm}\frac{1}{2  p_{\rm B}}= {\rm
 
:$$\frac{E_{\rm B}} {2 \cdot N_{\rm 0}}= {\rm ln}\hspace{0.05cm}\frac{1}{2  p_{\rm B}}= {\rm
 
  ln}(50000)\approx 10.82\hspace{0.3cm}  
 
  ln}(50000)\approx 10.82\hspace{0.3cm}  
Line 86: Line 86:
  
  
'''(4)'''&nbsp; Aus $10 \cdot {\rm lg} \, E_{\rm B}/N_0 = 12.6 \ \rm dB$ folgt:
+
'''(4)'''&nbsp; From $10 \cdot {\rm lg} \, E_{\rm B}/N_0 = 12.6 \ \rm dB$ follows:
 
:$${E_{\rm B}} /{N_{\rm 0}}= 10^{1.26} \approx 16.8 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
:$${E_{\rm B}} /{N_{\rm 0}}= 10^{1.26} \approx 16.8 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
  \frac{E_{\rm B}} {2 \cdot N_{\rm 0}}\approx 8.4 \hspace{0.3cm}
 
  \frac{E_{\rm B}} {2 \cdot N_{\rm 0}}\approx 8.4 \hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm} p_{\rm B} = {1}/{2} \cdot {\rm e}^{- 8.4}\hspace{0.15cm} \underline{ \approx  0.012 \%}\hspace{0.05cm}.$$
 
\Rightarrow \hspace{0.3cm} p_{\rm B} = {1}/{2} \cdot {\rm e}^{- 8.4}\hspace{0.15cm} \underline{ \approx  0.012 \%}\hspace{0.05cm}.$$
  
Das heißt: &nbsp; Bei gleichem $E_{\rm B}/N_0$ wird die Fehlerwahrscheinlichkeit bei der nichtkohärenten Demodulation gegenüber der kohärenten Demodulation gemäß Teilaufgabe (1) um etwa den Faktor 11 vergrößert.
+
This means: &nbsp; For the same $E_{\rm B}/N_0$, the error probability for non-coherent demodulation is increased by a factor of about 11 compared to coherent demodulation according to subtask (1).
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 19:37, 16 August 2022

Bit error probabilities of
BPSK and BFSK

The diagram shows the bit error probability for a binary  "FSK modulation"  (BFSK) with

  • coherent demodulation or
  • incoherent demodulation


in comparison with binary phase modulation (BPSK). Orthogonality is always assumed. For coherent demodulation, the modulation index  $h$  can be a multiple of  $0.5$,  so that the average curve is also valid for Minimum Shift Keying  (MSK). On the other hand, for non-coherent demodulation of an FSK, the modulation index  $h$  must be a multiple of  $1$. 

This system comparison is based on the AWGN channel, characterized by the ratio  $E_{\rm B}/N_0$. The equations for the bit error probabilities are as follows for

  • Binary Frequency Shift Keying  (BFSK) with coherent demodulation:
$$p_{\rm B} = {\rm Q } \left ( \sqrt {{E_{\rm B}}/{N_0} }\right ) \hspace{0.05cm}.$$
  • Binary Frequency Shift Keying  (BFSK) with incoherent demodulation:
$$p_{\rm B} = {1}/{2} \cdot {\rm e}^{- E_{\rm B}/{(2N_0) }}\hspace{0.05cm}.$$
  • Binary Phase Shift Keying  (BPSK), only coherent demodulation possible:
$$p_{\rm B} = {\rm Q } \left ( \sqrt {{2 \cdot E_{\rm B}}/{N_0} }\right ) \hspace{0.05cm}.$$

For BPSK, the log ratio  $10 \cdot {\rm lg} \, (E_{\rm B}/N_0)$  must be at least  $9.6 \, \rm dB$  so that the bit error probability does not exceed the value  $p_{\rm B} = 10^{\rm -5}$. 

For binary modulation methods,  $p_{\rm B}$  can also be replaced by  $p_{\rm S}$  and  $E_{\rm B}$  by  $E_{\rm S}$.  Then we speak of the symbol error probability  $p_{\rm S}$  and the symbol energy  $E_{\rm S}$.




Notes:



Questions

1

For FSK and  coherent demodulation,  which  $E_{\rm B}/N_0$  is required to satisfy the requirement  $p_{\rm B} ≤ 10^{\rm -5}$?

$10 \cdot {\rm lg} \, E_{\rm B}/N_0 \ = \ $

$\ \rm dB$

2

Are the following statements correct:   The same result as in (1) is obtained for

the coherent FSK with modulation index  $\eta = 0.7$,
the coherent FSK with modulation index  $\eta = 1$.

3

For FSK with modulation index  $h = 1$  and non-coherent demodulation,  which  $E_{\rm B}/N_0$  is required for  $p_{\rm B} ≤ 10^{\rm -5}$  to be satisfied?

$10 \cdot {\rm lg} \, E_{\rm B}/N_0 \ = \ $

$\ \rm dB$

4

What is the error probability with  $10 \cdot {\rm lg} \, E_{\rm B}/N_0 = 12.6 \ \rm dB$  for FSK and non-coherent demodulation?

$p_{\rm B} \ = \ $

$\ \%$


Solution

(1)  A comparison of the equations in the information section makes it clear that for binary FSK with coherent demodulation, the AWGN ratio $E_{\rm B}/N_0$ must be doubled to achieve the same error probability as for BPSK.

  • In other words:   The coherent BFSK curve is $10 \cdot {\rm lg} \, (2) \approx 3 \ \rm dB$ to the right of the BPSK curve. To guarantee $p_{\rm B} ≤ 10^{\rm –5}$, it must hold:
$$10 \cdot {\rm lg}\hspace{0.05cm} {E_{\rm B}}/ {N_{\rm 0}}\approx 9.6\,\,{\rm dB} + 3\,\,{\rm dB}\hspace{0.15cm} \underline{=12.6\,\,{\rm dB}}\hspace{0.05cm}.$$


(2)  Solution 2 is correct:

  • The given equation is valid not only for the MSK (this is an FSK with $h = 0.5$), but for any form of orthogonal FSK.
  • Such a FSK exists if the modulation index $h$ is an integer multiple of $0.5$, for example for $h = 1$.
  • With $h = 0.7$ there is no orthogonal FSK.
  • It can be shown that for $h = 0.7$ there is even a smaller error probability than with orthogonal FSK.
  • With $10 \cdot {\rm lg} \, E_{\rm B}/N_0 = 12.6 \ \rm dB$ one even achieves $p_{\rm B} \approx 10^{\rm –6}$, here, i.e. an improvement by one power of ten.



(3)  From the inverse function of the given equation one obtains:

$$\frac{E_{\rm B}} {2 \cdot N_{\rm 0}}= {\rm ln}\hspace{0.05cm}\frac{1}{2 p_{\rm B}}= {\rm ln}(50000)\approx 10.82\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {E_{\rm B}}/ {N_{\rm 0}}= 21.64 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.09cm} {E_{\rm B}}/ {N_{\rm 0}}\hspace{0.15cm} \underline{\approx 13.4\,\,{\rm dB}}\hspace{0.05cm}.$$


(4)  From $10 \cdot {\rm lg} \, E_{\rm B}/N_0 = 12.6 \ \rm dB$ follows:

$${E_{\rm B}} /{N_{\rm 0}}= 10^{1.26} \approx 16.8 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \frac{E_{\rm B}} {2 \cdot N_{\rm 0}}\approx 8.4 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm B} = {1}/{2} \cdot {\rm e}^{- 8.4}\hspace{0.15cm} \underline{ \approx 0.012 \%}\hspace{0.05cm}.$$

This means:   For the same $E_{\rm B}/N_0$, the error probability for non-coherent demodulation is increased by a factor of about 11 compared to coherent demodulation according to subtask (1).