Difference between revisions of "Aufgaben:Exercise 4.6: Locality Curve for SSB-AM"

From LNTwww
 
(11 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function
+
{{quiz-Header|Buchseite=Signal_Representation/Equivalent Low-Pass Signal and its Spectral Function
 
}}
 
}}
  
[[File:P_ID764__Sig_A_4_6.png|250px|right|frame|Spektrum des analytischen Signals]]
+
[[File:P_ID764__Sig_A_4_6.png|250px|right|frame|Spectrum of the analytical signal]]
  
 
We consider the analytical signal  $s_+(t)$  with the spectral function
 
We consider the analytical signal  $s_+(t)$  with the spectral function
Line 12: Line 12:
 
Here  $f_{50}$  and  $f_{60}$  are abbreviations for the frequencies  $50 \ \rm kHz$  and  $60 \ \rm kHz$ respectively.
 
Here  $f_{50}$  and  $f_{60}$  are abbreviations for the frequencies  $50 \ \rm kHz$  and  $60 \ \rm kHz$ respectively.
  
In this task, the course of the equivalent low-pass signal  $s_{\rm TP}(t)$  analysiert werden, das in diesem Tutorial auch als „Ortskurve” bezeichnet wird.
+
In this task, the course of the equivalent low-pass signal  $s_{\rm TP}(t)$  is computed.  This course is also referred to as the  "Locality Curve"  in this tutorial.
*In den Teilaufgaben  '''(1)'''  bis  '''(3)'''  gehen wir davon aus, dass das Signal  $s(t)$  durch eine Einseitenband-Amplitudenmodulation des sinusförmigen Nachrichtensignals der Frequenz  $f_{\rm N} = 10 \ \text{ kHz}$  mit einem cosinusförmigen Träger bei  $f_{\rm T} = f_{50}$  entstanden ist, wobei nur das obere Seitenband übertragen wird („OSB-Modulation”).
+
*In subtasks  '''(1)'''  to  '''(3)''', we assume that the signal  $s(t)$  is produced by a single-sideband amplitude modulation of the sinusoidal source signal of frequency  $f_{\rm N} = 10 \ \text{ kHz}$  with a cosinusoidal carrier at  $f_{\rm T} = f_{50}$, whereby only the upper sideband is transmitted   ⇒   $\text{Upper Sideband Modulation}$.
*Dagegen wird bei der Teilaufgabe  '''(4)'''  von der Trägerfrequenz  $f_{\rm T} = f_{60}$  ausgegangen. Diese Annahme setzt voraus, dass eine USB-Modulation stattgefunden hat.
+
*In contrast, subtask  '''(4)'''  assumes the carrier frequency  $f_{\rm T} = f_{60}$ . This assumption presupposes that  $\text{Lower Sideband Modulation}$  has taken place.
  
  
Line 21: Line 21:
  
  
 +
''Hints:''
 +
*This exercise belongs to the chapter  [[Signal_Representation/Equivalent_Low-Pass_Signal_and_its_Spectral_Function|Equivalent Low-Pass Signal and its Spectral Function]].
 +
 +
*You can check your solution with the interactive applet  [[Applets:Physical_Signal_%26_Equivalent_Lowpass_Signal|Physical Signal & Equivalent Low-Pass Signal]]    ⇒   "Locality Curve".
  
  
''Hinweise:''
 
*Die Aufgabe gehört zum  Kapitel  [[Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function|Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion]].
 
 
*Sie können Ihre Lösung mit dem interaktiven Applet  [[Applets:Physikalisches_Signal_%26_Äquivalentes_TP-Signal|Physikalisches Signal & Äquivalentes TP-Signal]]   ⇒   Ortskurve überprüfen.
 
  
 
+
===Questions===
===Fragebogen===
 
  
 
<quiz display=simple>
 
<quiz display=simple>
{Geben Sie das äquivalente Tiefpass-Signal&nbsp; $s_{\rm TP}(t)$&nbsp; für die Trägerfrequenz&nbsp; $f_{\rm N} = 10 \ \text{ kHz}$&nbsp; an. Welche der folgenden Aussagen sind zutreffend?
+
{Give the equivalent low-pass signal&nbsp; $s_{\rm TP}(t)$&nbsp; for the carrier frequency&nbsp; $f_{\rm T} = 50 \ \text{ kHz}$.&nbsp; Which of the following statements are true?
 
|type="()"}
 
|type="()"}
- Die Ortskurve beschreibt eine Ellipse.
+
- The locality curve describes an ellipse.
+ Die Ortskurve beschreibt einen Kreis.
+
+ The locality curve describes a circle.
- Die Ortskurve beschreibt einen Kreisbogen.
+
- The localitycurve describes an arc.
  
{Berechnen Sie die Betragsfunktion&nbsp; $a(t) = |s_{\rm TP}(t)|$. Wie groß ist der Wert&nbsp; $a_0$&nbsp; bei&nbsp; $t = 0$&nbsp; sowie der Minimal– und der Maximalwert des Betrags?
+
{Calculate the magnitude function&nbsp; $a(t) = |s_{\rm TP}(t)|$.&nbsp; What is the value of&nbsp; $a_0$&nbsp; at&nbsp; $t = 0$&nbsp; and the minimum and maximum values of the magnitude?
 
|type="{}"}
 
|type="{}"}
 
$a_{\text{min}}\ = \ $ { 0. }
 
$a_{\text{min}}\ = \ $ { 0. }
Line 45: Line 44:
  
  
{Berechnen Sie die Phasenfunktion&nbsp; $\phi(t)$. Wie groß sind die Phasenwerte bei&nbsp; $t = 0$&nbsp;  sowie bei&nbsp; $t=25 \ {\rm &micro;} \text{s}$? <br>Interpretieren Sie&nbsp; $\phi (t)$ im Bereich um&nbsp; $t=75 \ {\rm &micro;} \text{s}$.
+
{Calculate the phase function&nbsp; $\phi(t)$.&nbsp;  What are the phase values at&nbsp; $t = 0$&nbsp;  and&nbsp; $t=25 \ {\rm &micro;} \text{s}$? <br>Interpret&nbsp; $\phi (t)$ in the range around&nbsp; $t=75 \ {\rm &micro;} \text{s}$.
 
|type="{}"}
 
|type="{}"}
$\phi(t=0 \ {\rm &micro;} \text{s})\ = \ $ { -46--44 } &nbsp;$\text{Grad}$
+
$\phi(t=0 \ {\rm &micro;} \text{s})\ = \ $ { -46--44 } &nbsp;$\text{deg}$
$\phi(t=25 \ {\rm &micro;} \text{s})\ = \ $ { 0. } &nbsp;$\text{Grad}$
+
$\phi(t=25 \ {\rm &micro;} \text{s})\ = \ $ { 0. } &nbsp;$\text{deg}$
$\phi(t=75 \ {\rm &micro;} \text{s})\ = \ $ { 0. } &nbsp;$\text{Grad}$
+
$\phi(t=75 \ {\rm &micro;} \text{s})\ = \ $ { 0. } &nbsp;$\text{deg}$
 
   
 
   
{Geben Sie das äquivalente Tiefpass-Signal&nbsp; $s_{\rm TP}(t)$&nbsp; für&nbsp; $f_{\rm T} = 60 \ \text{kHz} = f_{60}$&nbsp; an. Welche der folgenden Aussagen sind zutreffend?
+
{Give the equivalent low-pass signal&nbsp; $s_{\rm TP}(t)$&nbsp; for&nbsp; $f_{\rm T} = 60 \ \text{kHz} = f_{60}$.&nbsp; Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
+ Die Ortskurve ist ein Kreis mit Radius&nbsp; $1$&nbsp; um den Mittelpunkt&nbsp; $(0, –{\rm j})$ .
+
+ The locality curve is a circle with radius&nbsp; $1$&nbsp; around the centre&nbsp; $(0, –{\rm j})$ .
- Es gilt nun&nbsp; $s_{\rm TP}(t = 0) = 1 + {\rm j}$.
+
- Now&nbsp; $s_{\rm TP}(t = 0) = 1 + {\rm j}$&nbsp; applies.
+ Die Betragsfunktion&nbsp; $a(t)$&nbsp; ist gegenüber&nbsp; $f_{\rm T} = f_{50}$&nbsp; unverändert.
+
+ The magnitude function&nbsp; $a(t)$&nbsp; is unchanged compared to&nbsp; $f_{\rm T} = f_{50}$&nbsp;.
- Die Phasenfunktion&nbsp; $\phi (t)$&nbsp; ist gegenüber&nbsp; $f_{\rm T} = f_{50}$&nbsp; unverändert.
+
- The phase function&nbsp; $\phi (t)$&nbsp; is unchanged compared to&nbsp; $f_{\rm T} = f_{50}$&nbsp;.
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
[[File:P_ID766__Sig_A_4_6_a.png|250px|right|frame|Ortskurve für OSB]]
+
[[File:P_ID766__Sig_A_4_6_a.png|250px|right|frame|Locality curve for <br>Upper Sideband Modulation]]
'''(1)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>:
+
'''(1)'''&nbsp; The <u>proposed solution 2</u> is correct:
*Das Spektrum des äquivalenten TP–Signals lautet mit der Trägerfrequenz&nbsp; $f_{\rm T} = f_{50} = 50 \ \text{kHz}$:
+
*The spectrum of the equivalent low-pass signal  with carrier frequency&nbsp; $f_{\rm T} = f_{50} = 50 \ \text{kHz}$:
 
:$$S_{\rm TP}(f ) = S_{\rm +}(f+ f_{\rm 50}) = 1 \cdot \delta (f)-
 
:$$S_{\rm TP}(f ) = S_{\rm +}(f+ f_{\rm 50}) = 1 \cdot \delta (f)-
 
{\rm j} \cdot \delta (f - f_{\rm 10}) .$$
 
{\rm j} \cdot \delta (f - f_{\rm 10}) .$$
*Damit ergibt sich für das dazugehörige Zeitsignal:
+
*This gives for the associated time signal:
 
:$$s_{\rm TP}(t) = {\rm 1 } - {\rm j} \cdot {\rm e}^{{\rm
 
:$$s_{\rm TP}(t) = {\rm 1 } - {\rm j} \cdot {\rm e}^{{\rm
 
j}\hspace{0.05cm} \omega_{\rm 10} \hspace{0.05cm} t }.$$
 
j}\hspace{0.05cm} \omega_{\rm 10} \hspace{0.05cm} t }.$$
*Ausgehend vom Punkt&nbsp; $(1, –{\rm j})$&nbsp; verläuft&nbsp; $s_{\rm TP}(t)$&nbsp; auf einem Kreis mit  Mittelpunkt&nbsp; $(1, 0)$&nbsp; und Radius&nbsp; $1$.  
+
*Starting from the point&nbsp; $(1, –{\rm j})$ &nbsp; &rArr; &nbsp; $s_{\rm TP}(t)$&nbsp; runs on a circle with centre&nbsp; $(1, 0)$&nbsp; and radius&nbsp; $1$.  
*Die Periodendauer ist gleich dem Kehrwert der Frequenz: &nbsp; $T_0 = 1/f_{10} = 100 \ &micro; \text{s}$ &nbsp;&nbsp; ⇒ &nbsp;&nbsp; <u>Antwort 2</u>.
+
*The period duration is equal to the reciprocal of the frequency: &nbsp; $T_0 = 1/f_{10} = 100 \ &micro; \text{s}$.
  
  
  
'''(2)'''&nbsp; Spaltet man obige Gleichung nach Real- und Imaginäranteil auf, so erhält man:
+
'''(2)'''&nbsp; Splitting the above equation into real and imaginary parts, we get:
 
   
 
   
 
:$$s_{\rm TP}(t) = {\rm 1 } + \sin({ \omega_{\rm 10} \hspace{0.05cm} t })
 
:$$s_{\rm TP}(t) = {\rm 1 } + \sin({ \omega_{\rm 10} \hspace{0.05cm} t })
 
-{\rm j}\cdot \cos({ \omega_{\rm 10} \hspace{0.05cm} t }).$$
 
-{\rm j}\cdot \cos({ \omega_{\rm 10} \hspace{0.05cm} t }).$$
  
*Dies führt zur Betragsfunktion
+
*This leads to the magnitude function
 
   
 
   
 
:$$a(t)=  |s_{\rm TP}(t)|=\sqrt{{\rm Re}\left[s_{\rm
 
:$$a(t)=  |s_{\rm TP}(t)|=\sqrt{{\rm Re}\left[s_{\rm
Line 90: Line 89:
 
  = \sqrt{2 \cdot ( 1 +  \sin(\omega_{\rm 10}\hspace{0.05cm} t))}.$$
 
  = \sqrt{2 \cdot ( 1 +  \sin(\omega_{\rm 10}\hspace{0.05cm} t))}.$$
  
*Für den Minimalwert erhält man unter Berücksichtigung von&nbsp; $\sin(\omega_{10} \cdot t) \geq -1$&nbsp;  &nbsp;&nbsp; ⇒ &nbsp;&nbsp; $a_{\text{min}} \; \underline{= 0}$.  
+
*For the minimum value, considering&nbsp; $\sin(\omega_{10} \cdot t) \geq -1$&nbsp;  &nbsp;&nbsp; ⇒ &nbsp;&nbsp; $a_{\text{min}} \; \underline{= 0}$.  
*Der Maximalwert ergibt sich aus&nbsp; $\sin(\omega_{10} \cdot t \leq 1$ ) &nbsp;&nbsp; ⇒ &nbsp;&nbsp; $a_{\text{max}} \; \underline{= 2}$.  
+
*The maximum value is obtained from&nbsp; $\sin(\omega_{10} \cdot t \leq 1$ ) &nbsp;&nbsp; ⇒ &nbsp;&nbsp; $a_{\text{max}} \; \underline{= 2}$.  
*Bei&nbsp; $t = 0$&nbsp; ist der Betrag gleich&nbsp; $a_0 = \sqrt{2 }\; \underline{\approx  1.414}$.
+
*At&nbsp; $t = 0$&nbsp;, the magnitude is equal to&nbsp; $a_0 = \sqrt{2 }\; \underline{\approx  1.414}$.
  
  
  
'''(3)'''&nbsp; Entsprechend der allgemeinen Definition gilt:
+
'''(3)'''&nbsp; According to the general definition:
 
   
 
   
 
:$$\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\left[s_{\rm
 
:$$\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\left[s_{\rm
Line 103: Line 102:
 
\sin(\omega_{\rm 10}\hspace{0.05cm} t)}.$$
 
\sin(\omega_{\rm 10}\hspace{0.05cm} t)}.$$
  
*Für&nbsp; $t = 0$&nbsp; ist&nbsp; $\cos( \omega_{10} \cdot t ) = 1$&nbsp; und&nbsp; $\sin( \omega_{10} \cdot t ) = 0$. Daraus folgt:
+
*For&nbsp; $t = 0$&nbsp; &rArr; &nbsp; $\cos( \omega_{10} \cdot t ) = 1$&nbsp; and&nbsp; $\sin( \omega_{10} \cdot t ) = 0$.&nbsp; It follows:
 
   
 
   
 
:$$\phi(t = 0)= {\rm arctan} (-1) \hspace{0.15 cm}\underline{= -45^\circ}.$$
 
:$$\phi(t = 0)= {\rm arctan} (-1) \hspace{0.15 cm}\underline{= -45^\circ}.$$
  
*Dagegen gilt für&nbsp; $t = T_0/4 =25 \ &micro; \text{s}$ :
+
*On the other hand, for&nbsp; $t = T_0/4 =25 \ &micro; \text{s}$:
 
   
 
   
 
:$$\cos(\omega_{\rm 10}\hspace{0.05cm} t) = 0;
 
:$$\cos(\omega_{\rm 10}\hspace{0.05cm} t) = 0;
Line 114: Line 113:
 
\hspace{0.05cm} &micro; s}) \hspace{0.15 cm}\underline{= 0}.$$
 
\hspace{0.05cm} &micro; s}) \hspace{0.15 cm}\underline{= 0}.$$
  
*Die beiden bisher berechneten Winkel kann man auch aus obiger Grafik ablesen.  
+
*The two angles calculated so far can also be read from the graph above.
  
  
Der Phasenwert bei&nbsp; $t =75 \ &micro; \text{s}$&nbsp; muss dagegen durch Grenzübergang bestimmt werden, da hier sowohl der Real- als auch der Imaginärteil Null werden und somit das Argument der arctan–Funktion unbestimmt ist. Man erhält&nbsp; $\phi(t=75 \ &micro; \text{s}) \; \underline{= 0}.$ Dieses Ergebnis soll hier numerisch nachgewiesen werden:  
+
The phase value at&nbsp; $t =75 \ &micro; \text{s}$, on the other hand, must be determined by boundary crossing, since here both the real and imaginary parts become zero and thus the argument of the arctan function is indeterminate.&nbsp; One obtains&nbsp; $\phi(t=75 \ &micro; \text{s}) \; \underline{= 0}.$&nbsp; This result is to be verified numerically here:
*Berechnet man die Phasenfunktion für&nbsp; $t =74 \ {\rm &micro;} \text{s}$, so erhält man mit&nbsp; $\omega_{10} \cdot t = 1.48 \cdot \pi \; \Rightarrow \; 266.4^\circ$:
+
*If one calculates the phase function for&nbsp; $t =74 \ {\rm &micro;} \text{s}$, one obtains with&nbsp; $\omega_{10} \cdot t = 1.48 \cdot \pi \; \Rightarrow \; 266.4^\circ$:
 
   
 
   
 
:$$\phi(t = {\rm 74 \hspace{0.05cm} {\rm &micro;} s})= {\rm arctan}
 
:$$\phi(t = {\rm 74 \hspace{0.05cm} {\rm &micro;} s})= {\rm arctan}
Line 125: Line 124:
 
arctan}(31)\approx 88^\circ.$$
 
arctan}(31)\approx 88^\circ.$$
  
*Entsprechend gilt für&nbsp; $t =76 \ {\rm &micro;} \text{s}$&nbsp; mit&nbsp; $\omega_{10} \cdot t = 1.52 \cdot \pi \; \Rightarrow \; 273.6^\circ$ :
+
*Accordingly, for&nbsp; $t =76 \ {\rm &micro;} \text{s}$&nbsp; with&nbsp; $\omega_{10} \cdot t = 1.52 \cdot \pi \; \Rightarrow \; 273.6^\circ$ :
 
   
 
   
 
:$$\phi(t = {\rm 76 \hspace{0.05cm} {\rm &micro;} s})= {\rm arctan}
 
:$$\phi(t = {\rm 76 \hspace{0.05cm} {\rm &micro;} s})= {\rm arctan}
Line 131: Line 130:
 
\approx {\rm arctan}(-31)\approx -88^\circ.$$
 
\approx {\rm arctan}(-31)\approx -88^\circ.$$
  
*Die Zahlenwerte lassen vermuten, dass die Grenzwerte für&nbsp; $t \; \rightarrow \; 75 \ {\rm &micro;} \text{s}$&nbsp; sich zu&nbsp; $\pm 90^\circ$&nbsp; ergeben, je nachdem, ob man sich diesem Wert von oben oder unten nähert.  
+
*The numerical values suggest that the limit values for&nbsp; $t \; \rightarrow \; 75 \ {\rm &micro;} \text{s}$&nbsp; result in&nbsp; $\pm 90^\circ$&nbsp; depending on whether this value is approached from above or below.  
*Der Phasenwert bei exakt&nbsp; $t =75 \ {\rm &micro;} \text{s}$&nbsp; ist gleich dem Mittelwert zwischen rechts- und linksseitigem Grenzwert, also tatsächlich Null.
+
*The phase value at exactly&nbsp; $t =75 \ {\rm &micro;} \text{s}$&nbsp; is equal to the mean value between the right-hand and left-hand limit values, i.e. actually zero.
  
  
[[File:P_ID767__Sig_A_4_6_d.png|250px|right|frame|Ortskurve für USB]]
+
[[File:P_ID767__Sig_A_4_6_d.png|250px|right|frame|Locality curve for <br>Lower Sideband Modulation]]
'''(4)'''&nbsp; Mit der Trägerfrequenz $f_{\rm T} = f_{60} = 60 \ \text{ kHz}$&nbsp; lauten die Gleichungen für Zeit– und Frequenzbereich:
+
'''(4)'''&nbsp; <u>The first and third suggested solutions</u> are  correct:
 +
*With the carrier frequency $f_{\rm T} = f_{60} = 60 \ \text{ kHz}$&nbsp; the equations for frequency and time domain are:
 
   
 
   
 
:$$S_{\rm TP}(f ) = S_{\rm +}(f+ f_{\rm 60}) = -{\rm j} \cdot \delta
 
:$$S_{\rm TP}(f ) = S_{\rm +}(f+ f_{\rm 60}) = -{\rm j} \cdot \delta
Line 144: Line 144:
 
j}\hspace{0.05cm} \omega_{\rm 10} \hspace{0.05cm} t }.$$
 
j}\hspace{0.05cm} \omega_{\rm 10} \hspace{0.05cm} t }.$$
 
   
 
   
In der Grafik ist&nbsp; $s_{\rm TP}(t)$&nbsp; dargestellt. Man erkennt:
+
In the graph,&nbsp; $s_{\rm TP}(t)$&nbsp; is shown. It can be seen:
*Die Ortskurve ist wiederum ein Kreis mit Radius&nbsp; $1$, aber nun mit Mittelpunkt&nbsp; $(0, –{\rm j})$.
+
*The locality curve is again a circle with radius&nbsp; $1$, but now with centre&nbsp; $(0, –{\rm j})$.
*Es gilt auch hier&nbsp; $s_{\rm TP}(t = 0) = 1 - {\rm j}$.
+
*Here, too:&nbsp; $s_{\rm TP}(t = 0) = 1 - {\rm j}$.
*Man bewegt sich nun auf der Ortskurve im Uhrzeigersinn.
+
*You now move clockwise on the locality curve.
*Die Periodendauer beträgt weiterhin&nbsp; $T_0 = 1/f_{10} = 100 \ &micro; \text{s}$.
+
*The period continues to be&nbsp; $T_0 = 1/f_{10} = 100 \ &micro; \text{s}$.
*Die Ortskurve ist gegenüber der Teilaufgabe&nbsp; '''(1)'''&nbsp; nun&nbsp; um $90^\circ$&nbsp; in der komplexen Ebene gedreht.  
+
*The locality  curve is now rotated by $90^\circ$&nbsp; in the complex plane compared to sub-task&nbsp; '''(1)'''.
*Für alle Zeiten ergeben sich die gleichen Zeigerlängen wie für&nbsp; $f_{\rm T} = f_{50}$. Der Betrag bleibt gleich.
+
*For all times, the same pointer lengths result as for&nbsp; $f_{\rm T} = f_{50}$.&nbsp; The magnitude remains the same.
*Die Phasenfunktion&nbsp; $\phi(t)$&nbsp; liefert nun Werte zwischen&nbsp; $-\pi$&nbsp; und Null, während die in der Teilaufgabe&nbsp; '''(3)'''&nbsp; berechnete Phasenfunktion Werte zwischen&nbsp; $-\pi/2$&nbsp; und&nbsp; $+\pi /2$&nbsp; angenommen hat. Es gilt für alle Zeiten&nbsp; $t$:
+
*The phase function&nbsp; $\phi(t)$&nbsp; now yields values between&nbsp; $-\pi$&nbsp; and zero, while the phase function calculated in subtask&nbsp; '''(3)'''&nbsp; has assumed values between&nbsp; $\pm \pi/2$.&nbsp;  
+
*It is valid for all times&nbsp; $t$: &nbsp; &nbsp; $\phi_{\rm subtask \ (4)}= -(\phi_{\rm subtask \ (3)} + 90^\circ).$
:$$\phi_{\rm Teilaufgabe \ (4)}= -(\phi_{\rm Teilaufgabe \ (3)} + 90^\circ).$$
+
 
  
Richtig sind somit der <u>erste und der dritte Lösungsvorschlag</u>.
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Exercises for Signal Representation|^4.3 Equivalent Low Pass Signal and Its Spectral Function^]]
+
[[Category:Signal Representation: Exercises|^4.3 Equivalent LP Signal and its Spectral Function^]]

Latest revision as of 15:01, 24 May 2021

Spectrum of the analytical signal

We consider the analytical signal  $s_+(t)$  with the spectral function

$$S_{\rm +}(f) = 1 \cdot \delta (f - f_{\rm 50})- {\rm j} \cdot \delta (f - f_{\rm 60}) .$$

Here  $f_{50}$  and  $f_{60}$  are abbreviations for the frequencies  $50 \ \rm kHz$  and  $60 \ \rm kHz$ respectively.

In this task, the course of the equivalent low-pass signal  $s_{\rm TP}(t)$  is computed.  This course is also referred to as the  "Locality Curve"  in this tutorial.

  • In subtasks  (1)  to  (3), we assume that the signal  $s(t)$  is produced by a single-sideband amplitude modulation of the sinusoidal source signal of frequency  $f_{\rm N} = 10 \ \text{ kHz}$  with a cosinusoidal carrier at  $f_{\rm T} = f_{50}$, whereby only the upper sideband is transmitted   ⇒   $\text{Upper Sideband Modulation}$.
  • In contrast, subtask  (4)  assumes the carrier frequency  $f_{\rm T} = f_{60}$ . This assumption presupposes that  $\text{Lower Sideband Modulation}$  has taken place.




Hints:


Questions

1

Give the equivalent low-pass signal  $s_{\rm TP}(t)$  for the carrier frequency  $f_{\rm T} = 50 \ \text{ kHz}$.  Which of the following statements are true?

The locality curve describes an ellipse.
The locality curve describes a circle.
The localitycurve describes an arc.

2

Calculate the magnitude function  $a(t) = |s_{\rm TP}(t)|$.  What is the value of  $a_0$  at  $t = 0$  and the minimum and maximum values of the magnitude?

$a_{\text{min}}\ = \ $

$a_{\text{max}}\ = \ $

$a_0\ = \ $

3

Calculate the phase function  $\phi(t)$.  What are the phase values at  $t = 0$  and  $t=25 \ {\rm µ} \text{s}$?
Interpret  $\phi (t)$ in the range around  $t=75 \ {\rm µ} \text{s}$.

$\phi(t=0 \ {\rm µ} \text{s})\ = \ $

 $\text{deg}$
$\phi(t=25 \ {\rm µ} \text{s})\ = \ $

 $\text{deg}$
$\phi(t=75 \ {\rm µ} \text{s})\ = \ $

 $\text{deg}$

4

Give the equivalent low-pass signal  $s_{\rm TP}(t)$  for  $f_{\rm T} = 60 \ \text{kHz} = f_{60}$.  Which of the following statements are true?

The locality curve is a circle with radius  $1$  around the centre  $(0, –{\rm j})$ .
Now  $s_{\rm TP}(t = 0) = 1 + {\rm j}$  applies.
The magnitude function  $a(t)$  is unchanged compared to  $f_{\rm T} = f_{50}$ .
The phase function  $\phi (t)$  is unchanged compared to  $f_{\rm T} = f_{50}$ .


Solution

Locality curve for
Upper Sideband Modulation

(1)  The proposed solution 2 is correct:

  • The spectrum of the equivalent low-pass signal with carrier frequency  $f_{\rm T} = f_{50} = 50 \ \text{kHz}$:
$$S_{\rm TP}(f ) = S_{\rm +}(f+ f_{\rm 50}) = 1 \cdot \delta (f)- {\rm j} \cdot \delta (f - f_{\rm 10}) .$$
  • This gives for the associated time signal:
$$s_{\rm TP}(t) = {\rm 1 } - {\rm j} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 10} \hspace{0.05cm} t }.$$
  • Starting from the point  $(1, –{\rm j})$   ⇒   $s_{\rm TP}(t)$  runs on a circle with centre  $(1, 0)$  and radius  $1$.
  • The period duration is equal to the reciprocal of the frequency:   $T_0 = 1/f_{10} = 100 \ µ \text{s}$.


(2)  Splitting the above equation into real and imaginary parts, we get:

$$s_{\rm TP}(t) = {\rm 1 } + \sin({ \omega_{\rm 10} \hspace{0.05cm} t }) -{\rm j}\cdot \cos({ \omega_{\rm 10} \hspace{0.05cm} t }).$$
  • This leads to the magnitude function
$$a(t)= |s_{\rm TP}(t)|=\sqrt{{\rm Re}\left[s_{\rm TP}(t)\right]^2 + {\rm Im}\left[s_{\rm TP}(t)\right]^2 }= \sqrt{1 + 2 \sin(\omega_{\rm 10}\hspace{0.05cm} t)+ \sin^2(\omega_{\rm 10}\hspace{0.05cm} t)+ \cos^2(\omega_{\rm 10}\hspace{0.05cm} t)} = \sqrt{2 \cdot ( 1 + \sin(\omega_{\rm 10}\hspace{0.05cm} t))}.$$
  • For the minimum value, considering  $\sin(\omega_{10} \cdot t) \geq -1$     ⇒    $a_{\text{min}} \; \underline{= 0}$.
  • The maximum value is obtained from  $\sin(\omega_{10} \cdot t \leq 1$ )    ⇒    $a_{\text{max}} \; \underline{= 2}$.
  • At  $t = 0$ , the magnitude is equal to  $a_0 = \sqrt{2 }\; \underline{\approx 1.414}$.


(3)  According to the general definition:

$$\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\left[s_{\rm TP}(t)\right]}{{\rm Re}\left[s_{\rm TP}(t)\right]}= {\rm arctan} \hspace{0.1cm}\frac{-\cos(\omega_{\rm 10}\hspace{0.05cm} t)}{1 + \sin(\omega_{\rm 10}\hspace{0.05cm} t)}.$$
  • For  $t = 0$  ⇒   $\cos( \omega_{10} \cdot t ) = 1$  and  $\sin( \omega_{10} \cdot t ) = 0$.  It follows:
$$\phi(t = 0)= {\rm arctan} (-1) \hspace{0.15 cm}\underline{= -45^\circ}.$$
  • On the other hand, for  $t = T_0/4 =25 \ µ \text{s}$:
$$\cos(\omega_{\rm 10}\hspace{0.05cm} t) = 0; \hspace{0.2cm}\sin(\omega_{\rm 10}\hspace{0.05cm} t) = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\phi(t = {\rm 25 \hspace{0.05cm} µ s}) \hspace{0.15 cm}\underline{= 0}.$$
  • The two angles calculated so far can also be read from the graph above.


The phase value at  $t =75 \ µ \text{s}$, on the other hand, must be determined by boundary crossing, since here both the real and imaginary parts become zero and thus the argument of the arctan function is indeterminate.  One obtains  $\phi(t=75 \ µ \text{s}) \; \underline{= 0}.$  This result is to be verified numerically here:

  • If one calculates the phase function for  $t =74 \ {\rm µ} \text{s}$, one obtains with  $\omega_{10} \cdot t = 1.48 \cdot \pi \; \Rightarrow \; 266.4^\circ$:
$$\phi(t = {\rm 74 \hspace{0.05cm} {\rm µ} s})= {\rm arctan} \hspace{0.1cm}\frac{\cos(86.4^\circ)}{1 - \sin(86.4^\circ)} = {\rm arctan} \hspace{0.1cm}\frac{0.062}{1 - 0.998} \approx {\rm arctan}(31)\approx 88^\circ.$$
  • Accordingly, for  $t =76 \ {\rm µ} \text{s}$  with  $\omega_{10} \cdot t = 1.52 \cdot \pi \; \Rightarrow \; 273.6^\circ$ :
$$\phi(t = {\rm 76 \hspace{0.05cm} {\rm µ} s})= {\rm arctan} \hspace{0.1cm}\frac{-\cos(86.4^\circ)}{1 - \sin(86.4^\circ)} \approx {\rm arctan}(-31)\approx -88^\circ.$$
  • The numerical values suggest that the limit values for  $t \; \rightarrow \; 75 \ {\rm µ} \text{s}$  result in  $\pm 90^\circ$  depending on whether this value is approached from above or below.
  • The phase value at exactly  $t =75 \ {\rm µ} \text{s}$  is equal to the mean value between the right-hand and left-hand limit values, i.e. actually zero.


Locality curve for
Lower Sideband Modulation

(4)  The first and third suggested solutions are correct:

  • With the carrier frequency $f_{\rm T} = f_{60} = 60 \ \text{ kHz}$  the equations for frequency and time domain are:
$$S_{\rm TP}(f ) = S_{\rm +}(f+ f_{\rm 60}) = -{\rm j} \cdot \delta (f) + \delta (f + f_{\rm 10}) ;$$
$$s_{\rm TP}(t) = - {\rm j} + 1 \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \omega_{\rm 10} \hspace{0.05cm} t }.$$

In the graph,  $s_{\rm TP}(t)$  is shown. It can be seen:

  • The locality curve is again a circle with radius  $1$, but now with centre  $(0, –{\rm j})$.
  • Here, too:  $s_{\rm TP}(t = 0) = 1 - {\rm j}$.
  • You now move clockwise on the locality curve.
  • The period continues to be  $T_0 = 1/f_{10} = 100 \ µ \text{s}$.
  • The locality curve is now rotated by $90^\circ$  in the complex plane compared to sub-task  (1).
  • For all times, the same pointer lengths result as for  $f_{\rm T} = f_{50}$.  The magnitude remains the same.
  • The phase function  $\phi(t)$  now yields values between  $-\pi$  and zero, while the phase function calculated in subtask  (3)  has assumed values between  $\pm \pi/2$. 
  • It is valid for all times  $t$:     $\phi_{\rm subtask \ (4)}= -(\phi_{\rm subtask \ (3)} + 90^\circ).$