Difference between revisions of "Aufgaben:Exercise 4.1Z: High-Pass System"

From LNTwww
 
(37 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signaldarstellung/Unterschiede und Gemeinsamkeiten von TP- und BP-Signalen
+
{{quiz-Header|Buchseite=Signal_Representation/Differences_and_Similarities_of_Low-Pass_and_Band-Pass_Signals
 
}}
 
}}
  
[[File:P_ID692__Sig_Z_4_1.png|right|]]
+
[[File:EN_Sig_Z_4_1.png|right|frame|Simplest examples for <br>"low-pass" and "high-pass"]]
Die auf Seite 3 dieses Abschnittes dargestellten Beziehungen gelten nicht nur für Signale und Spektren, sondern in gleicher Weise auch für Frequenzgang $H(f)$ und Impulsantwort $h(t)$ eines LZI-Systems; auch diese stehen über die Fouriertransformation im Zusammenhang. Nähere Informationen hierzu finden Sie im Buch „Lineare zeitinvariante Systeme”.
+
The relationships shown in the section&nbsp; [[Signal_Representation/Differences_and_Similarities_of_LP_and_BP_Signals#Properties_of_BP-Signals|"Properties of Bandpass Signals"]]&nbsp; apply not only to signals and spectra, but in the same way to
 +
*the frequency response&nbsp; $H(f)$&nbsp; and
 +
*the impulse response&nbsp; $h(t)$&nbsp; of an LTI system.  
  
Die Schaltung gemäß dem oberen Bild ist die einfachste Realisierung eines Tiefpasses. Für sehr hohe Frequenzen wirkt die Kapazität $C$ als Kurzschluss, so dass hochfrequente Anteile im Ausgangssignal nicht mehr enthalten sind. Dagegen werden niederfrequente Signalanteile durch den Spannungsteiler nur unmerklich abgeschwächt.
 
  
Mit der 3dB-Grenzfrequenz $f_G$ gilt für den Frequenzgang:
+
These are also related via the&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse|Fourier Transform]].&nbsp; More information can be found in the book&nbsp; [[Linear_and_Time_Invariant_Systems|"Linear and Time-Invariant Systems"]].
 +
 
 +
The circuit shown in the upper diagram is the simplest realisation of a low-pass&nbsp; (German:&nbsp; "Tiefpass" &nbsp; &rArr; &nbsp; $\text{TP}$)&nbsp; filter:
 +
*For very high frequencies, the capacitance&nbsp; $C$&nbsp; acts as a short circuit, so that high-frequency components are no longer included in the output signal.
 +
*In contrast, low-frequency signal components are only imperceptibly attenuated by the voltage divider.
 +
*With the 3dB cut-off frequency&nbsp; $f_{\rm G}$&nbsp; the following applies to the frequency response:
 
:$$H_{\rm TP}(f) = \frac{1}{1 + {\rm j} \cdot f / f_{\rm G}}  =
 
:$$H_{\rm TP}(f) = \frac{1}{1 + {\rm j} \cdot f / f_{\rm G}}  =
 
|H_{\rm TP}(f)|\cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \varphi_{\rm TP}(f)} .$$
 
|H_{\rm TP}(f)|\cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \varphi_{\rm TP}(f)} .$$
Im zweiten Gleichungsteil ist der Frequenzgang $H_{TP}(f)$ nach Betrag und Phase aufgespalten.
 
  
Die Impulsantwort $h_{TP}(t)$ erhält man durch Fouriertransformation von $H_{TP}(f)$, wobei
+
In the second part of this equation, the frequency response&nbsp; $H_{\rm TP}(f)$&nbsp; is split according to magnitude and phase.
:$$\tau = R \cdot C = \frac{1}{2\pi \cdot f_{\rm G}} $$
+
 
zu setzen ist. Für $t < 0$ ist die Impulsantwort identisch $0$, für positive Zeiten gilt:
+
The impulse response&nbsp; $h_{\rm TP}(t)$&nbsp; is obtained by Fourier transform of&nbsp; $H_{\rm TP}(f)$, where the constant&nbsp; $\tau = R \cdot C = {1}/({2\pi \cdot f_{\rm G}}) $.
 +
 
 +
For&nbsp; $t < 0$&nbsp; the impulse response is identically zero,&nbsp; anf for positive times:
 
:$$h_{\rm TP}(t) = \frac{1}{\tau} \cdot {\rm e}^{-t / \tau} .$$
 
:$$h_{\rm TP}(t) = \frac{1}{\tau} \cdot {\rm e}^{-t / \tau} .$$
Die unten dargestellte Schaltung beschreibt einen Hochpass, dessen Frequenzgang $H_{HP}(f)$ und Impulsantwort $h_{HP}(t)$ in dieser Aufgabe ermittelt werden sollen. Ein solcher Hochpass kann auch als Grenzfall eines Bandpasses interpretiert werden.
 
  
<b>Hinweis:</b> Diese Aufgabe bezieht sich auf den Theorieteil von [http://en.lntwww.de/Signaldarstellung/Unterschiede_und_Gemeinsamkeiten_von_TP-_und_BP-Signalen Kapitel 4.1].
+
The circuit shown below describes a high-pass filter whose frequency response&nbsp; $H_{\rm HP}(f)$&nbsp; and impulse response&nbsp; $h_{\rm HP}(t)$&nbsp; are to be determined in this task. Such a high-pass can also be interpreted as a limiting case of a band-pass.
 +
 
 +
 
 +
 
  
 +
''Hints:''
 +
*This exercise belongs to the chapter&nbsp; [[Signal_Representation/Differences_and_Similarities_of_Low-Pass_and_Band-Pass_Signals|Differences and Similarities of Low-Pass and Band-Pass Signals]].
 +
  
===Fragebogen===
+
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der nachfolgenden Aussagen sind beim TP-System zutreffend?
+
{Which of the following statements are true for the low-pass system??
 
|type="[]"}
 
|type="[]"}
- Der Gleichsignalübertragungsfaktor beträgt $H_{TP}(f = 0) = 2$.
+
- The DC transmission factor is&nbsp; $H_{\rm TP}(f = 0) = 2$.
+ $|H_{TP}(f)|$ ist bei $f = f_G$ um „Wurzel aus $2$” kleiner als bei $f = 0$.
+
+ $|H_{\rm TP}(f= f_{\rm G})|$&nbsp; is smaller by&nbsp; $\sqrt{2}$&nbsp; than&nbsp; $|H_{\rm TP}(f= 0)|$.
+ Die Phasenfunktion lautet: $\varphi_{TP}(f) = arctan(f/f_G)$.
+
+ The phase function is&nbsp; $\varphi_{\rm TP}(f) = \arctan(f/f_{\rm G})$.
  
  
{Begründen Sie, warum stets $H_{HP}(f) = 1 H_{TP}(f)$ gelten muss. Berechnen Sie $H_{HP}(f)$, insbesondere den Wert bei $f = 0$.
+
{Justify why&nbsp; $H_{\rm HP}(f) = 1 - H_{\rm TP}(f)$&nbsp; must always hold.&nbsp; Calculate&nbsp; $H_{\rm HP}(f)$,&nbsp; in particular the value at&nbsp; $f = 0$.
 
|type="{}"}
 
|type="{}"}
$H_{HP}(f = 0)$ = { 0 3% }
+
$H_{\rm HP}(f = 0)\ = \ $ { 0. }
  
  
{Welche der nachfolgenden Aussagen sind zutreffend?
+
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
- Es gilt $|H_{HP}(f = f_G)| = 1 |H_{TP}(f = f_G)|$.
+
- It holds: &nbsp;$|H_{\rm HP}(f = f_{\rm G})| = 1 - |H_{\rm TP}(f = f_{\rm G})|$.
+ Es gilt $|H_{HP}(f = f_G)| = |H_{TP}(f = f_G)|$.
+
+ It holds: &nbsp;$|H_{\rm HP}(f = f_{\rm G})| = |H_{\rm TP}(f = f_{\rm G})|$.
+ Für positive Frequenzen gilt $\varphi_{HP}(f) = \varphi_{TP}(f) \pi/2$.
+
+ For positive frequencies it holds: &nbsp; $\varphi_{\rm HP}(f) = \varphi_{\rm TP}(f) - \pi/2$.
  
  
{Berechnen Sie die Impulsantwort $h_{TP}(t)$. Interpretieren Sie das Ergebnis. Welche der folgenden Aussagen sind richtig?
+
{Calculate the impulse response&nbsp; $h_{\rm  TP}(t)$.&nbsp; Interpret the result.&nbsp; Which of the following statements are correct?
 
|type="[]"}
 
|type="[]"}
- Es gilt $h_{HP}(t) = \tau/t \cdot exp(–t/\tau)$.
+
- It holds: &nbsp;$h_{\rm HP}(t) = \tau/t \cdot {\rm e}^{-t/\tau}$.
+ Es gilt $h_{HP}(t) = \delta (t) - 1/\tau \cdot exp(–t/\tau)$.
+
+ It holds: &nbsp;$h_{\rm HP}(t) = \delta (t) - 1/\tau \cdot {\rm e}^{-t/\tau}$.
+ Zum Zeitpunkt $t = 0$ ist die Impulsantwort unendlich groß.
+
+ At time&nbsp; $t = 0$&nbsp; the impulse response is infinite.
- Zum Zeitpunkt $t = \tau$ ist die Impulsantwort gleich $e/\tau$.
+
- At time&nbsp; $t = \tau$&nbsp; the impulse response is equal to&nbsp; ${\rm e}/\tau$.
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''  Der Gleichsignalübertragungsfaktor ist $H_{TP}(f = 0) = 1$. Für den Betragsfrequenzgang gilt:
+
'''(1)'''&nbsp; The correct <u> solutions are 2 and 3</u>:
 +
*The DC transmission factor is&nbsp;&nbsp; $H_{\rm TP}(f = 0) = 1$.  
 +
*For the magnitude frequency response holds:
 
:$$|H_{\rm TP}(f)| = \frac{1}{\sqrt{1 + ( f / f_{\rm G})^2}} .$$
 
:$$|H_{\rm TP}(f)| = \frac{1}{\sqrt{1 + ( f / f_{\rm G})^2}} .$$
Somit ist der Wert bei fG gleich „Wurzel aus $1/2$. Die Leistungsübertragungsfunktion $|H_{TP}(f)|^2$ ist daher bei $f = f_G$ nur halb so groß als bei $f = 0$, worauf die Bezeichnung 3dB-Grenzfrequenz für $f_G$ zurückzuführen ist. Die Phasenfunktion wird allgemein nach folgender Gleichung berechnet:
+
*Thus, the value at&nbsp; $f_{\rm G}$ is equal to $\sqrt{1/2}$.&nbsp; The power transfer function&nbsp; $|H_{\rm TP}(f)|^2$&nbsp; is therefore only half as large at&nbsp; $f = f_{\rm G}$&nbsp; as at&nbsp; $f = 0$, which is the reason for the designation "3dB cut-off frequency".
 +
*The phase function is generally calculated according to the following equation:
 
:$$\varphi_{\rm TP}(f) = -\arctan\frac{{\rm Im}\left[H_{\rm
 
:$$\varphi_{\rm TP}(f) = -\arctan\frac{{\rm Im}\left[H_{\rm
 
TP}(f)\right]}{{\rm Re}\left[H_{\rm TP}(f)\right]}  .$$
 
TP}(f)\right]}{{\rm Re}\left[H_{\rm TP}(f)\right]}  .$$
Mit der konjugiert–komplexen Erweiterung erhält man:
+
*With the conjugate-complex expansion one obtains:
 
:$$H_{\rm TP}(f) = \frac{1}{1 - ( f / f_{\rm G})^2} - \frac{{\rm j}
 
:$$H_{\rm TP}(f) = \frac{1}{1 - ( f / f_{\rm G})^2} - \frac{{\rm j}
 
\cdot f / f_{\rm G}}{1 - ( f / f_{\rm G})^2}.$$
 
\cdot f / f_{\rm G}}{1 - ( f / f_{\rm G})^2}.$$
Setzt man dieses Ergebnis in obige Gleichung ein, so ergibt sich:
+
*Substituting this result into the above equation gives:
 
:$$\varphi_{\rm TP}(f) = \arctan\left(f / f_{\rm G}\right) .$$
 
:$$\varphi_{\rm TP}(f) = \arctan\left(f / f_{\rm G}\right) .$$
Der Verlauf ist ausgehend von $0$ (bei $f = 0$) über $\pi/2$ (bei $f = f_G$) bis zu $\pi$ (bei $f \rightarrow \infty$) monoton steigend. Richtig sind somit die <u>Lösungsvorschläge 2 und 3</u>.
+
*The progression is monotonically increasing from&nbsp; $0$&nbsp; $($at&nbsp; $f = 0)$&nbsp; via&nbsp; $\pi/2$&nbsp; $($at&nbsp; $f = f_{\rm G})$&nbsp; to&nbsp; $\pi$&nbsp; $($bei&nbsp; $f \rightarrow \infty)$&nbsp;.
  
'''2.''' Auf Seite 3 von Kapitel 4.1 wurde gezeigt, dass ein jedes BP-Signal als Differenz zweier TP-Signale dargestellt werden kann. Gleiches gilt für Frequenzgänge:
+
 
[[File:P_ID703__Sig_Z_4_1_b.png|right|]]
+
 
 +
'''(2)'''&nbsp; In the section&nbsp; "Properties of Bandpass Signals"&nbsp; it was shown that any band-pass signal can be represented as the difference of two low-pass signals.
 +
 
 +
[[File:P_ID703__Sig_Z_4_1_b.png|right|frame|Red:&nbsp; Low-pass&nbsp; $\rm (TP)$,<br>Blue:&nbsp; High-pass&nbsp; $\rm (HP)$]]
 +
The same applies to frequency responses:
 
:$$H_{\rm BP}(f) = H_1(f) - H_2(f).$$
 
:$$H_{\rm BP}(f) = H_1(f) - H_2(f).$$
Setzt man $H_2(f) = H_{TP}(f)$ und betrachtet $H_1(f) = 1$ als Grenzfall einer Tiefpassfunktion mit unendlicher Bandbreite, so ergibt sich:
+
*If we set&nbsp; $H_2(f) = H_{\rm TP}(f)$&nbsp; and consider&nbsp; $H_1(f) = 1$&nbsp; as the limiting case of a low-pass function with an infinitely large bandwidth, we get:
 
:$$H_{\rm HP}(f) = 1 - H_{\rm TP}(f).$$
 
:$$H_{\rm HP}(f) = 1 - H_{\rm TP}(f).$$
Wie die obere Grafik zeigt, ist das Ergebnis wegen $H_1(f) = 1$ nun ein Hochpass. Mit der vorgegebenen Tiefpassfunktion $H_{TP}(f)$ erhält man weiter:
+
*As the graph shows, the result is now a high-pass because of &nbsp; $H_1(f) = 1$.&nbsp; With the given low-pass function&nbsp; $H_{\rm TP}(f)$&nbsp; one further obtains:
 
:$$H_{\rm HP}(f) = 1 - \frac{1}{1 + {\rm j} \cdot f / f_{\rm G}}  =
 
:$$H_{\rm HP}(f) = 1 - \frac{1}{1 + {\rm j} \cdot f / f_{\rm G}}  =
 
\frac{{\rm j} \cdot f / f_{\rm G}}{1 + {\rm j} \cdot f / f_{\rm
 
\frac{{\rm j} \cdot f / f_{\rm G}}{1 + {\rm j} \cdot f / f_{\rm
 
G}} .$$
 
G}} .$$
Für $f = 0$ ergibt sich $\underline{H_{HP}(f = 0) = 0}$. Anzumerken ist, dass die tatsächliche (komplexe) Funktion $H_{TP}(f)$ und nicht deren Betrag zu substrahieren ist. Daher ist die obige Skizze nur qualitativ zu verstehen.
+
*For&nbsp; $f = 0$:&nbsp; &nbsp; $H_{\rm HP}(f = 0) \;\underline{= 0}$ is obtained.&nbsp; Note that it is the actual (complex) function&nbsp; $H_{\rm TP}(f)$&nbsp; and not its magnitude that is to be subtracted.&nbsp; Therefore, the above sketch is to be understood only qualitatively.
  
Zum genau gleichen Ergebnis kommt man ausgehend von der konkreten Schaltung auf der Angabenseite. Entsprechend einem frequenzabhängigen Spannungsteiler mit den Widerständen $R$ und $1/(j\omega C)$ gilt:
+
 
 +
One arrives at exactly the same result starting from the concrete circuit in the information section.&nbsp; Corresponding to a frequency-dependent voltage divider with resistors&nbsp; $R$&nbsp; and&nbsp; $1/(j\omega C)$&nbsp; applies:
 
:$$H_{\rm HP}(f) =  \frac{R}{R + 1/({\rm j}\cdot \omega \cdot C)} =
 
:$$H_{\rm HP}(f) =  \frac{R}{R + 1/({\rm j}\cdot \omega \cdot C)} =
 
\frac{{\rm j}\cdot \omega \cdot C \cdot R}{1+{\rm j} \cdot \omega
 
\frac{{\rm j}\cdot \omega \cdot C \cdot R}{1+{\rm j} \cdot \omega
Line 85: Line 107:
 
\cdot f / f_{\rm G}}.$$
 
\cdot f / f_{\rm G}}.$$
  
'''3.'''  Die Betragsfunktion des Hochpasses lautet:
+
 
 +
 
 +
'''(3)'''&nbsp; The correct <u>solutions are 2 and 3</u>:
 +
*The magnitude function of the high-pass is:
 
:$$|H_{\rm HP}(f)| = \frac{|f / f_{\rm G}|}{\sqrt{1 + ( f / f_{\rm
 
:$$|H_{\rm HP}(f)| = \frac{|f / f_{\rm G}|}{\sqrt{1 + ( f / f_{\rm
 
G})^2}} .$$
 
G})^2}} .$$
Bei der Grenzfrequenz $f_G$ sind somit die Beträge von Hochpass- und Tiefpass-Frequenzgang gleich groß, und zwar jeweils $0.707$. Dagegen ist die erste Aussage offensichtlich falsch: demnach müsste sich nämlich der Wert $|H_{HP}(f = f_G)| = 1 0.707 \approx 0.293$ ergeben.
+
*At the cut-off frequency&nbsp; $f_{\rm G}$,&nbsp; the magnitudes of the high-pass and low-pass frequency response are thus equal, namely&nbsp; $0.707$ each.  
 
+
*On the other hand, the first statement is obviously wrong: &nbsp; According to this, the value&nbsp; $|H_{HP}(f = f_{\rm G})| = 1 - 0.707 \approx 0.293$&nbsp; should result.
Der unter 2) berechnete Frequenzgang kann auch wie folgt dargestellt werden:
+
[[File:EN_Sig_Z_4_1_c.png|right|frame|Phase responses of <br>low-pass and high-pass ]]
[[File:P_ID919__Sig_Z_4_1_c.png|right|]]
+
*The frequency response calculated under&nbsp; '''(2)'''&nbsp; can also be represented as follows:
 
:$$H_{\rm HP}(f) = \frac{( f / f_{\rm G})^2 + {\rm j} \cdot f /
 
:$$H_{\rm HP}(f) = \frac{( f / f_{\rm G})^2 + {\rm j} \cdot f /
 
f_{\rm G}}{{1 + ( f / f_{\rm G})^2}} .$$
 
f_{\rm G}}{{1 + ( f / f_{\rm G})^2}} .$$
Damit ergibt sich für die Phasenfunktion:
+
*This gives for the phase function:
 
:$$\varphi_{\rm HP}(f) =-\arctan\frac{f / f_{\rm G}}{( f /
 
:$$\varphi_{\rm HP}(f) =-\arctan\frac{f / f_{\rm G}}{( f /
 
f_{\rm G})^2}=  
 
f_{\rm G})^2}=  
 
-{\rm arcctg} ({f}/{f_{\rm G}}) $$
 
-{\rm arcctg} ({f}/{f_{\rm G}}) $$
 
:$$\Rightarrow \hspace{0.3cm}\varphi_{\rm HP}(f)  =  {\rm arctan} (\frac{f}{f_{\rm G}}) - \frac{\pi}{2}= \varphi_{\rm TP}(f)- \frac{\pi}{2}.$$
 
:$$\Rightarrow \hspace{0.3cm}\varphi_{\rm HP}(f)  =  {\rm arctan} (\frac{f}{f_{\rm G}}) - \frac{\pi}{2}= \varphi_{\rm TP}(f)- \frac{\pi}{2}.$$
Bei positiven Frequenzen ergibt sich also bis auf eine Verschiebung um $\pi /2$ nach unten der gleiche Verlauf wie beim TP-System. Da die Phasenfunktion ungerade ist, gibt es bei negativen Frequenzen eine Verschiebung um $\pi /2$ nach oben. Richtig sind die <u>Lösungsvorschläge 2 und 3</u>.
 
  
'''4.''' Aufgrund der Linearität der Fourier(rück)transformation gilt für den Zeitverlauf für $t > 0$:
+
*Therefore:&nbsp; At positive frequencies, the same course as with the low-pass system results, except for a shift of&nbsp; $\pi /2$&nbsp; downwards.&nbsp; Since the phase function is odd, there is an upward shift of&nbsp; $\pi /2$&nbsp; at negative frequencies.
 +
 
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Proposed <u>solutions 2 and 3</u> are correct:
 +
*Due to the linearity of the (inverse) Fourier transform, the following applies to the time course for&nbsp; $t > 0$:
 
:$$h_{\rm HP}(t) = h_1(t) - h_2(t)= \delta(t) - \frac{1}{\tau}\cdot
 
:$$h_{\rm HP}(t) = h_1(t) - h_2(t)= \delta(t) - \frac{1}{\tau}\cdot
 
{\rm e}^{-t / \tau} .$$
 
{\rm e}^{-t / \tau} .$$
Die Diracfunktion ist die Fourierrücktransformierte der konstanten Frequenzfunktion „1”. Der zweite Anteil ist bis auf das Vorzeichen identisch mit der TP-Impulsantwort. Die Diracfunktion bewirkt, dass $h_{HP}(t)$ zum Zeitpunkt $t = 0$ unendlich groß ist. Dagegen gilt für $t = \tau$:
+
*The Dirac function is the inverse Fourier transform of the constant frequency function „1”.  
 +
*The second component is identical to the low-pass impulse response except for the sign.
 +
*The Dirac function causes&nbsp; $h_{\rm HP}(t)$&nbsp; to be infinitely large at time&nbsp; $t = 0$.&nbsp; In contrast, the following applies for&nbsp; $t = \tau$:
 
:$$h_{\rm HP}(t = \tau) =  - \frac{1}{\tau}\cdot {\rm e}^{-1} =  -
 
:$$h_{\rm HP}(t = \tau) =  - \frac{1}{\tau}\cdot {\rm e}^{-1} =  -
\frac{1}{{\rm e}\cdot \tau}.$$
+
{{\rm e}/ \tau}.$$
Die letzte Aussage ist somit ebenfalls falsch. Richtig sind wieder die <u>Lösungsvorschläge 2 und 3</u>.
+
*The last statement is therefore also false due to the sign.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Aufgaben zu Signaldarstellung|^4. Bandpassartige Signale^]]
+
[[Category:Signal Representation: Exercises|^4.1 Differences between Low-Pass and Band-Pass^]]

Latest revision as of 14:48, 17 November 2022

Simplest examples for
"low-pass" and "high-pass"

The relationships shown in the section  "Properties of Bandpass Signals"  apply not only to signals and spectra, but in the same way to

  • the frequency response  $H(f)$  and
  • the impulse response  $h(t)$  of an LTI system.


These are also related via the  Fourier Transform.  More information can be found in the book  "Linear and Time-Invariant Systems".

The circuit shown in the upper diagram is the simplest realisation of a low-pass  (German:  "Tiefpass"   ⇒   $\text{TP}$)  filter:

  • For very high frequencies, the capacitance  $C$  acts as a short circuit, so that high-frequency components are no longer included in the output signal.
  • In contrast, low-frequency signal components are only imperceptibly attenuated by the voltage divider.
  • With the 3dB cut-off frequency  $f_{\rm G}$  the following applies to the frequency response:
$$H_{\rm TP}(f) = \frac{1}{1 + {\rm j} \cdot f / f_{\rm G}} = |H_{\rm TP}(f)|\cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \varphi_{\rm TP}(f)} .$$

In the second part of this equation, the frequency response  $H_{\rm TP}(f)$  is split according to magnitude and phase.

The impulse response  $h_{\rm TP}(t)$  is obtained by Fourier transform of  $H_{\rm TP}(f)$, where the constant  $\tau = R \cdot C = {1}/({2\pi \cdot f_{\rm G}}) $.

For  $t < 0$  the impulse response is identically zero,  anf for positive times:

$$h_{\rm TP}(t) = \frac{1}{\tau} \cdot {\rm e}^{-t / \tau} .$$

The circuit shown below describes a high-pass filter whose frequency response  $H_{\rm HP}(f)$  and impulse response  $h_{\rm HP}(t)$  are to be determined in this task. Such a high-pass can also be interpreted as a limiting case of a band-pass.



Hints:



Questions

1

Which of the following statements are true for the low-pass system??

The DC transmission factor is  $H_{\rm TP}(f = 0) = 2$.
$|H_{\rm TP}(f= f_{\rm G})|$  is smaller by  $\sqrt{2}$  than  $|H_{\rm TP}(f= 0)|$.
The phase function is  $\varphi_{\rm TP}(f) = \arctan(f/f_{\rm G})$.

2

Justify why  $H_{\rm HP}(f) = 1 - H_{\rm TP}(f)$  must always hold.  Calculate  $H_{\rm HP}(f)$,  in particular the value at  $f = 0$.

$H_{\rm HP}(f = 0)\ = \ $

3

Which of the following statements are true?

It holds:  $|H_{\rm HP}(f = f_{\rm G})| = 1 - |H_{\rm TP}(f = f_{\rm G})|$.
It holds:  $|H_{\rm HP}(f = f_{\rm G})| = |H_{\rm TP}(f = f_{\rm G})|$.
For positive frequencies it holds:   $\varphi_{\rm HP}(f) = \varphi_{\rm TP}(f) - \pi/2$.

4

Calculate the impulse response  $h_{\rm TP}(t)$.  Interpret the result.  Which of the following statements are correct?

It holds:  $h_{\rm HP}(t) = \tau/t \cdot {\rm e}^{-t/\tau}$.
It holds:  $h_{\rm HP}(t) = \delta (t) - 1/\tau \cdot {\rm e}^{-t/\tau}$.
At time  $t = 0$  the impulse response is infinite.
At time  $t = \tau$  the impulse response is equal to  ${\rm e}/\tau$.


Solution

(1)  The correct solutions are 2 and 3:

  • The DC transmission factor is   $H_{\rm TP}(f = 0) = 1$.
  • For the magnitude frequency response holds:
$$|H_{\rm TP}(f)| = \frac{1}{\sqrt{1 + ( f / f_{\rm G})^2}} .$$
  • Thus, the value at  $f_{\rm G}$ is equal to $\sqrt{1/2}$.  The power transfer function  $|H_{\rm TP}(f)|^2$  is therefore only half as large at  $f = f_{\rm G}$  as at  $f = 0$, which is the reason for the designation "3dB cut-off frequency".
  • The phase function is generally calculated according to the following equation:
$$\varphi_{\rm TP}(f) = -\arctan\frac{{\rm Im}\left[H_{\rm TP}(f)\right]}{{\rm Re}\left[H_{\rm TP}(f)\right]} .$$
  • With the conjugate-complex expansion one obtains:
$$H_{\rm TP}(f) = \frac{1}{1 - ( f / f_{\rm G})^2} - \frac{{\rm j} \cdot f / f_{\rm G}}{1 - ( f / f_{\rm G})^2}.$$
  • Substituting this result into the above equation gives:
$$\varphi_{\rm TP}(f) = \arctan\left(f / f_{\rm G}\right) .$$
  • The progression is monotonically increasing from  $0$  $($at  $f = 0)$  via  $\pi/2$  $($at  $f = f_{\rm G})$  to  $\pi$  $($bei  $f \rightarrow \infty)$ .


(2)  In the section  "Properties of Bandpass Signals"  it was shown that any band-pass signal can be represented as the difference of two low-pass signals.

Red:  Low-pass  $\rm (TP)$,
Blue:  High-pass  $\rm (HP)$

The same applies to frequency responses:

$$H_{\rm BP}(f) = H_1(f) - H_2(f).$$
  • If we set  $H_2(f) = H_{\rm TP}(f)$  and consider  $H_1(f) = 1$  as the limiting case of a low-pass function with an infinitely large bandwidth, we get:
$$H_{\rm HP}(f) = 1 - H_{\rm TP}(f).$$
  • As the graph shows, the result is now a high-pass because of   $H_1(f) = 1$.  With the given low-pass function  $H_{\rm TP}(f)$  one further obtains:
$$H_{\rm HP}(f) = 1 - \frac{1}{1 + {\rm j} \cdot f / f_{\rm G}} = \frac{{\rm j} \cdot f / f_{\rm G}}{1 + {\rm j} \cdot f / f_{\rm G}} .$$
  • For  $f = 0$:    $H_{\rm HP}(f = 0) \;\underline{= 0}$ is obtained.  Note that it is the actual (complex) function  $H_{\rm TP}(f)$  and not its magnitude that is to be subtracted.  Therefore, the above sketch is to be understood only qualitatively.


One arrives at exactly the same result starting from the concrete circuit in the information section.  Corresponding to a frequency-dependent voltage divider with resistors  $R$  and  $1/(j\omega C)$  applies:

$$H_{\rm HP}(f) = \frac{R}{R + 1/({\rm j}\cdot \omega \cdot C)} = \frac{{\rm j}\cdot \omega \cdot C \cdot R}{1+{\rm j} \cdot \omega \cdot C \cdot R} = \frac{{\rm j} \cdot f / f_{\rm G}}{1 + {\rm j} \cdot f / f_{\rm G}}.$$


(3)  The correct solutions are 2 and 3:

  • The magnitude function of the high-pass is:
$$|H_{\rm HP}(f)| = \frac{|f / f_{\rm G}|}{\sqrt{1 + ( f / f_{\rm G})^2}} .$$
  • At the cut-off frequency  $f_{\rm G}$,  the magnitudes of the high-pass and low-pass frequency response are thus equal, namely  $0.707$ each.
  • On the other hand, the first statement is obviously wrong:   According to this, the value  $|H_{HP}(f = f_{\rm G})| = 1 - 0.707 \approx 0.293$  should result.
Phase responses of
low-pass and high-pass
  • The frequency response calculated under  (2)  can also be represented as follows:
$$H_{\rm HP}(f) = \frac{( f / f_{\rm G})^2 + {\rm j} \cdot f / f_{\rm G}}{{1 + ( f / f_{\rm G})^2}} .$$
  • This gives for the phase function:
$$\varphi_{\rm HP}(f) =-\arctan\frac{f / f_{\rm G}}{( f / f_{\rm G})^2}= -{\rm arcctg} ({f}/{f_{\rm G}}) $$
$$\Rightarrow \hspace{0.3cm}\varphi_{\rm HP}(f) = {\rm arctan} (\frac{f}{f_{\rm G}}) - \frac{\pi}{2}= \varphi_{\rm TP}(f)- \frac{\pi}{2}.$$
  • Therefore:  At positive frequencies, the same course as with the low-pass system results, except for a shift of  $\pi /2$  downwards.  Since the phase function is odd, there is an upward shift of  $\pi /2$  at negative frequencies.



(4)  Proposed solutions 2 and 3 are correct:

  • Due to the linearity of the (inverse) Fourier transform, the following applies to the time course for  $t > 0$:
$$h_{\rm HP}(t) = h_1(t) - h_2(t)= \delta(t) - \frac{1}{\tau}\cdot {\rm e}^{-t / \tau} .$$
  • The Dirac function is the inverse Fourier transform of the constant frequency function „1”.
  • The second component is identical to the low-pass impulse response except for the sign.
  • The Dirac function causes  $h_{\rm HP}(t)$  to be infinitely large at time  $t = 0$.  In contrast, the following applies for  $t = \tau$:
$$h_{\rm HP}(t = \tau) = - \frac{1}{\tau}\cdot {\rm e}^{-1} = - {{\rm e}/ \tau}.$$
  • The last statement is therefore also false due to the sign.