Difference between revisions of "Aufgaben:Exercise 4.6: k-parameters and alpha-parameters"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Kupfer–Doppelader }} right| :Für symmetrische Kupfer–Doppel…“)
 
 
(31 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Kupfer–Doppelader
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/Properties_of_Balanced_Copper_Pairs
 
}}
 
}}
  
[[File:P_ID1812__LZI_A_4_6.png|right|]]
+
[[File:EN_LZI_A_4_6.png|right|frame|Attenuation function per unit length, <br>valid for&nbsp; "copper twin wire"&nbsp; (0.5 mm)]]
:Für symmetrische Kupfer&ndash;Doppeladern findet man in [PW95] die folgende empirische Formel, gültig für den Frequenzbereich 0 &#8804; <i>f</i> &#8804; 30 MHz:
+
For symmetrical copper twisted pairs,&nbsp; the following empirical formula can be found in&nbsp; [PW95],&nbsp; which is valid for the frequency range &nbsp;$0 \le f \le 30 \ \rm MHz$:
 
:$$\alpha_{\rm I} (f) = k_1 + k_2  \cdot (f/f_0)^{k_3} , \hspace{0.15cm}
 
:$$\alpha_{\rm I} (f) = k_1 + k_2  \cdot (f/f_0)^{k_3} , \hspace{0.15cm}
 
  f_0 = 1\,{\rm MHz} .$$
 
  f_0 = 1\,{\rm MHz} .$$
:Dagegen ist das Dämpfungsmaß eines Koaxialkabels meist in der folgenden Form angegeben:
+
In contrast,&nbsp; the attenuation function per unit length of a coaxial cable is usually given in the following form:
 
:$$\alpha_{\rm II}(f)  = \alpha_0 + \alpha_1 \cdot f +  \alpha_2 \cdot \sqrt {f}\hspace{0.05cm}.$$
 
:$$\alpha_{\rm II}(f)  = \alpha_0 + \alpha_1 \cdot f +  \alpha_2 \cdot \sqrt {f}\hspace{0.05cm}.$$
:Insbesondere zur Berechnung von Impulsantwort und Rechteckantwort ist es von Vorteil, auch für die Kupfer&ndash;Doppeladern die zweite Darstellungsform mit den Kabelparametern <i>&alpha;</i><sub>0</sub>, <i>&alpha;</i><sub>1</sub> und <i>&alpha;</i><sub>2</sub> anstelle der Beschreibung durch <i>k</i><sub>1</sub>, <i>k</i><sub>2</sub>, und <i>k</i><sub>3</sub> zu wählen. Für die Umrechnung geht man dabei wie folgt vor:
+
Especially for the calculation of impulse response and rectangular response it is advantageous also for the copper twisted pairs to choose the second representation form with the cable parameters &nbsp;$\alpha_0$, &nbsp;$\alpha_1$&nbsp; and&nbsp; $\alpha_2$&nbsp; instead of the representation with &nbsp;$k_1$, &nbsp;$k_2$&nbsp; and &nbsp;$k_3$.  
  
:* Aus obigen Gleichungen ist offensichtlich, dass der die Gleichsignaldämpfung charakterisierende Koeffizient <i>k</i><sub>1</sub> gleich <i>&alpha;</i><sub>0</sub> ist.
+
For the conversion,&nbsp; one proceeds as follows:
 
+
* From above equations,&nbsp; it is obvious that the coefficient characterizing the DC signal attenuation is &nbsp;$\alpha_0 = k_1$.
:* Zur Bestimmung von <i>&alpha;</i><sub>1</sub> und <i>&alpha;</i><sub>2</sub> wird davon ausgegangen, dass der mittlere quadratische Fehler im Bereich einer vorgegebenen Bandbreite <i>B</i> minimal sein soll:
+
* To determine&nbsp; $\alpha_1$&nbsp; and&nbsp; $\alpha_2$,&nbsp; it is assumed that the mean square error should be minimum in the range of a given bandwidth &nbsp;$B$:
:$${\rm E}[\varepsilon^2(f)] =  \int\limits_{0}^{
+
:$${\rm E}\big[\varepsilon^2(f)\big] =  \int_{0}^{
 
B} \left [ \alpha_{\rm II} (f) - \alpha_{\rm I} (f)\right ]^2
 
B} \left [ \alpha_{\rm II} (f) - \alpha_{\rm I} (f)\right ]^2
 
\hspace{0.1cm}{\rm  d}f \hspace{0.3cm}\Rightarrow
 
\hspace{0.1cm}{\rm  d}f \hspace{0.3cm}\Rightarrow
 
\hspace{0.3cm}{\rm Minimum}
 
\hspace{0.3cm}{\rm Minimum}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
 
+
* The difference &nbsp;$\varepsilon^2(f)$&nbsp; and the mean square error &nbsp;${\rm E}\big[\varepsilon^2(f)\big]$&nbsp; are obtained as follows:
:* Die Differenz <i>&epsilon;</i><sup>2</sup>(<i>f</i>) und der mittlere quadratische Fehler E[<i>&epsilon;</i><sup>2</sup>(<i>f</i>)] ergeben sich dabei wie folgt:
+
:$$\varepsilon^2(f) =  \big [ \alpha_1 \cdot f +  \alpha_2 \cdot \sqrt {f} - k_2  \cdot (f/f_0)^{k_3}\big ]^2
:$$\varepsilon^2(f) \hspace{0.15cm} = \hspace{0.15cm} \left [ \alpha_1 \cdot f +  \alpha_2 \cdot \sqrt {f} - k_2  \cdot (f/f_0)^{k_3}\right ]^2
+
=\alpha_1^2 \hspace{0.05cm}\cdot\hspace{0.05cm}  f^2  + 2  \alpha_1 \alpha_2 \hspace{0.05cm}\cdot\hspace{0.05cm}  f^{1.5} +
=\\  = \hspace{0.15cm}\alpha_1^2 \hspace{0.05cm}\cdot\hspace{0.05cm}  f^2  + 2  \alpha_1 \alpha_2 \hspace{0.05cm}\cdot\hspace{0.05cm}  f^{1.5} +
 
 
\alpha_1^2 \hspace{0.05cm}\cdot\hspace{0.05cm}  f + k_2^2\hspace{0.05cm}\cdot\hspace{0.05cm} \frac{f^{2k_3}}{f_0^{2k_3}} - 2 k_2 \alpha_1 \hspace{0.05cm}\cdot\hspace{0.05cm}  
 
\alpha_1^2 \hspace{0.05cm}\cdot\hspace{0.05cm}  f + k_2^2\hspace{0.05cm}\cdot\hspace{0.05cm} \frac{f^{2k_3}}{f_0^{2k_3}} - 2 k_2 \alpha_1 \hspace{0.05cm}\cdot\hspace{0.05cm}  
 
\frac{f^{k_3+1}} {f_0^{k_3}}-{2 k_2 \alpha_2} \hspace{0.05cm}\cdot\hspace{0.05cm}  \frac{f^{k_3+0.5}}{f_0^{k_3}}$$
 
\frac{f^{k_3+1}} {f_0^{k_3}}-{2 k_2 \alpha_2} \hspace{0.05cm}\cdot\hspace{0.05cm}  \frac{f^{k_3+0.5}}{f_0^{k_3}}$$
 
:$$\Rightarrow
 
:$$\Rightarrow
\hspace{0.3cm}{\rm E}[\varepsilon^2(f)]  = \hspace{0.15cm}  \alpha_1^2
+
\hspace{0.3cm}{\rm E}\big[\varepsilon^2(f)\big]  =   \alpha_1^2
 
\hspace{0.05cm}\cdot\hspace{0.05cm}\frac{B^3}{3} + \frac{4}{5} \hspace{0.05cm}\cdot\hspace{0.05cm}\alpha_1 \alpha_2  \hspace{0.05cm}\cdot\hspace{0.05cm}B^{2.5} +
 
\hspace{0.05cm}\cdot\hspace{0.05cm}\frac{B^3}{3} + \frac{4}{5} \hspace{0.05cm}\cdot\hspace{0.05cm}\alpha_1 \alpha_2  \hspace{0.05cm}\cdot\hspace{0.05cm}B^{2.5} +
 
\alpha_1^2 \hspace{0.05cm}\cdot\hspace{0.05cm} \frac{B^2}{2} + \frac{k_2^2}{2k_3 +1} \hspace{0.05cm}\cdot\hspace{0.05cm}
 
\alpha_1^2 \hspace{0.05cm}\cdot\hspace{0.05cm} \frac{B^2}{2} + \frac{k_2^2}{2k_3 +1} \hspace{0.05cm}\cdot\hspace{0.05cm}
\frac{B^{2k_3+1}}{f_0^{2k_3}} -\\  - \hspace{0.15cm}
+
\frac{B^{2k_3+1}}{f_0^{2k_3}} - \hspace{0.15cm}
 
  \frac{2 k_2 \alpha_1}{k_3 + 2}
 
  \frac{2 k_2 \alpha_1}{k_3 + 2}
 
\hspace{0.05cm}\cdot\hspace{0.05cm}
 
\hspace{0.05cm}\cdot\hspace{0.05cm}
 
$$
 
$$
:Diese Gleichung beinhaltet die zu verrechnenden Kabelparameter <i>&alpha;</i><sub>1</sub>, <i>&alpha;</i><sub>2</sub>, <i>k</i><sub>2</sub> und <i>k</i><sub>3</sub> sowie die Bandbreite <i>B</i>, innerhalb derer die Approximation gültig sein soll.
+
:This equation contains the cable parameters &nbsp;$\alpha_1$, &nbsp;$\alpha_2$, &nbsp;$k_2$&nbsp; and &nbsp;$k_3$&nbsp; to be calculated as well as the bandwidth &nbsp;$B$,&nbsp; within which the approximation should be valid.
 
+
* By setting the derivatives of &nbsp;${\rm E}\big[\varepsilon^2(f)\big]$&nbsp; to &nbsp;$\alpha_1$&nbsp; and &nbsp;$\alpha_2$&nbsp; to zero, two equations are obtained for the best possible coefficients &nbsp;$\alpha_1$&nbsp; and &nbsp;$\alpha_2$ that minimize the mean square error. These can be represented in the following form:
:* Durch Nullsetzen der Ableitungen von E[<i>&epsilon;<sup>2</sup></i>(<i>f</i>)] nach <i>&alpha;</i><sub>1</sub> bzw. <i>&alpha;</i><sub>2</sub> erhält man zwei Gleichungen für die bestmöglichen Koeffizienten <i>&alpha;</i><sub>1</sub> und <i>&alpha;</i><sub>2</sub>, die den mittleren quadratischen Fehler minimieren. Diese lassen sich in folgender Form darstellen:
+
:$$\frac{{\rm d}\,{\rm E}\big[\varepsilon^2(f)\big]}{{\rm d}\,{\alpha_1}}  = 0 \hspace{0.2cm}  
:$$\frac{{\rm d}\,{\rm E}[\varepsilon^2(f)]}{{\rm d}\,{\alpha_1}}  = 0 \hspace{0.2cm}  
 
 
  \Rightarrow  
 
  \Rightarrow  
 
\hspace{0.2cm} \alpha_1 + C_1 \cdot \alpha_2 + C_2  = 0 \hspace{0.05cm}
 
\hspace{0.2cm} \alpha_1 + C_1 \cdot \alpha_2 + C_2  = 0 \hspace{0.05cm}
,\\
+
,$$
\frac{{\rm d}\,{\rm E}[\varepsilon^2(f)]}{{\rm d}\,{\alpha_2}}  =
+
:$$\frac{{\rm d}\,{\rm E}\big[\varepsilon^2(f)\big]}{{\rm d}\,{\alpha_2}}  =
 
0 \hspace{0.2cm}  
 
0 \hspace{0.2cm}  
 
  \Rightarrow  
 
  \Rightarrow  
 
\hspace{0.2cm} \alpha_1 + D_1 \cdot \alpha_2 + D_2 = 0 \hspace{0.05cm}
 
\hspace{0.2cm} \alpha_1 + D_1 \cdot \alpha_2 + D_2 = 0 \hspace{0.05cm}
 
. $$
 
. $$
 +
* From the equation &nbsp;$C_1 \cdot \alpha_2 + C_2 = D_1 \cdot \alpha_2 + D_2$,&nbsp; the coefficient &nbsp;$\alpha_2$&nbsp; can be calculated and then the coefficient &nbsp;$\alpha_1$ can be calculated from each of the two equations above.
  
:* Aus der Gleichung <i>C</i><sub>1</sub> &middot; <i>&alpha;</i><sub>2</sub> + <i>C</i><sub>2</sub> = <i>D</i><sub>1</sub> &middot; <i>&alpha;</i><sub>2</sub> + <i>D</i><sub>2</sub> lässt sich daraus der Koeffizient <i>&alpha;</i><sub>2</sub> berechnen und anschließend aus jeder der beiden oberen Gleichungen der Koeffizient <i>&alpha;</i><sub>1</sub>.
 
  
:Die obere Grafik zeigt das Dämpfungsmaß für eine Kupferdoppelader mit 0.5 mm Durchmesser, deren <i>k</i>&ndash;Parameter lauten:
+
The graph shows the attenuation function per unit length for a copper twin wire with&nbsp; $\text{0.5 mm}$&nbsp; diameter, whose&nbsp; $k$&ndash;parameters are:
 
:$$k_1  = 4.4\, {\rm dB}/{\rm km} \hspace{0.05cm}, \hspace{0.2cm}
 
:$$k_1  = 4.4\, {\rm dB}/{\rm km} \hspace{0.05cm}, \hspace{0.2cm}
 
  k_2  = 10.8\, {\rm dB}/{\rm km}\hspace{0.05cm}, \hspace{0.2cm}k_3  = 0.60\hspace{0.05cm}
 
  k_2  = 10.8\, {\rm dB}/{\rm km}\hspace{0.05cm}, \hspace{0.2cm}k_3  = 0.60\hspace{0.05cm}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
:Die rote Kurve zeigt die damit berechnete Funktion <i>&alpha;</i>(<i>f</i>). Für <i>f</i> = 30 MHz ergibt sich das Dämpfungsmaß <i>&alpha;</i> = 87.5 dB/km. Die blaue Kurve gibt die Approximation mit den <i>&alpha;</i>&ndash;Koeffizienten an. Diese ist von der roten Kurve innerhalb der Zeichengenauigkeit fast nicht zu unterscheiden.
 
  
:<b>Hinweis: </b>Die Aufgabe bezieht sich auf das Kapitel 4.3.
+
*The red curve shows the function &nbsp;$\alpha(f)$&nbsp; calculated with this parameters.&nbsp; For &nbsp;$f = 30 \ \rm MHz$&nbsp; the attenuation function per unit length is &nbsp;$\alpha(f)= 87.5 \ \rm dB/km$.
 +
*The blue curve gives the approximation with the &nbsp;$\alpha$&ndash;coefficients.&nbsp; This is almost indistinguishable from the red curve within the drawing accuracy.
  
  
===Fragebogen===
+
 
 +
 
 +
 
 +
Notes:
 +
*The exercise belongs to the chapter&nbsp;  [[Linear_and_Time_Invariant_Systems/Eigenschaften_von_Kupfer–Doppeladern|Properties of Balanced Copper Pairs]].
 +
 +
*You can use the&nbsp; (German language)&nbsp; interactive SWF applet &nbsp;[[Applets:Dämpfung_von_Kupferkabeln|"Dämpfung von Kupferkabeln"]]&nbsp; &rArr; &nbsp; "Attenuation of copper cables"&nbsp;.
 +
*[PW95]&nbsp; denotes the following literature reference: &nbsp; Pollakowski, P.; Wellhausen, H.-W.:&nbsp; Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz.&nbsp; Deutsche Telekom AG, Forschungs- und Technologiezentrum Darmstadt, 1995.
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{Calculate the parameters &nbsp;$C_1$&nbsp; and  &nbsp;$C_2$&nbsp; of the equation &nbsp;$\alpha_1 + C_1 \cdot \alpha_2 + C_2  = 0$&nbsp; resulting from the derivative &nbsp;${\rm dE\big[\text{...}\big]/d}\alpha_1$.&nbsp; <br>Which results are correct?
 +
|type="[]"}
 +
+ $C_1 = 6/5 \cdot B^{-0.5}$,
 +
- $C_1 = 5/4 \cdot B^{-0.5}$,
 +
- $C_1 = 4/3 \cdot B^{2}$,
 +
- $C_2 = -4/3 \cdot B^{-2$}$,
 +
- $C_2 = -5/2 \cdot k_2/(k_3 +1.5) \cdot B^{k_3 -1} \cdot f_0^{-k_3}$,
 +
+ $C_2 = -3 \cdot k_2/(k_3 +2) \cdot B^{k_3 -1} \cdot f_0^{-k_3}$.
 +
 
 +
 
 +
{Calculate the parameters &nbsp;$D_1$&nbsp; and  &nbsp;$D_2$&nbsp; of the equation &nbsp;$ \alpha_1 + D_1 \cdot \alpha_2 + D_2  = 0$&nbsp; resulting from the derivative &nbsp;${\rm dE\big[\text{...}\big]/d}\alpha_2$.&nbsp; <br> Which results are correct?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
- $D_1 = 6/5 \cdot B^{-0.5}$,
+ Richtig
+
+ $D_1 = 5/4 \cdot B^{-0.5}$,
 +
- $D_1 = 4/3 \cdot B^{2}$,
 +
- $D_2 = -4/3 \cdot B^{-2}$,
 +
+ $D_2 = -5/2 \cdot k_2/(k_3 +1.5) \cdot B^{k_3 -1} \cdot f_0^{-k_3}$,
 +
- $D_2 = -3 \cdot k_2/(k_3 +2) \cdot B^{k_3 -1} \cdot f_0^{-k_3}$.
  
  
{Input-Box Frage
+
{Calculate the coefficients &nbsp;$\alpha_1$&nbsp; and &nbsp;$\alpha_2$&nbsp; for the given &nbsp;$k_2$&nbsp; and &nbsp;$k_3$. <br>Which of the following statements are true?
 +
|type="[]"}
 +
+ For &nbsp;$k_3=1.0$,&nbsp; &nbsp;$\alpha_1 = k_2/f_0$&nbsp; and &nbsp;$\alpha_2 = 0$.
 +
+ For &nbsp;$k_3=0.5$,&nbsp; &nbsp;$\alpha_1 = 0$&nbsp; and &nbsp;$\alpha_2 = k_2/f_0^{0.5}$.
 +
 
 +
 
 +
{Determine the coefficients &nbsp;$\alpha_1$&nbsp; and &nbsp;$\alpha_2$&nbsp; numerically for the approximation bandwidth &nbsp;$B = 30 \ \rm MHz$.
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$\alpha_1 \ = \ $  { 0.761 3% } $\ \rm dB/(km\ \cdot \ MHz)$
 +
$\alpha_2 \ =\ $ { 11.1 3% } $\ \rm dB/(km\ \cdot \ \sqrt{\rm MHz})$
 +
 
 +
 
 +
{Using the &nbsp;$\alpha$&ndash;parameters,&nbsp; calculate the attenuation function per unit length for the frequency &nbsp;$f = 30\ \rm MHz$.
 +
|type="{}"}
 +
$\alpha_{\rm  II}(f = 30\ \rm MHz) \ = \ $ { 88.1 3% } $\ \rm dB/km$
  
  
Line 74: Line 108:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; <u>Solutions 1 and 6</u>&nbsp; are correct:
'''2.'''
+
*The derivative of the given expected value with respect to&nbsp; $\alpha_1$&nbsp; gives:
'''3.'''
+
:$$\frac{{\rm d}\,{\rm E}[\varepsilon^2(f)]}{{\rm d}\,{\alpha_1}}  =
'''4.'''
+
\frac{2}{3}\cdot B^3 \cdot \alpha_1 + \frac{4}{5}\cdot B^{2.5} \cdot \alpha_2
'''5.'''
+
- \frac{2 k_2 }{k_3
'''6.'''
+
+ 2} \cdot \frac{B^{k_3+2}}{f_0^{k_3}}= 0
'''7.'''
+
\hspace{0.05cm} .$$
 +
*By setting it to zero and dividing by&nbsp; $2B^2/3$,&nbsp; we obtain:
 +
:$$\alpha_1 + \frac{6}{5}\cdot B^{-0.5} \cdot \alpha_2
 +
- \frac{3 k_2 }{k_3
 +
+2} \cdot \frac{B^{k_3-1}}{f_0^{k_3}}= 0
 +
\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} C_1 = \frac{6}{5}\cdot B^{-0.5} \hspace{0.05cm} ,
 +
\hspace{0.5cm} C_2 =
 +
- \frac{3 k_2 }{k_3
 +
+2} \cdot \frac{B^{k_3-1}}{f_0^{k_3}}
 +
\hspace{0.05cm} .$$
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; <u>Solutions 2 and 5</u>&nbsp; are correct:
 +
*Using the same procedure as in subtask&nbsp; '''(1)''',&nbsp; we obtain:
 +
:$$\frac{{\rm d}\,{\rm E}[\varepsilon^2(f)]}{{\rm d}\,{\alpha_2}}  =
 +
\frac{4}{5}\cdot B^{2.5} \cdot \alpha_1 +  B^{2} \cdot \alpha_2
 +
- \frac{2 k_2 }{k_3
 +
+ 1.5} \cdot \frac{B^{k_3+1.5}}{f_0^{k_3}}= 0$$
 +
:$$\Rightarrow \hspace{0.3cm} \alpha_1 + \frac{5}{4}\cdot B^{-0.5} \cdot \alpha_2
 +
- \frac{2.5 \cdot k_2 }{k_3
 +
+1.5} \cdot \frac{B^{k_3-1}}{f_0^{k_3}}= 0
 +
\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm}D_1 = \frac{5}{4}\cdot B^{-0.5} \hspace{0.05cm} ,
 +
\hspace{0.3cm}D_2 =
 +
- \frac{2.5 \cdot k_2 }{k_3
 +
+1.5} \cdot \frac{B^{k_3-1}}{f_0^{k_3}}
 +
\hspace{0.05cm} .$$
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; <u>Both solutions</u>&nbsp; are correct:
 +
 
 +
*From&nbsp; $C_1 \cdot \alpha_2 + C_2  = D_1 \cdot \alpha_2 + D_2$&nbsp; we obtain a linear equation for&nbsp; $\alpha_2$.&nbsp; With the result from&nbsp; '''(2)'''&nbsp; we can write:
 +
:$$\alpha_2  =  \frac{D_2 - C_2}{C_1 - D_1} = \frac{- \frac{2.5 \cdot k_2 }{k_3
 +
+1.5} \cdot \frac{B^{k_3-1}}{f_0^{k_3}} + \frac{3 k_2 }{k_3 +2}
 +
\cdot \frac{B^{k_3-1}}{f_0^{k_3}}}{{6}/{5}\cdot B^{-0.5} -
 +
{5}/{4}\cdot B^{-0.5}} =  \frac{- {2.5 \cdot k_2
 +
}\cdot(k_3 +2)  + {3 k_2 }\cdot (k_3 +1.5) }{({6}/{5} -
 +
{5}/{4})(k_3 +1.5)(k_3 +2)} \cdot
 +
\frac{B^{k_3-0.5}}{f_0^{k_3}}$$
 +
:$$  \Rightarrow \hspace{0.3cm}\alpha_2    =  10 \cdot (B/f_0)^{k_3
 +
-0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 +
 +
2)}\cdot \frac {k_2}{\sqrt{f_0}}
 +
\hspace{0.05cm} .$$
 +
*For the parameter &nbsp; $\alpha_1$&nbsp; then holds:
 +
:$$\alpha_1  =  - C_1 \cdot \alpha_2 - C_2 = 
 +
-\frac{6}{5}\cdot B^{-0.5} \cdot 10 \cdot (B/f_0)^{k_3
 +
-0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 +
 +
2)}\cdot \frac {k_2}{\sqrt{f_0}} +\frac{3 k_2 }{k_3 +2}
 +
\cdot \frac{B^{k_3-1}}{f_0^{k_3}}$$
 +
:$$ \Rightarrow \hspace{0.3cm}\alpha_1  =  (B/f_0)^{k_3 -1}\cdot
 +
\frac{-12 \cdot (1-k_3) + 3 \cdot (k_3 + 1.5)}{(k_3 + 1.5)(k_3 +
 +
2)} \cdot \frac {k_2}{f_0} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\alpha_1  =15 \cdot (B/f_0)^{k_3
 +
-1}\cdot \frac{k_3 -0.5}{(k_3 + 1.5)(k_3 +
 +
2)}\cdot \frac {k_2}{f_0}\hspace{0.05cm} .$$
 +
 +
*Regardless of the bandwidth,&nbsp; we obtain for&nbsp; $k_3 = 1$:
 +
:$$\alpha_1    =  (B/f_0)^{k_3
 +
-1}\cdot \frac{15 \cdot (k_3 -0.5)}{(k_3 + 1.5)(k_3 +
 +
2)}\cdot \frac {k_2}{f_0} = \frac{15 \cdot 0.5}{2.5 \cdot 3}\cdot \frac {k_2}{f_0}
 +
\hspace{0.15cm}\underline{ = {k_2}/{f_0}}\hspace{0.05cm}
 +
,$$
 +
:$$ \alpha_2  =  (B/f_0)^{k_3
 +
-0.5}\cdot \frac{10 \cdot (1-k_3)}{(k_3 + 1.5)(k_3 +
 +
2)}\cdot \frac {k_2}{\sqrt{f_0}}\hspace{0.15cm}\underline{= 0} \hspace{0.05cm}
 +
.$$
 +
*In contrast,&nbsp; for&nbsp; $k_3 = 0.5$:
 +
:$$\alpha_1    =  (B/f_0)^{k_3
 +
-1}\cdot \frac{15 \cdot (k_3 -0.5)}{(k_3 + 1.5)(k_3 +
 +
2)}\cdot \frac {k_2}{f_0} \hspace{0.15cm}\underline{= 0}\hspace{0.05cm}
 +
,$$
 +
:$$ \alpha_2  =  (B/f_0)^{k_3
 +
-0.5}\cdot \frac{10 \cdot (1-k_3)}{(k_3 + 1.5)(k_3 +
 +
2)}\cdot \frac {k_2}{\sqrt{f_0}}=  \frac{10 \cdot 0.5}{2 \cdot 2.5}\cdot \frac {k_2}{\sqrt{f_0}} = \hspace{0.15cm}\underline{ {k_2}/{\sqrt{f_0}}} \hspace{0.05cm}
 +
.$$
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; For the two coefficients, with&nbsp; $k_2 = 10.8 \ \rm dB/km$,&nbsp; $k_3 = 0.6 \ \rm dB/km$&nbsp; and&nbsp; $B/f_0 = 30$:
 +
:$$\alpha_1    =  (B/f_0)^{k_3
 +
-1}\cdot \frac{15 \cdot (k_3 -0.5)}{(k_3 + 1.5)(k_3 +
 +
2)}\cdot \frac {k_2}{f_0}  =  30^{-0.4}\cdot \frac{15 \cdot 0.1}{2.1 \cdot 2.6}\cdot
 +
\frac {10.8 \, {\rm dB/km} }{1 \, {\rm MHz}}
 +
\hspace{0.15cm}\underline{ \approx 0.761\,
 +
{{\rm dB} }/{({\rm km \cdot MHz})}}
 +
\hspace{0.05cm}
 +
,$$
 +
:$$ \alpha_2  =  (B/f_0)^{k_3
 +
-0.5}\cdot \frac{10 \cdot (1-k_3)}{(k_3 + 1.5)(k_3 +
 +
2)}\cdot \frac {k_2}{\sqrt{f_0}}=  \frac {k_2}{\sqrt{f_0}}
 +
=  30^{0.1}\cdot \frac{10 \cdot 0.4}{2.1 \cdot 2.6}\cdot \frac
 +
{10.8 \, {\rm dB/km} }{1 \, {\rm MHz^{0.5}}}
 +
\hspace{0.15cm}\underline{ \approx 11.1\,
 +
{{\rm dB} }/{({\rm km \cdot \sqrt{MHz}}})}\hspace{0.05cm}
 +
.$$
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; According to the given equation&nbsp; $\alpha_{\rm II}(f)$&nbsp; thus also holds:
 +
:$$\alpha_{\rm II}(f = 30 \, {\rm MHz})    =  \alpha_0 + \alpha_1 \cdot f +  \alpha_2 \cdot \sqrt {f}
 +
  =  \big [ \hspace{0.05cm} 4.4 + 0.761 \cdot 30 +  11.1 \cdot \sqrt {30}\hspace{0.05cm}
 +
\big ]\frac
 +
{\rm dB}{\rm km }
 +
\hspace{0.15cm}\underline{\approx 88.1\, {\rm dB}/{\rm km }}
 +
\hspace{0.05cm}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^4.3 Kupfer–Doppelader^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^4.3 Balanced Copper Twisted Pair^]]

Latest revision as of 18:11, 23 November 2021

Attenuation function per unit length,
valid for  "copper twin wire"  (0.5 mm)

For symmetrical copper twisted pairs,  the following empirical formula can be found in  [PW95],  which is valid for the frequency range  $0 \le f \le 30 \ \rm MHz$:

$$\alpha_{\rm I} (f) = k_1 + k_2 \cdot (f/f_0)^{k_3} , \hspace{0.15cm} f_0 = 1\,{\rm MHz} .$$

In contrast,  the attenuation function per unit length of a coaxial cable is usually given in the following form:

$$\alpha_{\rm II}(f) = \alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot \sqrt {f}\hspace{0.05cm}.$$

Especially for the calculation of impulse response and rectangular response it is advantageous also for the copper twisted pairs to choose the second representation form with the cable parameters  $\alpha_0$,  $\alpha_1$  and  $\alpha_2$  instead of the representation with  $k_1$,  $k_2$  and  $k_3$.

For the conversion,  one proceeds as follows:

  • From above equations,  it is obvious that the coefficient characterizing the DC signal attenuation is  $\alpha_0 = k_1$.
  • To determine  $\alpha_1$  and  $\alpha_2$,  it is assumed that the mean square error should be minimum in the range of a given bandwidth  $B$:
$${\rm E}\big[\varepsilon^2(f)\big] = \int_{0}^{ B} \left [ \alpha_{\rm II} (f) - \alpha_{\rm I} (f)\right ]^2 \hspace{0.1cm}{\rm d}f \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Minimum} \hspace{0.05cm} .$$
  • The difference  $\varepsilon^2(f)$  and the mean square error  ${\rm E}\big[\varepsilon^2(f)\big]$  are obtained as follows:
$$\varepsilon^2(f) = \big [ \alpha_1 \cdot f + \alpha_2 \cdot \sqrt {f} - k_2 \cdot (f/f_0)^{k_3}\big ]^2 =\alpha_1^2 \hspace{0.05cm}\cdot\hspace{0.05cm} f^2 + 2 \alpha_1 \alpha_2 \hspace{0.05cm}\cdot\hspace{0.05cm} f^{1.5} + \alpha_1^2 \hspace{0.05cm}\cdot\hspace{0.05cm} f + k_2^2\hspace{0.05cm}\cdot\hspace{0.05cm} \frac{f^{2k_3}}{f_0^{2k_3}} - 2 k_2 \alpha_1 \hspace{0.05cm}\cdot\hspace{0.05cm} \frac{f^{k_3+1}} {f_0^{k_3}}-{2 k_2 \alpha_2} \hspace{0.05cm}\cdot\hspace{0.05cm} \frac{f^{k_3+0.5}}{f_0^{k_3}}$$
$$\Rightarrow \hspace{0.3cm}{\rm E}\big[\varepsilon^2(f)\big] = \alpha_1^2 \hspace{0.05cm}\cdot\hspace{0.05cm}\frac{B^3}{3} + \frac{4}{5} \hspace{0.05cm}\cdot\hspace{0.05cm}\alpha_1 \alpha_2 \hspace{0.05cm}\cdot\hspace{0.05cm}B^{2.5} + \alpha_1^2 \hspace{0.05cm}\cdot\hspace{0.05cm} \frac{B^2}{2} + \frac{k_2^2}{2k_3 +1} \hspace{0.05cm}\cdot\hspace{0.05cm} \frac{B^{2k_3+1}}{f_0^{2k_3}} - \hspace{0.15cm} \frac{2 k_2 \alpha_1}{k_3 + 2} \hspace{0.05cm}\cdot\hspace{0.05cm} $$
This equation contains the cable parameters  $\alpha_1$,  $\alpha_2$,  $k_2$  and  $k_3$  to be calculated as well as the bandwidth  $B$,  within which the approximation should be valid.
  • By setting the derivatives of  ${\rm E}\big[\varepsilon^2(f)\big]$  to  $\alpha_1$  and  $\alpha_2$  to zero, two equations are obtained for the best possible coefficients  $\alpha_1$  and  $\alpha_2$ that minimize the mean square error. These can be represented in the following form:
$$\frac{{\rm d}\,{\rm E}\big[\varepsilon^2(f)\big]}{{\rm d}\,{\alpha_1}} = 0 \hspace{0.2cm} \Rightarrow \hspace{0.2cm} \alpha_1 + C_1 \cdot \alpha_2 + C_2 = 0 \hspace{0.05cm} ,$$
$$\frac{{\rm d}\,{\rm E}\big[\varepsilon^2(f)\big]}{{\rm d}\,{\alpha_2}} = 0 \hspace{0.2cm} \Rightarrow \hspace{0.2cm} \alpha_1 + D_1 \cdot \alpha_2 + D_2 = 0 \hspace{0.05cm} . $$
  • From the equation  $C_1 \cdot \alpha_2 + C_2 = D_1 \cdot \alpha_2 + D_2$,  the coefficient  $\alpha_2$  can be calculated and then the coefficient  $\alpha_1$ can be calculated from each of the two equations above.


The graph shows the attenuation function per unit length for a copper twin wire with  $\text{0.5 mm}$  diameter, whose  $k$–parameters are:

$$k_1 = 4.4\, {\rm dB}/{\rm km} \hspace{0.05cm}, \hspace{0.2cm} k_2 = 10.8\, {\rm dB}/{\rm km}\hspace{0.05cm}, \hspace{0.2cm}k_3 = 0.60\hspace{0.05cm} \hspace{0.05cm}.$$
  • The red curve shows the function  $\alpha(f)$  calculated with this parameters.  For  $f = 30 \ \rm MHz$  the attenuation function per unit length is  $\alpha(f)= 87.5 \ \rm dB/km$.
  • The blue curve gives the approximation with the  $\alpha$–coefficients.  This is almost indistinguishable from the red curve within the drawing accuracy.



Notes:

  • You can use the  (German language)  interactive SWF applet  "Dämpfung von Kupferkabeln"  ⇒   "Attenuation of copper cables" .
  • [PW95]  denotes the following literature reference:   Pollakowski, P.; Wellhausen, H.-W.:  Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz.  Deutsche Telekom AG, Forschungs- und Technologiezentrum Darmstadt, 1995.


Questions

1

Calculate the parameters  $C_1$  and  $C_2$  of the equation  $\alpha_1 + C_1 \cdot \alpha_2 + C_2 = 0$  resulting from the derivative  ${\rm dE\big[\text{...}\big]/d}\alpha_1$. 
Which results are correct?

$C_1 = 6/5 \cdot B^{-0.5}$,
$C_1 = 5/4 \cdot B^{-0.5}$,
$C_1 = 4/3 \cdot B^{2}$,
$C_2 = -4/3 \cdot B^{-2$}$,
$C_2 = -5/2 \cdot k_2/(k_3 +1.5) \cdot B^{k_3 -1} \cdot f_0^{-k_3}$,
$C_2 = -3 \cdot k_2/(k_3 +2) \cdot B^{k_3 -1} \cdot f_0^{-k_3}$.

2

Calculate the parameters  $D_1$  and  $D_2$  of the equation  $ \alpha_1 + D_1 \cdot \alpha_2 + D_2 = 0$  resulting from the derivative  ${\rm dE\big[\text{...}\big]/d}\alpha_2$. 
Which results are correct?

$D_1 = 6/5 \cdot B^{-0.5}$,
$D_1 = 5/4 \cdot B^{-0.5}$,
$D_1 = 4/3 \cdot B^{2}$,
$D_2 = -4/3 \cdot B^{-2}$,
$D_2 = -5/2 \cdot k_2/(k_3 +1.5) \cdot B^{k_3 -1} \cdot f_0^{-k_3}$,
$D_2 = -3 \cdot k_2/(k_3 +2) \cdot B^{k_3 -1} \cdot f_0^{-k_3}$.

3

Calculate the coefficients  $\alpha_1$  and  $\alpha_2$  for the given  $k_2$  and  $k_3$.
Which of the following statements are true?

For  $k_3=1.0$,   $\alpha_1 = k_2/f_0$  and  $\alpha_2 = 0$.
For  $k_3=0.5$,   $\alpha_1 = 0$  and  $\alpha_2 = k_2/f_0^{0.5}$.

4

Determine the coefficients  $\alpha_1$  and  $\alpha_2$  numerically for the approximation bandwidth  $B = 30 \ \rm MHz$.

$\alpha_1 \ = \ $

$\ \rm dB/(km\ \cdot \ MHz)$
$\alpha_2 \ =\ $

$\ \rm dB/(km\ \cdot \ \sqrt{\rm MHz})$

5

Using the  $\alpha$–parameters,  calculate the attenuation function per unit length for the frequency  $f = 30\ \rm MHz$.

$\alpha_{\rm II}(f = 30\ \rm MHz) \ = \ $

$\ \rm dB/km$


Solution

(1)  Solutions 1 and 6  are correct:

  • The derivative of the given expected value with respect to  $\alpha_1$  gives:
$$\frac{{\rm d}\,{\rm E}[\varepsilon^2(f)]}{{\rm d}\,{\alpha_1}} = \frac{2}{3}\cdot B^3 \cdot \alpha_1 + \frac{4}{5}\cdot B^{2.5} \cdot \alpha_2 - \frac{2 k_2 }{k_3 + 2} \cdot \frac{B^{k_3+2}}{f_0^{k_3}}= 0 \hspace{0.05cm} .$$
  • By setting it to zero and dividing by  $2B^2/3$,  we obtain:
$$\alpha_1 + \frac{6}{5}\cdot B^{-0.5} \cdot \alpha_2 - \frac{3 k_2 }{k_3 +2} \cdot \frac{B^{k_3-1}}{f_0^{k_3}}= 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} C_1 = \frac{6}{5}\cdot B^{-0.5} \hspace{0.05cm} , \hspace{0.5cm} C_2 = - \frac{3 k_2 }{k_3 +2} \cdot \frac{B^{k_3-1}}{f_0^{k_3}} \hspace{0.05cm} .$$


(2)  Solutions 2 and 5  are correct:

  • Using the same procedure as in subtask  (1),  we obtain:
$$\frac{{\rm d}\,{\rm E}[\varepsilon^2(f)]}{{\rm d}\,{\alpha_2}} = \frac{4}{5}\cdot B^{2.5} \cdot \alpha_1 + B^{2} \cdot \alpha_2 - \frac{2 k_2 }{k_3 + 1.5} \cdot \frac{B^{k_3+1.5}}{f_0^{k_3}}= 0$$
$$\Rightarrow \hspace{0.3cm} \alpha_1 + \frac{5}{4}\cdot B^{-0.5} \cdot \alpha_2 - \frac{2.5 \cdot k_2 }{k_3 +1.5} \cdot \frac{B^{k_3-1}}{f_0^{k_3}}= 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}D_1 = \frac{5}{4}\cdot B^{-0.5} \hspace{0.05cm} , \hspace{0.3cm}D_2 = - \frac{2.5 \cdot k_2 }{k_3 +1.5} \cdot \frac{B^{k_3-1}}{f_0^{k_3}} \hspace{0.05cm} .$$


(3)  Both solutions  are correct:

  • From  $C_1 \cdot \alpha_2 + C_2 = D_1 \cdot \alpha_2 + D_2$  we obtain a linear equation for  $\alpha_2$.  With the result from  (2)  we can write:
$$\alpha_2 = \frac{D_2 - C_2}{C_1 - D_1} = \frac{- \frac{2.5 \cdot k_2 }{k_3 +1.5} \cdot \frac{B^{k_3-1}}{f_0^{k_3}} + \frac{3 k_2 }{k_3 +2} \cdot \frac{B^{k_3-1}}{f_0^{k_3}}}{{6}/{5}\cdot B^{-0.5} - {5}/{4}\cdot B^{-0.5}} = \frac{- {2.5 \cdot k_2 }\cdot(k_3 +2) + {3 k_2 }\cdot (k_3 +1.5) }{({6}/{5} - {5}/{4})(k_3 +1.5)(k_3 +2)} \cdot \frac{B^{k_3-0.5}}{f_0^{k_3}}$$
$$ \Rightarrow \hspace{0.3cm}\alpha_2 = 10 \cdot (B/f_0)^{k_3 -0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 + 2)}\cdot \frac {k_2}{\sqrt{f_0}} \hspace{0.05cm} .$$
  • For the parameter   $\alpha_1$  then holds:
$$\alpha_1 = - C_1 \cdot \alpha_2 - C_2 = -\frac{6}{5}\cdot B^{-0.5} \cdot 10 \cdot (B/f_0)^{k_3 -0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 + 2)}\cdot \frac {k_2}{\sqrt{f_0}} +\frac{3 k_2 }{k_3 +2} \cdot \frac{B^{k_3-1}}{f_0^{k_3}}$$
$$ \Rightarrow \hspace{0.3cm}\alpha_1 = (B/f_0)^{k_3 -1}\cdot \frac{-12 \cdot (1-k_3) + 3 \cdot (k_3 + 1.5)}{(k_3 + 1.5)(k_3 + 2)} \cdot \frac {k_2}{f_0} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\alpha_1 =15 \cdot (B/f_0)^{k_3 -1}\cdot \frac{k_3 -0.5}{(k_3 + 1.5)(k_3 + 2)}\cdot \frac {k_2}{f_0}\hspace{0.05cm} .$$
  • Regardless of the bandwidth,  we obtain for  $k_3 = 1$:
$$\alpha_1 = (B/f_0)^{k_3 -1}\cdot \frac{15 \cdot (k_3 -0.5)}{(k_3 + 1.5)(k_3 + 2)}\cdot \frac {k_2}{f_0} = \frac{15 \cdot 0.5}{2.5 \cdot 3}\cdot \frac {k_2}{f_0} \hspace{0.15cm}\underline{ = {k_2}/{f_0}}\hspace{0.05cm} ,$$
$$ \alpha_2 = (B/f_0)^{k_3 -0.5}\cdot \frac{10 \cdot (1-k_3)}{(k_3 + 1.5)(k_3 + 2)}\cdot \frac {k_2}{\sqrt{f_0}}\hspace{0.15cm}\underline{= 0} \hspace{0.05cm} .$$
  • In contrast,  for  $k_3 = 0.5$:
$$\alpha_1 = (B/f_0)^{k_3 -1}\cdot \frac{15 \cdot (k_3 -0.5)}{(k_3 + 1.5)(k_3 + 2)}\cdot \frac {k_2}{f_0} \hspace{0.15cm}\underline{= 0}\hspace{0.05cm} ,$$
$$ \alpha_2 = (B/f_0)^{k_3 -0.5}\cdot \frac{10 \cdot (1-k_3)}{(k_3 + 1.5)(k_3 + 2)}\cdot \frac {k_2}{\sqrt{f_0}}= \frac{10 \cdot 0.5}{2 \cdot 2.5}\cdot \frac {k_2}{\sqrt{f_0}} = \hspace{0.15cm}\underline{ {k_2}/{\sqrt{f_0}}} \hspace{0.05cm} .$$


(4)  For the two coefficients, with  $k_2 = 10.8 \ \rm dB/km$,  $k_3 = 0.6 \ \rm dB/km$  and  $B/f_0 = 30$:

$$\alpha_1 = (B/f_0)^{k_3 -1}\cdot \frac{15 \cdot (k_3 -0.5)}{(k_3 + 1.5)(k_3 + 2)}\cdot \frac {k_2}{f_0} = 30^{-0.4}\cdot \frac{15 \cdot 0.1}{2.1 \cdot 2.6}\cdot \frac {10.8 \, {\rm dB/km} }{1 \, {\rm MHz}} \hspace{0.15cm}\underline{ \approx 0.761\, {{\rm dB} }/{({\rm km \cdot MHz})}} \hspace{0.05cm} ,$$
$$ \alpha_2 = (B/f_0)^{k_3 -0.5}\cdot \frac{10 \cdot (1-k_3)}{(k_3 + 1.5)(k_3 + 2)}\cdot \frac {k_2}{\sqrt{f_0}}= \frac {k_2}{\sqrt{f_0}} = 30^{0.1}\cdot \frac{10 \cdot 0.4}{2.1 \cdot 2.6}\cdot \frac {10.8 \, {\rm dB/km} }{1 \, {\rm MHz^{0.5}}} \hspace{0.15cm}\underline{ \approx 11.1\, {{\rm dB} }/{({\rm km \cdot \sqrt{MHz}}})}\hspace{0.05cm} .$$


(5)  According to the given equation  $\alpha_{\rm II}(f)$  thus also holds:

$$\alpha_{\rm II}(f = 30 \, {\rm MHz}) = \alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot \sqrt {f} = \big [ \hspace{0.05cm} 4.4 + 0.761 \cdot 30 + 11.1 \cdot \sqrt {30}\hspace{0.05cm} \big ]\frac {\rm dB}{\rm km } \hspace{0.15cm}\underline{\approx 88.1\, {\rm dB}/{\rm km }} \hspace{0.05cm}.$$