Difference between revisions of "Aufgaben:Exercise 4.6: Product Code Generation"

From LNTwww
 
(23 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Grundlegendes zu den Produktcodes}}
+
{{quiz-Header|Buchseite=Channel_Coding/The_Basics_of_Product_Codes}}
  
[[File:P_ID3003__KC_A_4_6_v2.png|right|frame|Verwendete Komponentencodes]]
+
[[File:EN_KC_A_4_6.png|right|frame|Used component codes]]
Es soll ein Produktcode (42, 12) generiert werden, der auf folgenden Komponentencodes aufbaut:
+
A  $\rm product\:code \ (42, \ 12)$  shall be generated,  based on the following component codes:
* dem Hammingcode (7, 4, 3) $\Rightarrow C_1$,
+
* the Hamming code  $\rm HC \ (7, \ 4, \ 3)$  ⇒   $\mathcal{C}_1$,
* dem verkürzten Hamming–Code (6, 3, 3) $\Rightarrow C_2$.
 
  
 +
* the truncated Hamming code $\rm HC \ (6, \ 3, \ 3)$   ⇒   $\mathcal{C}_2$.
  
Die entsprechenden Codetabellen sind rechts angegeben, wobei jeweils drei Zeilen unvollständig sind. Diese sollen von Ihnen ergänzt werden.
 
  
Das zu einem Informationsblock $\underline{u}$ gehörige Codewort ergibt sich allgemein entsprechend der Gleichung $\underline{x} = \underline{u} \cdot \mathbf{G}$. Wie auch in der [[Aufgabe Z4.6]] wird hier von folgenden Generatormatrizen ausgegangen:
+
Corresponding code tables are given on the right,  with three rows incomplete in each case.  These are to be completed by you.
 +
 
 +
The code word belonging to an information block  $\underline{u}$  generally results according to the equation 
 +
:$$\underline{x} = \underline{u} \cdot \mathbf{G}.$$
 +
As in  [[Aufgaben:Aufgabe_4.6Z:_Grundlagen_der_Produktcodes|$\text{Exercise 4.6Z}$]],  the following generator matrices are assumed here:
 
:$${ \boldsymbol{\rm G}}_1  
 
:$${ \boldsymbol{\rm G}}_1  
 
=  \begin{pmatrix}
 
=  \begin{pmatrix}
Line 16: Line 19:
 
0 &0 &1 &0 &0 &1 &1 \\
 
0 &0 &1 &0 &0 &1 &1 \\
 
0 &0 &0 &1 &1 &1 &1  
 
0 &0 &0 &1 &1 &1 &1  
\end{pmatrix} \hspace{0.05cm},$$
+
\end{pmatrix} \hspace{0.05cm},\hspace{0.8cm}
:$${ \boldsymbol{\rm G}}_2  
+
{ \boldsymbol{\rm G}}_2  
 
=  \begin{pmatrix}
 
=  \begin{pmatrix}
 
1 &0 &0 &1 &1 &0  \\
 
1 &0 &0 &1 &1 &0  \\
Line 24: Line 27:
 
\end{pmatrix} \hspace{0.05cm}.$$
 
\end{pmatrix} \hspace{0.05cm}.$$
  
In der gesamten Aufgabe gelte für den Informationsblock:
+
Throughout the exercise,  apply to the information block:
 
:$${ \boldsymbol{\rm U}}  
 
:$${ \boldsymbol{\rm U}}  
 
=  \begin{pmatrix}
 
=  \begin{pmatrix}
Line 32: Line 35:
 
\end{pmatrix} \hspace{0.05cm}.$$
 
\end{pmatrix} \hspace{0.05cm}.$$
  
Gesucht sind entsprechend der Nomenklatur auf der [[ersten Theorieseite]]:
+
Searched for according to the nomenclature in section  [[Channel_Coding/The_Basics_of_Product_Codes#Basic_structure_of_a_product_code|"Basic structure of a product code"]]:
* die Parity–Matrix $\mathbf{P}^{(1)}$ bezüglich des horizontalen Codes $C_1$,
+
* the parity-check matrix   $\mathbf{P}^{(1)}$   with respect to the horizontal code  $\mathcal{C}_1$,
* die Parity–Matrix $\mathbf{P}^{(2)}$ bezüglich des vertikalen Codes $C_2$,
+
 
* die Checks–on–Checks–Matrix $\mathbf{P}^{(12)}$.
+
* the parity-check matrix  $\mathbf{P}^{(2)}$  with respect to the vertical code  $\mathcal{C}_2$,
  
 +
* the checks–on–checks matrix  $\mathbf{P}^{(12)}$.
  
''Hinweis:
 
* Die Aufgabe gehört zum Kapitel [[Kanalcodierung/Grundlegendes_zu_den_Produktcodes| Grundlegendes zu den Produktcode]].
 
  
  
  
===Fragebogen===
+
 
 +
<u>Hints:</u>
 +
*This exercise belongs to the chapter&nbsp; [[Channel_Coding/The_Basics_of_Product_Codes|"Basics of Product Code"]].
 +
 
 +
*Reference is also  made to the section&nbsp; [[Channel_Coding/The_Basics_of_Product_Codes#Basic_structure_of_a_product_code|"Basic structure of a product code"]].
 +
 
 +
*The two component codes are also covered in the&nbsp; [[Aufgaben:Aufgabe_4.6Z:_Grundlagen_der_Produktcodes|$\text{Exercise 4.6Z}$]]&nbsp;.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Ergebnisse liefert die Zeilencodierung mit dem (7, 4, 3)&ndash;Code $C_1$?
+
{What are the results of row coding with the&nbsp; $(7, \ 4, \ 3)$ code&nbsp; $\mathcal{C}_1$?
 
|type="[]"}
 
|type="[]"}
+ Erste Zeile: $\underline{u} = (0, \, 1, \, 1, \, 0) \ \Rightarrow \ \underline{x} = (0, \, 1, \, 1, \, 0, \, 1, \, 0, \, 1)$.
+
+ 1. row: &nbsp; $\underline{u} = (0, \, 1, \, 1, \, 0) \ \Rightarrow \ \underline{x} = (0, \, 1, \, 1, \, 0, \, 1, \, 0, \, 1)$.
- Zweite Zeile: $\underline{u} = (0, \, 0, \, 0, \, 0) \ \Rightarrow \ \underline{x} = (1, \, 1, \, 1, \, 1, \, 1, \, 1, \, 1)$.
+
- 2. row: &nbsp; $\underline{u} = (0, \, 0, \, 0, \, 0) \ \Rightarrow \ \underline{x} = (1, \, 1, \, 1, \, 1, \, 1, \, 1, \, 1)$.
+ Dritte Zeile: $\underline{u} = (1, \, 1, \, 1, \, 0) \ \Rightarrow \ \underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, 0)$.
+
+ 3. row: &nbsp; $\underline{u} = (1, \, 1, \, 1, \, 0) \ \Rightarrow \ \underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, 0)$.
  
{Welche Ergebnisse liefert die Spaltencodierung mit dem (6, 3, 3)&ndash;Code $C_2$?
+
{What are the results of column coding with the&nbsp; $(6, \ 3, \ 3)$ code&nbsp; $\mathcal{C}_2$?
 
|type="[]"}
 
|type="[]"}
+ Erste Spalte: $\underline{u} = (0, \, 0, \, 1) \ \Rightarrow \ \underline{x} = (0, \, 0, \, 1, \, 0, \, 1, \, 1)$.
+
+ 1. column: &nbsp; $\underline{u} = (0, \, 0, \, 1) \ \Rightarrow \ \underline{x} = (0, \, 0, \, 1, \, 0, \, 1, \, 1)$.
+ Zweite Spalte: $\underline{u} = (1, \, 0, \, 1) \ \Rightarrow \ \underline{x} = (1, \, 0, \, 1, \, 1, \, 0, \, 1)$.
+
+ 2. column: &nbsp; $\underline{u} = (1, \, 0, \, 1) \ \Rightarrow \ \underline{x} = (1, \, 0, \, 1, \, 1, \, 0, \, 1)$.
- Dritte Spalte: $\underline{u} = (1, \, 0, \, 1) \ \Rightarrow \ \underline{x} = (1, \, 1, \, 0, \, 0, \, 1, \, 1)$.
+
- 3. column: &nbsp; $\underline{u} = (1, \, 0, \, 1) \ \Rightarrow \ \underline{x} = (1, \, 1, \, 0, \, 0, \, 1, \, 1)$.
+ Vierte Spalte: $\underline{u} = (0, \, 0, \, 0) \ \Rightarrow \ \underline{x} = (0, \, 0, \, 0, \, 0, \,0, \, 0)$.
+
+ 4. column: &nbsp; $\underline{u} = (0, \, 0, \, 0) \ \Rightarrow \ \underline{x} = (0, \, 0, \, 0, \, 0, \,0, \, 0)$.
  
{Welche Aussagen gelten für die Checks&ndash;on&ndash;Checks&ndash;Matrix?
+
{What statements apply to the checks&ndash;on&ndash;checks matrix?
 
|type="[]"}
 
|type="[]"}
+ Die erste Zeile lautet $(1, \, 0, \, 1)$ und die erste Spalte $(1, \, 1, \, 0)$.
+
+ The first row is&nbsp; $(1, \, 0, \, 1)$&nbsp; and the first column is&nbsp; $(1, \, 1, \, 0)$.
+ Die zweite Zeile lautet $(1, \, 0, \, 1)$ und die zweite Spalte $(0, \, 0, \, 0)$.
+
+ The second row is&nbsp; $(1, \, 0, \, 1)$&nbsp; and the second column is&nbsp; $(0, \, 0, \, 0)$.
- Die dritte Zeile lautet $(0, \, 0, \, 0)$ und die dritte Spalte $(0, \, 0, \, 0)$.
+
- The third row is&nbsp; $(0, \, 0, \, 0)$&nbsp; and the third column is&nbsp; $(0, \, 0, \, 0)$.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 3</u>:
+
'''(1)'''&nbsp; Correct are the&nbsp; <u>proposed solutions 1 and 3</u>:&nbsp; In general:&nbsp;
 
+
:$$\underline{x} = \underline{u} \cdot \mathbf{G}.$$
Allgemein gilt $\underline{x} = \underline{u} \cdot \mathbf{G}$. Daraus folgt für
+
From this follows for
* den ersten Zeilenvektor:
+
:* the first row vector:
 
:$$\begin{pmatrix}
 
:$$\begin{pmatrix}
 
0 &1 &1 &0   
 
0 &1 &1 &0   
Line 84: Line 98:
 
\end{pmatrix} \hspace{0.05cm},$$
 
\end{pmatrix} \hspace{0.05cm},$$
  
* den zweiten Zeilenvektor:
+
:* the second row vector:
 
:$$\begin{pmatrix}
 
:$$\begin{pmatrix}
 
0 &0 &0 &0   
 
0 &0 &0 &0   
Line 98: Line 112:
 
\end{pmatrix} \hspace{0.05cm},$$
 
\end{pmatrix} \hspace{0.05cm},$$
  
* den dritten Zeilenvektor
+
:* the third row vector:
 
:$$\begin{pmatrix}
 
:$$\begin{pmatrix}
 
1 &1 &1 &0   
 
1 &1 &1 &0   
Line 113: Line 127:
  
  
'''(2)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1, 2 und 4</u>:
+
'''(2)'''&nbsp; Correct are the&nbsp; <u>proposed solutions 1, 2 and 4</u>:
 
:$$\begin{pmatrix}
 
:$$\begin{pmatrix}
 
0 &0 &1   
 
0 &0 &1   
Line 137: Line 151:
 
\end{pmatrix} \hspace{0.05cm}.$$
 
\end{pmatrix} \hspace{0.05cm}.$$
  
Zu dieser Teilaufgabe ist weiter anzumerken:
+
To this subtask is to be noted further:
* Die angegebene erste Spalte ist schon allein deshalb richtig, weil sie mit einer Zeile (der dritten) der Generatormatrix $\mathbf{G}_2$ übereinstimmt.
+
# The given first column is correct if only because it coincides with a row&nbsp; $($the third$)$&nbsp; of the generator matrix $\mathbf{G}_2$.
* Die dritte Spalte des 2D&ndash;Codewortes müsste mit der zweiten Spalte identisch sein, da jeweils vom gleichen Codewort $(1, \, 0, \, 1)$ ausgegangen wird.
+
# The third column of the two-dimensional code word should be identical to the second column,&nbsp; since the same code word&nbsp; $(1, \, 0, \, 1)$&nbsp; is assumed.
* Der angegebene Vektor $(1, \, 1, \, 0, \, 0, \, 1, \, 1)$ kann aber schon allein deshalb nicht richtig sein, da $C_2$ ebenso wie $C_1$ ein systematischer Code ist.
+
# However,&nbsp; the given vector&nbsp; $(1, \, 1, \, 0, \, 0, \, 1, \, 1)$&nbsp; cannot be correct if only because&nbsp; $\mathcal{C}_2$&nbsp; is a systematic code just like&nbsp; $\mathcal{C}_1$.
* Auch der verkürzte (6, 3, 3)&ndash;Hammingcode $C_2$ ist linear, so dass auch ohne Rechnung die Zuordnung $\underline{u} = (0, \, 0, \, 0) \ \Rightarrow \ \underline{x} = (0, \, 0, \, 0, \, 0, \, 0, \, 0)$ angebbar ist.
+
# Also the truncated&nbsp; $(6, \ 3, \ 3)$&nbsp; Hamming code $C_2$&nbsp; is linear,&nbsp; so that the assignment&nbsp; $\underline{u} = (0, \, 0, \, 0) \ \Rightarrow \ \ \underline{x} = (0, \, 0, \, 0, \, 0)$&nbsp; can be stated without calculation.
 
 
  
'''(3)'''&nbsp; [[File:P_ID3005__KC_A_4_6c_v1.png|right|frame|Vollständige Codetabellen]] Rechts sind die vollständigen Codetabellen des
 
  
* Hammingcodes (7, 4, 3),
+
[[File:EN_KC_A_4_6_c.png|right|frame|Complete code tables]]
* verkürzten Hammingcodes (6, 3, 3)
+
'''(3)'''&nbsp; Given on the right are the complete code tables
  
 +
* of the Hamming code $(7, \ 4, \ 3)$,&nbsp; and
 +
 +
* of the truncated Hamming code $(6, \ 3, \ 3)$.
  
angegeben. Man erkennt daraus (ohne dass das für diese Aufgabe von Interesse ist), dass die hier betrachteten Codes jeweils die Hamming&ndash;Distanz $d_{\rm min} = 3$ aufweisen.
 
  
Die folgende kleine Grafik zeigt das Ergebnis der gesamten Codierung. Unten rechts ist die Checks&ndash;on&ndash;Checks&ndash;Matrix der Dimension $3 &times 3$ zu erkennen.
+
One can see from this&nbsp; $($without it being of interest for this exercise$)$&nbsp; that the codes considered here each have Hamming distance&nbsp; $d_{\rm min} = 3$.
  
[[File:P_ID3012__KC_A_4_6d_v3.png|center|frame|Gesuchter Produktcode]]
+
[[File:P_ID3012__KC_A_4_6d_v3.png|left|frame|Wanted product code]]
 +
<br><br>
 +
*The left graph shows the result of the whole coding.
  
Bezüglich der Teilaufgabe (3) sind nur <u>die Lösungsvorschläge 1 und 2</u> richtig, wobei es Zufall ist, dass hier in der Checks&ndash;on&ndash;Checks&ndash;Matrix zwei Zeilen und zwei Spalten identisch sind.
+
*At the bottom right you can see the checks&ndash;on&ndash;checks matrix of dimension&nbsp; $3 &times 3$.
 +
<br clear=all>
 +
Concerning the subtask&nbsp; '''(3)'''&nbsp; the&nbsp; <u>suggested solutions 1 and 2</u>&nbsp; are correct:
 +
*It is a coincidence that here in the checks&ndash;on&ndash;checks matrix two rows and two columns are identical.
  
Weiter ist anzumerken: Es ist egal, ob man die Zeilen 4 bis 6 der Gesamtmatrix über den Code $C_1$ gewinnt oder die Spalten 5 bis 7 über den Code $C_2$.
+
*It doesn't matter whether rows 4 to 6 of the total matrix are obtained using the code&nbsp; $\mathcal{C}_1$&nbsp; or columns 5 to 7 are obtained using the code&nbsp; $\mathcal{C}_2$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Kanalcodierung|^4.2 Grundlegendes zu den Produktcodes^]]
+
[[Category:Channel Coding: Exercises|^4.2 About the Product Codes^]]

Latest revision as of 18:09, 6 December 2022

Used component codes

A  $\rm product\:code \ (42, \ 12)$  shall be generated,  based on the following component codes:

  • the Hamming code  $\rm HC \ (7, \ 4, \ 3)$  ⇒   $\mathcal{C}_1$,
  • the truncated Hamming code $\rm HC \ (6, \ 3, \ 3)$   ⇒   $\mathcal{C}_2$.


Corresponding code tables are given on the right,  with three rows incomplete in each case.  These are to be completed by you.

The code word belonging to an information block  $\underline{u}$  generally results according to the equation 

$$\underline{x} = \underline{u} \cdot \mathbf{G}.$$

As in  $\text{Exercise 4.6Z}$,  the following generator matrices are assumed here:

$${ \boldsymbol{\rm G}}_1 = \begin{pmatrix} 1 &0 &0 &0 &1 &0 &1 \\ 0 &1 &0 &0 &1 &1 &0 \\ 0 &0 &1 &0 &0 &1 &1 \\ 0 &0 &0 &1 &1 &1 &1 \end{pmatrix} \hspace{0.05cm},\hspace{0.8cm} { \boldsymbol{\rm G}}_2 = \begin{pmatrix} 1 &0 &0 &1 &1 &0 \\ 0 &1 &0 &1 &0 &1 \\ 0 &0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$

Throughout the exercise,  apply to the information block:

$${ \boldsymbol{\rm U}} = \begin{pmatrix} 0 &1 &1 &0 \\ 0 &0 &0 &0 \\ 1 &1 &1 &0 \end{pmatrix} \hspace{0.05cm}.$$

Searched for according to the nomenclature in section  "Basic structure of a product code":

  • the parity-check matrix   $\mathbf{P}^{(1)}$   with respect to the horizontal code  $\mathcal{C}_1$,
  • the parity-check matrix  $\mathbf{P}^{(2)}$  with respect to the vertical code  $\mathcal{C}_2$,
  • the checks–on–checks matrix  $\mathbf{P}^{(12)}$.



Hints:



Questions

1

What are the results of row coding with the  $(7, \ 4, \ 3)$ code  $\mathcal{C}_1$?

1. row:   $\underline{u} = (0, \, 1, \, 1, \, 0) \ \Rightarrow \ \underline{x} = (0, \, 1, \, 1, \, 0, \, 1, \, 0, \, 1)$.
2. row:   $\underline{u} = (0, \, 0, \, 0, \, 0) \ \Rightarrow \ \underline{x} = (1, \, 1, \, 1, \, 1, \, 1, \, 1, \, 1)$.
3. row:   $\underline{u} = (1, \, 1, \, 1, \, 0) \ \Rightarrow \ \underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, 0)$.

2

What are the results of column coding with the  $(6, \ 3, \ 3)$ code  $\mathcal{C}_2$?

1. column:   $\underline{u} = (0, \, 0, \, 1) \ \Rightarrow \ \underline{x} = (0, \, 0, \, 1, \, 0, \, 1, \, 1)$.
2. column:   $\underline{u} = (1, \, 0, \, 1) \ \Rightarrow \ \underline{x} = (1, \, 0, \, 1, \, 1, \, 0, \, 1)$.
3. column:   $\underline{u} = (1, \, 0, \, 1) \ \Rightarrow \ \underline{x} = (1, \, 1, \, 0, \, 0, \, 1, \, 1)$.
4. column:   $\underline{u} = (0, \, 0, \, 0) \ \Rightarrow \ \underline{x} = (0, \, 0, \, 0, \, 0, \,0, \, 0)$.

3

What statements apply to the checks–on–checks matrix?

The first row is  $(1, \, 0, \, 1)$  and the first column is  $(1, \, 1, \, 0)$.
The second row is  $(1, \, 0, \, 1)$  and the second column is  $(0, \, 0, \, 0)$.
The third row is  $(0, \, 0, \, 0)$  and the third column is  $(0, \, 0, \, 0)$.


Solution

(1)  Correct are the  proposed solutions 1 and 3:  In general: 

$$\underline{x} = \underline{u} \cdot \mathbf{G}.$$

From this follows for

  • the first row vector:
$$\begin{pmatrix} 0 &1 &1 &0 \end{pmatrix} \cdot \begin{pmatrix} 1 &0 &0 &0 &1 &0 &1 \\ 0 &1 &0 &0 &1 &1 &0 \\ 0 &0 &1 &0 &0 &1 &1 \\ 0 &0 &0 &1 &1 &1 &1 \end{pmatrix} =\begin{pmatrix} 0 &1 &1 &0 &1 &0 &1 \end{pmatrix} \hspace{0.05cm},$$
  • the second row vector:
$$\begin{pmatrix} 0 &0 &0 &0 \end{pmatrix} \cdot \begin{pmatrix} 1 &0 &0 &0 &1 &0 &1 \\ 0 &1 &0 &0 &1 &1 &0 \\ 0 &0 &1 &0 &0 &1 &1 \\ 0 &0 &0 &1 &1 &1 &1 \end{pmatrix} =\begin{pmatrix} 0 &0 &0 &0 &0 &0 &0 \end{pmatrix} \hspace{0.05cm},$$
  • the third row vector:
$$\begin{pmatrix} 1 &1 &1 &0 \end{pmatrix} \cdot \begin{pmatrix} 1 &0 &0 &0 &1 &0 &1 \\ 0 &1 &0 &0 &1 &1 &0 \\ 0 &0 &1 &0 &0 &1 &1 \\ 0 &0 &0 &1 &1 &1 &1 \end{pmatrix} =\begin{pmatrix} 1 &1 &1 &0 &0 &0 &0 \end{pmatrix} \hspace{0.05cm}.$$


(2)  Correct are the  proposed solutions 1, 2 and 4:

$$\begin{pmatrix} 0 &0 &1 \end{pmatrix} \cdot \begin{pmatrix} 1 &0 &0 &1 &1 &0 \\ 0 &1 &0 &1 &0 &1 \\ 0 &0 &1 &0 &1 &1 \end{pmatrix} =\begin{pmatrix} 0 &0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.05cm},$$
$$\begin{pmatrix} 1 &0 &1 \end{pmatrix} \cdot \begin{pmatrix} 1 &0 &0 &1 &1 &0 \\ 0 &1 &0 &1 &0 &1 \\ 0 &0 &1 &0 &1 &1 \end{pmatrix} =\begin{pmatrix} 1 &0 &1 &1 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$

To this subtask is to be noted further:

  1. The given first column is correct if only because it coincides with a row  $($the third$)$  of the generator matrix $\mathbf{G}_2$.
  2. The third column of the two-dimensional code word should be identical to the second column,  since the same code word  $(1, \, 0, \, 1)$  is assumed.
  3. However,  the given vector  $(1, \, 1, \, 0, \, 0, \, 1, \, 1)$  cannot be correct if only because  $\mathcal{C}_2$  is a systematic code just like  $\mathcal{C}_1$.
  4. Also the truncated  $(6, \ 3, \ 3)$  Hamming code $C_2$  is linear,  so that the assignment  $\underline{u} = (0, \, 0, \, 0) \ \Rightarrow \ \ \underline{x} = (0, \, 0, \, 0, \, 0)$  can be stated without calculation.


Complete code tables

(3)  Given on the right are the complete code tables

  • of the Hamming code $(7, \ 4, \ 3)$,  and
  • of the truncated Hamming code $(6, \ 3, \ 3)$.


One can see from this  $($without it being of interest for this exercise$)$  that the codes considered here each have Hamming distance  $d_{\rm min} = 3$.

Wanted product code



  • The left graph shows the result of the whole coding.
  • At the bottom right you can see the checks–on–checks matrix of dimension  $3 × 3$.


Concerning the subtask  (3)  the  suggested solutions 1 and 2  are correct:

  • It is a coincidence that here in the checks–on–checks matrix two rows and two columns are identical.
  • It doesn't matter whether rows 4 to 6 of the total matrix are obtained using the code  $\mathcal{C}_1$  or columns 5 to 7 are obtained using the code  $\mathcal{C}_2$.