Difference between revisions of "Aufgaben:Exercise 4.6: OVSF Codes"

From LNTwww
 
(17 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/Nachrichtentechnische Aspekte von UMTS
+
{{quiz-Header|Buchseite=Examples_of_Communication_Systems/Telecommunications_Aspects_of_UMTS
  
  
 
}}
 
}}
  
[[File:P_ID1975__Mod_Z_5_4.png|right|frame|Baumstruktur zur Konstruktion eines OVSF–Codes]]
+
[[File:EN_Bei_A_4_6a.png|right|frame|Tree structure for the construction <br>of an OVSF code]]
Die Spreizcodes für UMTS sollen
+
The spreading codes for UMTS should
*alle zueinander orthogonal sein, um gegenseitige Beeinflussung der Teilnehmer zu vermeiden,
+
*all be orthogonal to each other to avoid mutual interference between subscribers,
*möglichst flexibel sein, um unterschiedliche $J \Rightarrow$ Spreizfaktoren zu realisieren.
+
*be as flexible as possible in order to realize different spreading factors&nbsp; $J$&nbsp;.
  
  
Ein Beispiel hierfür sind die sog. '''Codes mit variablem Spreizfaktor''' (englisch: ''Orthogonal Variable Spreading Factor'', OVSF), die Spreizcodes der Längen von $J = 4$ bis $J = 512$ bereitstellen. Diese können, wie in der Grafik zu sehen ist, mit Hilfe eines Codebaums erstellt werden. Dabei entstehen bei jeder Verzweigung aus einem Code $C$ zwei neue Codes
+
An example of this are the so-called&nbsp; '''Orthogonal Variable Spreading Factor'''&nbsp; ('''OVSF''') codes, which provide spreading codes of lengths from&nbsp; $J = 4$&nbsp; to&nbsp; $J = 512$&nbsp;. These can be created using a code tree, as shown in the diagram. Thereby, at each branch from one code&nbsp; $\mathcal{C}$&nbsp; two new codes are created.
*$(+C +C)$,
+
*$(+\mathcal{C} \ +\hspace{-0.05cm}\mathcal{C})$,
*$(+C –C)$.
+
*$(+\mathcal{C}\ -\hspace{-0.05cm}\mathcal{C})$.
  
  
Die Grafik verdeutlicht das hier angegebene Prinzip am Beispiel $J = 4$. Nummeriert man die Spreizfolgen von $0$ bis $J –1$ durch, so ergeben sich hier die Spreizfolgen
+
The diagram illustrates the principle given here by the example&nbsp; $J = 4$.  
 +
 
 +
If we number the spreading sequences from&nbsp; $0$&nbsp; to&nbsp; $J -1$&nbsp; we get here the spreading sequences
 
:$$ \langle c_\nu^{(0)}\rangle \ = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$  
 
:$$ \langle c_\nu^{(0)}\rangle \ = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$  
 
:$$\langle c_\nu^{(2)}\rangle \ = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$
 
:$$\langle c_\nu^{(2)}\rangle \ = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$
Nach dieser Nomenklatur gibt es für den Spreizfaktor $J = 8$ die Spreizfolgen $\langle c_{\nu}^{(0)} \rangle, ... ,\langle c_{\nu}^{(7)} \rangle$.
+
According to this nomenclature, for the spreading factor&nbsp; $J = 8$&nbsp; there are the spreading sequences&nbsp; $\langle c_{\nu}^{(0)} \rangle, \ \text{...} \ ,\langle c_{\nu}^{(7)} \rangle$.
 +
 
 +
Note that no predecessor and successor of a code may be used by other participants.
 +
*So, in the example, four spreading codes with spreading factor&nbsp; $J = 4$&nbsp; could be used, or.
 +
*the three codes highlighted in yellow - once with&nbsp; $J = 2$&nbsp; and twice with&nbsp; $J = 4$.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
Hints:
 +
*This exercise belongs to the chapter&nbsp; [[Examples_of_Communication_Systems/Telecommunications_Aspects_of_UMTS|"Telecommunications Aspects of UMTS"]].
 +
*Reference is made in particular to the page&nbsp; [[Examples_of_Communication_Systems/Telecommunications_Aspects_of_UMTS#Spreading_codes_and_scrambling_with_UMTS|"Spreading codes and scrambling with UMTS"]].
 +
  
Anzumerken ist, dass kein Vorgänger und Nachfolger eines Codes von anderen Teilnehmern benutzt werden darf. Im Beispiel könnten also vier Spreizcodes mit Spreizfaktor $J = 4$ verwendet werden oder die drei gelb hinterlegten Codes – einmal mit $J = 2$ und zweimal mit $J = 4$.
 
  
  
''Hinweis:''
 
  
Die Aufgabe bezieht sich auf [[Beispiele_von_Nachrichtensystemen/Nachrichtentechnische_Aspekte_von_UMTS#Spreizcodes_und_Verw.C3.BCrfelung_in_UMTS|Spreizcodes und Verwürfelung in UMTS]] von [[Beispiele_von_Nachrichtensystemen/Nachrichtentechnische_Aspekte_von_UMTS|Nachrichtentechnische Aspekte von UMTS
+
===Questions===
]].
 
===Fragebogen===
 
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
 
 +
{Construct the tree diagram for&nbsp; $J = 8$. What are the resulting OVSF codes?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
+ $\langle c_{\nu}^{(1)} \rangle = +1 +1 +1 -1 -1 -1$,
+ Richtig
+
- $\langle c_{\nu}^{(3)} \rangle = +1 +1 -1 +1 -1 -1$,
 +
+ $\langle c_{\nu}^{(5)} \rangle = +1 -1 +1 -1 +1 +1$,
 +
+ $\langle c_{\nu}^{(7)} \rangle = +1 -1 -1 +1 +1 -1$.
  
 +
{How many UMTS subscribers can be served with&nbsp; $J = 8$&nbsp; maximum?
 +
|type="{}"}
 +
$K_{\rm max} \ = \ ${ 8 3% }
  
{Input-Box Frage
+
{How many subscribers can be served if three of them are to use a spreading code with&nbsp; $J = 4$&nbsp;?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$K \ = \ $ { 5 3% }
 
 
  
 +
{Assume a tree structure for&nbsp; $J = 32$&nbsp;. Is the following assignment feasible: <br>Twice&nbsp; $J = 4$, once&nbsp; $J = 8$, twice&nbsp; $J = 16$,&nbsp; eight times $J = 32$&nbsp;?
 +
|type="()"}
 +
+ Yes.
 +
- No.
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp;
+
[[File:P_ID1979__Bei_A_4_6a.png|right|frame|OVSF tree structure for&nbsp; $J = 8$]]
'''(2)'''&nbsp;
+
'''(1)'''&nbsp; The graph shows the OVSF tree structure for&nbsp; $J = 8$&nbsp; user.
'''(3)'''&nbsp;
+
*From this it can be seen that <u>proposed solutions 1, 3, and 4</u> are true, but not the second one.
'''(4)'''&nbsp;
+
 
'''(5)'''&nbsp;
+
 
'''(6)'''&nbsp;
+
 
'''(7)'''&nbsp;
+
'''(2)'''&nbsp; If each user is assigned a spreading code with&nbsp; $J = 8$&nbsp; then&nbsp; $\underline{K_{\rm max} = 8}$&nbsp; subscribers can be served.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; If three subscribers are served with&nbsp; $J = 4$&nbsp; only two subscribers can be served by a spreading sequence with&nbsp; $J = 8$&nbsp; (see exemplary yellow background in above diagram) &nbsp; &rArr; &nbsp; $\underline{K = 5}$.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; We denote by.
 +
*$K_{4} = 2$&nbsp; the number of spreading sequences with&nbsp; $J = 4$,
 +
*$K_{8} = 1$&nbsp; the number of spreading sequences with&nbsp; $J = 8$,
 +
*$K_{16} = 2$&nbsp; the number of spreading sequences with&nbsp; $J = 16$,
 +
*$K_{32} = 8$&nbsp; the number of spreading sequences with&nbsp; $J = 32$.
 +
 
 +
 
 +
Then the following condition must be satisfied:
 +
:$$ K_4 \cdot \frac{32}{4} + K_8 \cdot \frac{32}{8} +K_{16} \cdot \frac{32}{16} +K_{32} \cdot \frac{32}{32} \le 32 \hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} K_4 \cdot8 + K_8 \cdot 4 +K_{16} \cdot2 +K_{32} \cdot1 \le 32 \hspace{0.05cm}.$$
 +
*Because&nbsp; $2 \cdot 8 + 1 \cdot 4 + 2 \cdot 2 + 8 = 32$&nbsp; the desired allocation is just allowed &nbsp; &rArr; &nbsp; <u>Answer YES</u>.
 +
*Providing the degree of spread twice&nbsp; $J = 4$&nbsp; blocks, for example, the top half of the tree, after providing one spread with&nbsp; $J = 8$, three of the eight branches remain to be occupied at the&nbsp; $J = 8$ level, and so on.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 60: Line 101:
  
  
[[Category:Aufgaben zu Beispiele von Nachrichtensystemen|^4.3 Nachrichtentechnische Aspekte von UMTS
+
[[Category:Examples of Communication Systems: Exercises|^4.3 Telecommunications Aspects
 
^]]
 
^]]

Latest revision as of 20:45, 2 March 2023

Tree structure for the construction
of an OVSF code

The spreading codes for UMTS should

  • all be orthogonal to each other to avoid mutual interference between subscribers,
  • be as flexible as possible in order to realize different spreading factors  $J$ .


An example of this are the so-called  Orthogonal Variable Spreading Factor  (OVSF) codes, which provide spreading codes of lengths from  $J = 4$  to  $J = 512$ . These can be created using a code tree, as shown in the diagram. Thereby, at each branch from one code  $\mathcal{C}$  two new codes are created.

  • $(+\mathcal{C} \ +\hspace{-0.05cm}\mathcal{C})$,
  • $(+\mathcal{C}\ -\hspace{-0.05cm}\mathcal{C})$.


The diagram illustrates the principle given here by the example  $J = 4$.

If we number the spreading sequences from  $0$  to  $J -1$  we get here the spreading sequences

$$ \langle c_\nu^{(0)}\rangle \ = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$
$$\langle c_\nu^{(2)}\rangle \ = \ {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$

According to this nomenclature, for the spreading factor  $J = 8$  there are the spreading sequences  $\langle c_{\nu}^{(0)} \rangle, \ \text{...} \ ,\langle c_{\nu}^{(7)} \rangle$.

Note that no predecessor and successor of a code may be used by other participants.

  • So, in the example, four spreading codes with spreading factor  $J = 4$  could be used, or.
  • the three codes highlighted in yellow - once with  $J = 2$  and twice with  $J = 4$.




Hints:



Questions

1

Construct the tree diagram for  $J = 8$. What are the resulting OVSF codes?

$\langle c_{\nu}^{(1)} \rangle = +1 +1 +1 -1 -1 -1$,
$\langle c_{\nu}^{(3)} \rangle = +1 +1 -1 +1 -1 -1$,
$\langle c_{\nu}^{(5)} \rangle = +1 -1 +1 -1 +1 +1$,
$\langle c_{\nu}^{(7)} \rangle = +1 -1 -1 +1 +1 -1$.

2

How many UMTS subscribers can be served with  $J = 8$  maximum?

$K_{\rm max} \ = \ $

3

How many subscribers can be served if three of them are to use a spreading code with  $J = 4$ ?

$K \ = \ $

4

Assume a tree structure for  $J = 32$ . Is the following assignment feasible:
Twice  $J = 4$, once  $J = 8$, twice  $J = 16$,  eight times $J = 32$ ?

Yes.
No.


Solution

OVSF tree structure for  $J = 8$

(1)  The graph shows the OVSF tree structure for  $J = 8$  user.

  • From this it can be seen that proposed solutions 1, 3, and 4 are true, but not the second one.


(2)  If each user is assigned a spreading code with  $J = 8$  then  $\underline{K_{\rm max} = 8}$  subscribers can be served.


(3)  If three subscribers are served with  $J = 4$  only two subscribers can be served by a spreading sequence with  $J = 8$  (see exemplary yellow background in above diagram)   ⇒   $\underline{K = 5}$.


(4)  We denote by.

  • $K_{4} = 2$  the number of spreading sequences with  $J = 4$,
  • $K_{8} = 1$  the number of spreading sequences with  $J = 8$,
  • $K_{16} = 2$  the number of spreading sequences with  $J = 16$,
  • $K_{32} = 8$  the number of spreading sequences with  $J = 32$.


Then the following condition must be satisfied:

$$ K_4 \cdot \frac{32}{4} + K_8 \cdot \frac{32}{8} +K_{16} \cdot \frac{32}{16} +K_{32} \cdot \frac{32}{32} \le 32 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} K_4 \cdot8 + K_8 \cdot 4 +K_{16} \cdot2 +K_{32} \cdot1 \le 32 \hspace{0.05cm}.$$
  • Because  $2 \cdot 8 + 1 \cdot 4 + 2 \cdot 2 + 8 = 32$  the desired allocation is just allowed   ⇒   Answer YES.
  • Providing the degree of spread twice  $J = 4$  blocks, for example, the top half of the tree, after providing one spread with  $J = 8$, three of the eight branches remain to be occupied at the  $J = 8$ level, and so on.