Difference between revisions of "Aufgaben:Exercise 4.1: Low-Pass and Band-Pass Signals"

From LNTwww
 
(38 intermediate revisions by 6 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=*Buch*/*Kapitel*
+
{{quiz-Header|Buchseite=Signal Representation/Differences and Similarities of LP and BP Signals
 
}}
 
}}
  
[[File:P_ID691__Sig_A_4_1.png|250px|right|TP- und BP-Signale (Aufgabe A4.1)]]
+
[[File:P_ID691__Sig_A_4_1.png|250px|right|frame|Given signal curves]]
  
Rechts sind drei Signalverläufe skizziert, wobei die beiden ersten Signale folgenden Verlauf aufweisen:
+
Three signal curves are sketched on the right, the first two having the following curve:
 
   
 
   
$$x(t)  =  10\hspace{0.05cm}{\rm V} \cdot {\rm si} ( \pi \cdot
+
:$$x(t)  =  10\hspace{0.05cm}{\rm V} \cdot {\rm si} ( \pi \cdot
 
{t}/{T_x}) ,$$
 
{t}/{T_x}) ,$$
  
$$y(t)  =  6\hspace{0.05cm}{\rm V} \cdot {\rm si}( \pi \cdot
+
:$$y(t)  =  6\hspace{0.05cm}{\rm V} \cdot {\rm si}( \pi \cdot
 
{t}/{T_y}) .$$
 
{t}/{T_y}) .$$
 
   
 
   
Die Parameter $T_x$ = 100 μs und $T_y$ = 166.67 μs geben jeweils die erste Nullstelle von $x(t)$ bzw. $y(t)$ an.
+
$T_x = 100 \,{\rm µ}\text{s}$  and  $T_y = 166.67 \,{\rm µ}\text{s}$  indicate the first zero of  $x(t)$  and  $y(t)$ respectively.
Das Signal $d(t)$ ergibt sich aus der Differenz der beiden oberen Signale (untere Grafik):
+
The signal  $d(t)$  results from the difference of the two upper signals (lower graph):
+
 
$$d(t)  =  x(t)-y(t)  .$$
+
:$$d(t)  =  x(t)-y(t)  .$$
  
In der Teilaufgabe d) ist nach den Integralflächen der impulsartigen Signale $x(t)$ und $d(t)$ gefragt. Für diese gilt:
+
In subtask  '''(4)'''  the integral areas of the pulses  $x(t)$  and  $d(t)$  are asked for.  For these holds:
 
   
 
   
$$F_x = \int_{- \infty}^{+\infty}\hspace{-0.4cm}x(t)\hspace{0.1cm}{\rm d}t , \hspace{0.5cm}F_d = \int_{- \infty}^{+\infty}\hspace{-0.4cm}d(t)\hspace{0.1cm}{\rm d}t .$$
+
:$$F_x = \int_{- \infty}^{+\infty}\hspace{-0.4cm}x(t)\hspace{0.1cm}{\rm d}t , \hspace{0.5cm}F_d = \int_{- \infty}^{+\infty}\hspace{-0.4cm}d(t)\hspace{0.1cm}{\rm d}t .$$
  
Dagegen gilt für die entsprechenden Signalenergien mit dem Satz von Parseval:
+
On the other hand, for the corresponding signal energies with  [[Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function#Power_and_Energy_of_a_Bandpass_Signal|Parseval's theorem]]:
 
   
 
   
$$E_x = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|x(t)|^2\hspace{0.1cm}{\rm
+
:$$E_x = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|x(t)|^2\hspace{0.1cm}{\rm
 
d}t = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|X(f)|^2\hspace{0.1cm}{\rm
 
d}t = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|X(f)|^2\hspace{0.1cm}{\rm
 
d}f ,$$  
 
d}f ,$$  
  
$$E_d = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|d(t)|^2\hspace{0.1cm}{\rm
+
:$$E_d = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|d(t)|^2\hspace{0.1cm}{\rm
 
d}t = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|D(f)|^2\hspace{0.1cm}{\rm
 
d}t = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|D(f)|^2\hspace{0.1cm}{\rm
 
d}f .$$
 
d}f .$$
  
Hinweis: Berücksichtigen Sie weiterhin, dass die Fourierrücktransformierte eines rechteckförmigen Spektrums
+
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hints:''
 +
*This exercise belongs to the chapter  [[Signal_Representation/Differences_and_Similarities_of_Low-Pass_and_Band-Pass_Signals|Differences and Similarities of Low-Pass and Band-Pass Signals]].
 
   
 
   
$$X(f)=\left\{ {X_0 \; \rm f\ddot{u}r\; |\it f| < \rm B, \atop {\rm 0 \;\;\; \rm sonst}}\right.$$
+
*The inverse Fourier transform of a rectangular spectrum&nbsp; $X(f)$&nbsp; leads to an&nbsp; $\rm si$&ndash;shaped time function $x(t)$:
 +
 
 +
:$$X(f)=\left\{ {X_0 \; \rm f\ddot{u}r\; |\it f| < \rm B, \atop {\rm 0 \;\;\; \rm sonst}}\right. \;\;
 +
\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \;\;x(t)  =  2 \cdot X_0 \cdot B \cdot {\rm si} ( 2\pi B t) .$$  
 +
 
 +
*In this task, the&nbsp; function $\rm si(x) = \rm sin(x)/x = \rm sinc(x/π)$&nbsp; is used.
  
wie folgt lautet:
 
 
$$x(t)  =  2 \cdot X_0 \cdot B \cdot {\rm si} ( 2\pi B t) .$$
 
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lautet das Spektrum $X(f)$ des Signals $x(t)$? Wie groß sind $X(f$ = 0) und die physikalische, einseitige Bandbreite von $x(t)$?
+
{What is the spectrum&nbsp; $X(f)$&nbsp; of the signal&nbsp; $x(t)$?&nbsp; What are the magnitudes of&nbsp; $X(f = 0)$&nbsp; and the physical, one-sided bandwidth&nbsp; $B_x$&nbsp; of&nbsp; $x(t)$?
 
|type="{}"}
 
|type="{}"}
$X(f=0) = $ { 1 } mV/Hz
+
$X(f=0)\ = \ $   { 1 3% } &nbsp;$\text{mV/Hz}$
$B_x =$ { 5000 } Hz
+
$B_x \ = \ $ { 5 3% } &nbsp;$\text{kHz}$
  
{Wie lauten die entsprechenden Kenngrößen des Signals $y(t)$?
+
{What are the corresponding characteristics of the signal&nbsp; $y(t)$?
 
|type="{}"}
 
|type="{}"}
$Y(f=0) = $ { 1 } mV/Hz
+
$Y(f=0)\ = \ $ { 1 3% } &nbsp;$\text{mV/Hz}$
$B_y =$ { 3000 } Hz
+
$B_y \ = \ $ { 3 3% } &nbsp;$\text{kHz}$
  
{Berechnen Sie das Spektrum $D(f)$ des Differenzsignals $d(t) = x(t) y(t)$. Wie groß sind $D(f$ = 0) und die physikalische, einseitige Bandbreite $B_d$?
+
 
 +
{Calculate the spectrum&nbsp; $D(f)$&nbsp; of the difference signal&nbsp; $d(t) = x(t) - y(t)$.&nbsp; How large are&nbsp; $D(f = 0)$&nbsp; and the (one-sided) bandwidth&nbsp; $B_d$?
 
|type="{}"}
 
|type="{}"}
$D(f=0) = $ { 0 } mV/Hz
+
$D(f=0)\ = \ $ { 0. } &nbsp;$\text{mV/Hz}$
$B_d =$ { 2000 } Hz
+
$B_d \ = \ $ { 2 3% } &nbsp;$\text{kHz}$
  
{Wie groß sind die Integralflächen $F_x$ und $F_d$ der Signale $x(t)$ und $d(t)$?
+
{What are the integral areas&nbsp; $F_x$&nbsp; and&nbsp; $F_d$&nbsp; of the signals&nbsp; $x(t)$&nbsp; and&nbsp; $d(t)$?
 
|type="{}"}
 
|type="{}"}
$F_x =$ { 0.001 } Vs
+
$F_x\ = \ $ { 0.001 } &nbsp;$\text{Vs}$
$F_d =$ { 0 } Vs   
+
$F_d\ = \ $ { 0. } &nbsp;$\text{Vs}$  
  
{Wie groß sind die (auf 1 Ω umgerechneten) Energien dieser Signale?
+
{What are the energies (coverted to&nbsp; $1Ω$&nbsp;) of these signals?
 
|type="{}"}
 
|type="{}"}
$E_x =$ { 0.01 } $\text{V^2s}$
+
$E_x \ = \ $ { 0.01 3% } &nbsp;$\text{V}^2\text{s}$
$E_d =$ { 0.004 } $\text{V^2s}$
+
$E_d \ = \ $ { 0.004 3% } &nbsp;$\text{V}^2\text{s}$
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' Die si–förmige Zeitfunktion $x(t)$ lässt auf ein Rechteckspektrum $X(f)$ schließen. Die absolute, zweiseitige Bandbreite 2 · $B_x$ ist gleich dem Kehrwert der ersten Nullstelle. Daraus folgt:
+
'''(1)'''&nbsp; The&nbsp; $\rm si$–shaped time function&nbsp; $x(t)$&nbsp; suggests a rectangular spectrum&nbsp; $X(f)$&nbsp;.
 +
*The absolute, two-sided bandwidth&nbsp; $2 \cdot B_x$&nbsp; is equal to the reciprocal of the first zero.&nbsp; It follows that:
 
   
 
   
$$B_x = \frac{1}{2 \cdot T_x}  =  \frac{1}{2 \cdot 0.1
+
:$$B_x = \frac{1}{2 \cdot T_x}  =  \frac{1}{2 \cdot 0.1
 
\hspace{0.1cm}{\rm ms}}\hspace{0.15 cm}\underline{ = 5 \hspace{0.1cm}{\rm kHz}}.$$
 
\hspace{0.1cm}{\rm ms}}\hspace{0.15 cm}\underline{ = 5 \hspace{0.1cm}{\rm kHz}}.$$
  
Da der Signalwert bei $t$ = 0 gleich der Rechteckfläche ist, ergibt sich für die konstante Höhe:
+
*Since the signal value at&nbsp; $t = 0$&nbsp; is equal to the rectangular area, the constant height is given by:
 
   
 
   
$$X(f=0) = \frac{x(t=0)}{2 \cdot B_x}  =  \frac{10
+
:$$X(f=0) = \frac{x(t=0)}{2 B_x}  =  \frac{10
\hspace{0.1cm}{\rm V}}{10 \hspace{0.1cm}{\rm kHz}} \hspace{0.15 cm}\underline{= 10^{-3}
+
\hspace{0.1cm}{\rm V}}{10 \hspace{0.1cm}{\rm kHz}} \hspace{0.15 cm}\underline{= 1
\hspace{0.1cm}{\rm V/Hz}}.$$
+
\hspace{0.1cm}{\rm mV/Hz}}.$$
 +
 
 +
 
  
'''2.''' Aus $T_y$ = 0.167 ms erhält man $B_y$ = 3 kHz. Zusammen mit $y(t = 0) = 6\text{V}$ führt dies zum gleichen Spektralwert $Y(f = 0) = 10^{−3} \text{V/Hz}$.
+
'''(2)'''&nbsp; From&nbsp; $T_y = 0.167 \,\text{ms}$&nbsp; we get&nbsp; $B_y \;\underline{= 3 \,\text{kHz}}$.  
 +
*Together with&nbsp; $y(t = 0) = 6\,\text{V}$&nbsp;  this leads to the same spectral value&nbsp; $Y(f = 0)\; \underline{= 1\, \text{mV/Hz}}$&nbsp; as in subtaske&nbsp; '''(1)'''.
 +
 
 +
 
 +
 
 +
 
 +
[[File:P_ID701__Sig_A_4_1_c_neu.png|right|frame|Rectangular band-pass spectrum]]
 +
'''(3)'''&nbsp;  From&nbsp; $d(t) = x(t) - y(t)$&nbsp; follows because of the linearity of the Fourier transform: &nbsp; $D(f)  = X(f) - Y(f).$
 +
 
 +
*The difference of the two equal high rectangular functions leads to a rectangular band-pass spectrum between&nbsp; $3 \,\text{kHz}$&nbsp; and&nbsp; $5 \,\text{kHz}$.
 +
*The (one-sided) bandwidth is thus&nbsp; $B_d \;\underline{= 2 \,\text{kHz}}$.&nbsp; In this frequency interval&nbsp; $D(f) = 1 \,\text{mV/Hz}$.&nbsp; Outside, i.e. also at&nbsp; $f = 0$, &nbsp; $D(f)\;\underline{ = 0}$ applies.
  
[[File:P_ID701__Sig_A_4_1_c_neu.png|250px|right|Rechteckförmiges BP-Spektrum (ML zu Aufgabe A4.1)]]
 
  
'''3.''' Aus $d(t) = x(t) – y(t)$ folgt wegen der Linearität der Fouriertransformation:
 
 
$$D(f)  = X(f) - Y(f).$$
 
  
Die Differenz der zwei gleich hohen Rechteckfunktionen führt zu einem rechteckförmigen $B_P$–Spektrum zwischen 3 kHz und 5 kHz. Die (einseitige) Bandbreite beträgt somit $B_d$ = 2 kHz. In diesem Frequenzintervall ist $D(f) = 10^{–3}$ V/Hz. Außerhalb, also auch bei $f$ = 0, gilt $D(f)$ = 0.
 
  
'''4.''' Nach den fundamentalen Gesetzmäßigkeiten der Fouriertransformation ist das Integral über die Zeitfunktion gleich dem Spektralwert bei $f$ = 0. Daraus folgt:
+
'''(4)'''&nbsp; According to the fundamental laws of the Fourier transform, the integral over the time function is equal to the spectral value at&nbsp; $f = 0$.&nbsp; It follows: :
 
   
 
   
$$F_x = X(f=0) = \frac{x(t=0)}{2 \cdot B_x}  =  10^{-3}
+
:$$F_x = X(f=0) = \frac{x(t=0)}{2 \cdot B_x}  =  10^{-3}
\hspace{0.1cm}{\rm V/Hz}\hspace{0.15 cm}\underline{=  10^{-3} \hspace{0.1cm}{\rm Vs}},$$
+
\hspace{0.1cm}{\rm V/Hz}\hspace{0.15 cm}\underline{=  0.001 \hspace{0.1cm}{\rm Vs}},$$
  
$$F_d = D(f=0) \hspace{0.15 cm}\underline{= 0}.$$
+
:$$F_d = D(f=0) \hspace{0.15 cm}\underline{= 0}.$$
 
   
 
   
Das bedeutet: Bei jedem Bandpass–Signal sind die Flächen der positiven Signalanteile genau so groß wie die Flächen der negativen Anteile.
+
&rArr;&nbsp; For each band-pass signal, the areas of the positive signal components are equal to the areas of the negative components.
 +
 
  
'''5.''' In beiden Fällen ist die Berechnung im Frequenzbereich einfacher als im Zeitbereich, da hier die Integration auf eine Flächenberechnung von Rechtecken zurückgeführt werden kann:
+
'''(5)'''&nbsp; In both cases, the calculation of the signal energy is easier in the frequency domain than in the time domain, because here the integration can be reduced to an area calculation of rectangles:
 
   
 
   
$$E_x =    (10^{-3} \hspace{0.1cm}{\rm V/Hz})^2 \cdot 2 \cdot 5
+
:$$E_x =    (10^{-3} \hspace{0.1cm}{\rm V/Hz})^2 \cdot 2 \cdot 5
\hspace{0.1cm}{\rm kHz} \hspace{0.15 cm}\underline{= 10^{-2} \hspace{0.1cm}{\rm V^2s}},$$
+
\hspace{0.1cm}{\rm kHz} \hspace{0.15 cm}\underline{= 0.01 \hspace{0.1cm}{\rm V^2s}},$$
  
$$E_d =    (10^{-3} \hspace{0.1cm}{\rm V/Hz})^2 \cdot 2 \cdot 2
+
:$$E_d =    (10^{-3} \hspace{0.1cm}{\rm V/Hz})^2 \cdot 2 \cdot 2
\hspace{0.1cm}{\rm kHz} \hspace{0.15 cm}\underline{= 4 \cdot 10^{-3} \hspace{0.1cm}{\rm
+
\hspace{0.1cm}{\rm kHz} \hspace{0.15 cm}\underline{= 0.004 \hspace{0.1cm}{\rm
 
V^2s}}.$$
 
V^2s}}.$$
 
   
 
   
Line 115: Line 135:
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Aufgaben zu Signaldarstellung|^4. Bandpassartige Signale^]]
+
[[Category:Signal Representation: Exercises|^4.1 Differences between Low-Pass and Band-Pass^]]

Latest revision as of 15:38, 5 May 2021

Given signal curves

Three signal curves are sketched on the right, the first two having the following curve:

$$x(t) = 10\hspace{0.05cm}{\rm V} \cdot {\rm si} ( \pi \cdot {t}/{T_x}) ,$$
$$y(t) = 6\hspace{0.05cm}{\rm V} \cdot {\rm si}( \pi \cdot {t}/{T_y}) .$$

$T_x = 100 \,{\rm µ}\text{s}$  and  $T_y = 166.67 \,{\rm µ}\text{s}$  indicate the first zero of  $x(t)$  and  $y(t)$ respectively. The signal  $d(t)$  results from the difference of the two upper signals (lower graph):

$$d(t) = x(t)-y(t) .$$

In subtask  (4)  the integral areas of the pulses  $x(t)$  and  $d(t)$  are asked for.  For these holds:

$$F_x = \int_{- \infty}^{+\infty}\hspace{-0.4cm}x(t)\hspace{0.1cm}{\rm d}t , \hspace{0.5cm}F_d = \int_{- \infty}^{+\infty}\hspace{-0.4cm}d(t)\hspace{0.1cm}{\rm d}t .$$

On the other hand, for the corresponding signal energies with  Parseval's theorem:

$$E_x = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|x(t)|^2\hspace{0.1cm}{\rm d}t = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|X(f)|^2\hspace{0.1cm}{\rm d}f ,$$
$$E_d = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|d(t)|^2\hspace{0.1cm}{\rm d}t = \int_{- \infty}^{+\infty}\hspace{-0.4cm}|D(f)|^2\hspace{0.1cm}{\rm d}f .$$





Hints:

  • The inverse Fourier transform of a rectangular spectrum  $X(f)$  leads to an  $\rm si$–shaped time function $x(t)$:
$$X(f)=\left\{ {X_0 \; \rm f\ddot{u}r\; |\it f| < \rm B, \atop {\rm 0 \;\;\; \rm sonst}}\right. \;\; \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \;\;x(t) = 2 \cdot X_0 \cdot B \cdot {\rm si} ( 2\pi B t) .$$
  • In this task, the  function $\rm si(x) = \rm sin(x)/x = \rm sinc(x/π)$  is used.


Questions

1

What is the spectrum  $X(f)$  of the signal  $x(t)$?  What are the magnitudes of  $X(f = 0)$  and the physical, one-sided bandwidth  $B_x$  of  $x(t)$?

$X(f=0)\ = \ $

 $\text{mV/Hz}$
$B_x \ = \ $

 $\text{kHz}$

2

What are the corresponding characteristics of the signal  $y(t)$?

$Y(f=0)\ = \ $

 $\text{mV/Hz}$
$B_y \ = \ $

 $\text{kHz}$

3

Calculate the spectrum  $D(f)$  of the difference signal  $d(t) = x(t) - y(t)$.  How large are  $D(f = 0)$  and the (one-sided) bandwidth  $B_d$?

$D(f=0)\ = \ $

 $\text{mV/Hz}$
$B_d \ = \ $

 $\text{kHz}$

4

What are the integral areas  $F_x$  and  $F_d$  of the signals  $x(t)$  and  $d(t)$?

$F_x\ = \ $

 $\text{Vs}$
$F_d\ = \ $

 $\text{Vs}$

5

What are the energies (coverted to  $1\ Ω$ ) of these signals?

$E_x \ = \ $

 $\text{V}^2\text{s}$
$E_d \ = \ $

 $\text{V}^2\text{s}$


Solution

(1)  The  $\rm si$–shaped time function  $x(t)$  suggests a rectangular spectrum  $X(f)$ .

  • The absolute, two-sided bandwidth  $2 \cdot B_x$  is equal to the reciprocal of the first zero.  It follows that:
$$B_x = \frac{1}{2 \cdot T_x} = \frac{1}{2 \cdot 0.1 \hspace{0.1cm}{\rm ms}}\hspace{0.15 cm}\underline{ = 5 \hspace{0.1cm}{\rm kHz}}.$$
  • Since the signal value at  $t = 0$  is equal to the rectangular area, the constant height is given by:
$$X(f=0) = \frac{x(t=0)}{2 B_x} = \frac{10 \hspace{0.1cm}{\rm V}}{10 \hspace{0.1cm}{\rm kHz}} \hspace{0.15 cm}\underline{= 1 \hspace{0.1cm}{\rm mV/Hz}}.$$


(2)  From  $T_y = 0.167 \,\text{ms}$  we get  $B_y \;\underline{= 3 \,\text{kHz}}$.

  • Together with  $y(t = 0) = 6\,\text{V}$  this leads to the same spectral value  $Y(f = 0)\; \underline{= 1\, \text{mV/Hz}}$  as in subtaske  (1).



Rectangular band-pass spectrum

(3)  From  $d(t) = x(t) - y(t)$  follows because of the linearity of the Fourier transform:   $D(f) = X(f) - Y(f).$

  • The difference of the two equal high rectangular functions leads to a rectangular band-pass spectrum between  $3 \,\text{kHz}$  and  $5 \,\text{kHz}$.
  • The (one-sided) bandwidth is thus  $B_d \;\underline{= 2 \,\text{kHz}}$.  In this frequency interval  $D(f) = 1 \,\text{mV/Hz}$.  Outside, i.e. also at  $f = 0$,   $D(f)\;\underline{ = 0}$ applies.



(4)  According to the fundamental laws of the Fourier transform, the integral over the time function is equal to the spectral value at  $f = 0$.  It follows: :

$$F_x = X(f=0) = \frac{x(t=0)}{2 \cdot B_x} = 10^{-3} \hspace{0.1cm}{\rm V/Hz}\hspace{0.15 cm}\underline{= 0.001 \hspace{0.1cm}{\rm Vs}},$$
$$F_d = D(f=0) \hspace{0.15 cm}\underline{= 0}.$$

⇒  For each band-pass signal, the areas of the positive signal components are equal to the areas of the negative components.


(5)  In both cases, the calculation of the signal energy is easier in the frequency domain than in the time domain, because here the integration can be reduced to an area calculation of rectangles:

$$E_x = (10^{-3} \hspace{0.1cm}{\rm V/Hz})^2 \cdot 2 \cdot 5 \hspace{0.1cm}{\rm kHz} \hspace{0.15 cm}\underline{= 0.01 \hspace{0.1cm}{\rm V^2s}},$$
$$E_d = (10^{-3} \hspace{0.1cm}{\rm V/Hz})^2 \cdot 2 \cdot 2 \hspace{0.1cm}{\rm kHz} \hspace{0.15 cm}\underline{= 0.004 \hspace{0.1cm}{\rm V^2s}}.$$