Difference between revisions of "Aufgaben:Exercise 4.6Z: Locality Curve for Phase Modulation"

From LNTwww
m (Text replacement - "Signal_Representation/Äquivalentes_Tiefpass-Signal_und_zugehörige_Spektralfunktion" to "Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function")
 
(11 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signaldarstellung/Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion
+
{{quiz-Header|Buchseite=Signal_Representation/Equivalent Low-Pass Signal and its Spectral Function
 
}}
 
}}
  
[[File:P_ID768__Sig_Z_4_6.png|right|frame|Eine mögliche Ortskurve bei Phasenmodulation]]
+
[[File:P_ID768__Sig_Z_4_6.png|right|frame|A possible locality curve with phase modulation]]
Wir gehen hier von einem Nachrichtensignal  $q(t)$  aus, das normiert (dimensionslos) betrachtet wird.  
+
We assume a source signal  $q(t)$, which is considered normalised.
*Der Maximalwert dieses Signal ist  $q_{\rm max} = 1$  und der minimale Signalwert beträgt  $q_{\rm min} = -0.5$.  
+
*The maximum value of this signal is  $q_{\rm max} = 1$  and the minimum signal value is  $q_{\rm min} = -0.5$.  
*Ansonsten ist über  $q(t)$  nichts bekannt.
+
*Otherwise nothing is known about  $q(t)$.
  
  
Das modulierte Signal lautet bei Phasenmodulation:
+
The modulated signal with phase modulation   ⇒   "transmission signal"  is:
 
:$$s(t) = s_0 \cdot  {\cos} (  \omega_{\rm T}\hspace{0.05cm} t + \eta \cdot q(t)).$$
 
:$$s(t) = s_0 \cdot  {\cos} (  \omega_{\rm T}\hspace{0.05cm} t + \eta \cdot q(t)).$$
Hierbei bezeichnet  $\eta$  den so genannten Modulationsindex. Auch die konstante Hüllkurve  $s_0$  sei eine dimensionslose Größe, die im Folgenden zu  $s_0 = 2$  gesetzt wird (siehe Grafik).
+
Here  $\eta$  denotes the so-called  "modulation index".  Let the constant envelope  $s_0$  also be a normalise quantity, which is set to  $s_0 = 2$  in the following (see diagram).
  
Ersetzt man die Cosinusfunktion durch die komplexe Exponentialfunktion, so kommt man zum analytischen Signal
+
If one replaces the cosine function with the complex exponential function, one arrives at the analytical signal
 
:$$s_{\rm +}(t) = s_0\cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(
 
:$$s_{\rm +}(t) = s_0\cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(
 
\omega_{\rm T} \hspace{0.05cm}\cdot \hspace{0.05cm} t + \eta \hspace{0.05cm} \cdot \hspace{0.05cm} q(t)) }.$$
 
\omega_{\rm T} \hspace{0.05cm}\cdot \hspace{0.05cm} t + \eta \hspace{0.05cm} \cdot \hspace{0.05cm} q(t)) }.$$
Daraus kann man das in der Grafik skizzierte äquivalente Tiefpass-Signal wie folgt berechnen:
+
From this, one can calculate the equivalent low-pass signal sketched in the graph as follows:
 
:$$s_{\rm TP}(t) = s_{\rm +}(t)  \cdot {\rm e}^{-{\rm
 
:$$s_{\rm TP}(t) = s_{\rm +}(t)  \cdot {\rm e}^{-{\rm
 
j}\hspace{0.05cm} \cdot\hspace{0.05cm} \omega_{\rm T} \hspace{0.05cm}\cdot\hspace{0.05cm}  t } = s_0\cdot
 
j}\hspace{0.05cm} \cdot\hspace{0.05cm} \omega_{\rm T} \hspace{0.05cm}\cdot\hspace{0.05cm}  t } = s_0\cdot
Line 25: Line 25:
  
  
 +
''Hints:''
 +
*This exercise belongs to the chapter  [[Signal_Representation/Equivalent_Low-Pass_Signal_and_its_Spectral_Function|Equivalent Low-Pass Signal and its Spectral Function]].
 +
 +
*You can check your solution with the interactive applet  [[Applets:Physical_Signal_%26_Equivalent_Lowpass_Signal|Physical Signal & Equivalent Low-Pass Signal]]    ⇒   "Locality Curve".
  
  
''Hinweise:''
 
*Die Aufgabe gehört zum  Kapitel  [[Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function|Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion]].
 
 
*Sie können Ihre Lösung mit dem interaktiven Applet  [[Applets:Physikalisches_Signal_%26_Äquivalentes_TP-Signal|Physikalisches Signal & Äquivalentes TP-Signal]]   ⇒   Ortskurve überprüfen.
 
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lautet die Betragsfunktion&nbsp; $a(t) = |s_{\rm TP}(t)|$? Welcher Wert gilt für&nbsp; $t = 0$?
+
{What is the magnitude function&nbsp; $a(t) = |s_{\rm TP}(t)|$?&nbsp; Which value is valid for&nbsp; $t = 0$?
 
|type="{}"}
 
|type="{}"}
 
$a(t = 0)\ = \ $  { 2 3% }
 
$a(t = 0)\ = \ $  { 2 3% }
  
  
{Zwischen welchen Extremwerten&nbsp; $\phi_{\rm min}$&nbsp; und&nbsp; $\phi_{\rm  max}$&nbsp; schwankt die Phase&nbsp; $\phi (t)$?
+
{Between which extreme values&nbsp; $\phi_{\rm min}$&nbsp; and&nbsp; $\phi_{\rm  max}$&nbsp; does the phase&nbsp; $\phi (t)$?
 
|type="{}"}
 
|type="{}"}
$\phi_{\rm min}\ = \ $ { -93--87 } &nbsp;$\text{Grad}$
+
$\phi_{\rm min}\ = \ $ { -93--87 } &nbsp;$\text{deg}$
$\phi_{\rm min}\ = \ $ { 180 3% } &nbsp;$\text{Grad}$
+
$\phi_{\rm min}\ = \ $ { 180 3% } &nbsp;$\text{deg}$
  
  
{Bestimmen Sie den Modulationsindex&nbsp; $\eta$&nbsp; aus der Phasenfunktion&nbsp; $\phi (t)$.
+
{Determine the modulation index&nbsp; $\eta$&nbsp; from the phase function&nbsp; $\phi (t)$.
 
|type="{}"}
 
|type="{}"}
 
$\eta\ = \ $ { 3.1415 3% }
 
$\eta\ = \ $ { 3.1415 3% }
  
  
{Welche der folgenden Aussagen sind zutreffend?
+
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
- Aus&nbsp; $q(t) = -0.5 = \text{const.}$&nbsp; folgt&nbsp; $s(t) = s_0 \cdot \cos (\omega_T \cdot t)$.
+
- From&nbsp; $q(t) = -0.5 = \text{const.}$&nbsp; follows&nbsp; $s(t) = s_0 \cdot \cos (\omega_T \cdot t)$.
+ Bei einem Rechtecksignal&nbsp; $q(t)$&nbsp; $($mit nur  zwei möglichen Signalwerten&nbsp; $\pm 0.5)$&nbsp; entartet die Ortskurve zu zwei Punkten.
+
+ With a rectangular signal&nbsp; $($with only two possible signal values&nbsp; $q(t)=\pm 0.5)$&nbsp; the locality curve degenerates to two points.
+ Mit den Signalwerten&nbsp; $\pm 1$&nbsp; $(q_{\rm min} = -0.5$&nbsp; ist dann nicht mehr gültig$)$ entartet die Ortskurve zu einem Punkt: &nbsp; $s_{\rm TP}(t) = -s_0$.  
+
+ With the signal values&nbsp; $\pm 1$&nbsp; $(q_{\rm min} = -0.5$&nbsp; is then no longer valid$)$ the locality curve degenerates to one point: &nbsp; $s_{\rm TP}(t) = -s_0$.  
  
  
Line 62: Line 62:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  Die Ortskurve ist ein Kreisbogen mit dem Radius&nbsp; $2$. Deshalb ist die Betragsfunktion  konstant&nbsp;  $\underline{a(t) = 2}$.
+
'''(1)'''&nbsp;  The locality curve is a circular arc with radius&nbsp; $2$.&nbsp; Therefore, the magnitude function is constant&nbsp;  $\underline{a(t) = 2}$.
  
  
'''(2)'''&nbsp; Aus der Grafik ist zu erkennen, dass folgende Zahlenwerte gelten:  
+
'''(2)'''&nbsp; From the graph it can be seen that the following numerical values apply:
 
*$\phi_{\rm min} =-  \pi /2 \;  \Rightarrow  \;  \underline{-90^\circ}$,
 
*$\phi_{\rm min} =-  \pi /2 \;  \Rightarrow  \;  \underline{-90^\circ}$,
 
*$\phi_{\rm max} = +\pi \; \Rightarrow  \; \underline{+180^\circ}$.
 
*$\phi_{\rm max} = +\pi \; \Rightarrow  \; \underline{+180^\circ}$.
Line 73: Line 73:
  
  
'''(3)'''&nbsp; Allgemein gilt hier der Zusammenhang&nbsp; $s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}
+
'''(3)'''&nbsp; In general, the relation&nbsp; $s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}
\phi(t)}.$ Ein Vergleich mit der gegebenen Funktion liefert:
+
\phi(t)}$&nbsp; applies here.&nbsp; A comparison with the given function yields:
 
:$$\phi(t) = \eta \cdot q(t).$$
 
:$$\phi(t) = \eta \cdot q(t).$$
*Der maximale Phasenwert&nbsp; $\phi_{\rm max} = +\pi \; \Rightarrow  \; {180^\circ}$&nbsp; ergibt sich für die Signalamplitude&nbsp; $q_{\rm max} = 1$. Daraus folgt direkt&nbsp; ${\eta = \pi} \; \underline{\approx 3.14}$.  
+
*The maximum phase value&nbsp; $\phi_{\rm max} = +\pi \; \Rightarrow  \; {180^\circ}$&nbsp; is obtained for the signal amplitude&nbsp; $q_{\rm max} = 1$.&nbsp; From this follows directly&nbsp; ${\eta = \pi} \; \underline{\approx 3.1415}$.  
*Dieser Modulationsindex wird durch die Werte&nbsp; $\phi_{\rm min} = -\pi /2$&nbsp; und&nbsp; $q_{\rm min} = -0.5$&nbsp; bestätigt.
+
*This modulation index is confirmed by the values&nbsp; $\phi_{\rm min} = -\pi /2$&nbsp; and&nbsp; $q_{\rm min} = -0.5$&nbsp;.
  
  
[[File:P_ID769__Sig_Z_4_6_d_neu.png|right|frame|Ortskurve (Phasendiagramm) beim Rechtecksignal]]
+
[[File:P_ID769__Sig_Z_4_6_d_neu.png|right|frame|Locality curve (phase diagram) for a rectangular source signal]]
'''(4)'''&nbsp;  Richtig sind der <u>zweite und der dritte Lösungsvorschlag</u>:
+
'''(4)'''&nbsp;  <u>The second and third proposed solutions</u> are correct:
*Ist&nbsp; $q(t) = \text{const.} =-0.5$, so ist die Phasenfunktion ebenfalls konstant:
+
*If&nbsp; $q(t) = \text{const.} =-0.5$, the phase function is also constant:
 
:$$\phi(t) = \eta \cdot q(t) = - {\pi}/{2}\hspace{0.3cm}
 
:$$\phi(t) = \eta \cdot q(t) = - {\pi}/{2}\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm} s_{\rm TP}(t) = - {\rm j} \cdot s_0  = - 2{\rm j}.$$
 
\Rightarrow \hspace{0.3cm} s_{\rm TP}(t) = - {\rm j} \cdot s_0  = - 2{\rm j}.$$
*Somit gilt für das tatsächliche, physikalische Signal:
+
*Thus, for the actual physical signal:
 
:$$s(t) = s_0 \cdot  {\cos} (  \omega_{\rm T}\hspace{0.05cm} t -
 
:$$s(t) = s_0 \cdot  {\cos} (  \omega_{\rm T}\hspace{0.05cm} t -
 
  {\pi}/{2}) = 2 \cdot  {\sin} (  \omega_{\rm T} \hspace{0.05cm} t ).$$
 
  {\pi}/{2}) = 2 \cdot  {\sin} (  \omega_{\rm T} \hspace{0.05cm} t ).$$
*Dagegen führt&nbsp; $q(t) = +0.5$&nbsp; zu &nbsp;$\phi (t) = \pi /2$&nbsp; und zu &nbsp;$s_{\rm TP}(t) = 2{\rm j}$.  
+
*In contrast,&nbsp; $q(t) = +0.5$&nbsp; leads to &nbsp;$\phi (t) = \pi /2$&nbsp; and to &nbsp;$s_{\rm TP}(t) = 2{\rm j}$.  
*Ist&nbsp; $q(t)$&nbsp; ein Rechtecksignal, das abwechselnd die Werte&nbsp; $+0.5$&nbsp; und&nbsp; $–0.5$&nbsp; annimmt, dann besteht die Ortskurve nur aus zwei Punkten auf der imaginären Achse, und zwar unabhängig davon, wie lange die Intervalle mit&nbsp; $+0.5$&nbsp; und&nbsp; $–0.5$ dauern.
+
*If&nbsp; $q(t)$&nbsp; is a rectangular signal that alternates between&nbsp; $+0.5$&nbsp; and&nbsp; $–0.5$&nbsp; , then the locality curve consists of only two points on the imaginary axis, regardless of how long the intervals with &nbsp; $+0.5$&nbsp; and&nbsp; $–0.5$&nbsp; last.
*Gilt dagegen&nbsp; $q(t) = \pm 1$, so ergeben sich rein formal die möglichen Phasenwerte&nbsp; $+\pi$&nbsp; und&nbsp; $-\pi$, die aber identisch sind.  
+
*If, on the other hand,&nbsp; $q(t) = \pm 1$, then the possible phase values&nbsp; $+\pi$&nbsp; and&nbsp; $-\pi$ result purely formally, but they are identical.  
*Die „Ortskurve” besteht dann nur aus einem einzigen Punkt: &nbsp; $s_{\rm TP}(t) = - s_0$ &nbsp; <br>&rArr; &nbsp;  das Signal&nbsp; $s(t)$&nbsp; ist für alle Zeiten&nbsp; $t$&nbsp;  „minus-cosinusförmig”.
+
*The locality curve then consists of only one point: &nbsp; $s_{\rm TP}(t) = - s_0$ &nbsp; &rArr; &nbsp;  the signal&nbsp; $s(t)$&nbsp; is&nbsp;  "minus-cosine"&nbsp; for all times&nbsp; $t$.
  
  
Line 98: Line 98:
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Exercises for Signal Representation|^4. Bandpassartige Signale^]]
+
[[Category:Signal Representation: Exercises|^4.3 Equivalent LP Signal and its Spectral Function^]]

Latest revision as of 15:02, 24 May 2021

A possible locality curve with phase modulation

We assume a source signal  $q(t)$, which is considered normalised.

  • The maximum value of this signal is  $q_{\rm max} = 1$  and the minimum signal value is  $q_{\rm min} = -0.5$.
  • Otherwise nothing is known about  $q(t)$.


The modulated signal with phase modulation   ⇒   "transmission signal"  is:

$$s(t) = s_0 \cdot {\cos} ( \omega_{\rm T}\hspace{0.05cm} t + \eta \cdot q(t)).$$

Here  $\eta$  denotes the so-called  "modulation index".  Let the constant envelope  $s_0$  also be a normalise quantity, which is set to  $s_0 = 2$  in the following (see diagram).

If one replaces the cosine function with the complex exponential function, one arrives at the analytical signal

$$s_{\rm +}(t) = s_0\cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}( \omega_{\rm T} \hspace{0.05cm}\cdot \hspace{0.05cm} t + \eta \hspace{0.05cm} \cdot \hspace{0.05cm} q(t)) }.$$

From this, one can calculate the equivalent low-pass signal sketched in the graph as follows:

$$s_{\rm TP}(t) = s_{\rm +}(t) \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot\hspace{0.05cm} \omega_{\rm T} \hspace{0.05cm}\cdot\hspace{0.05cm} t } = s_0\cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm} \eta \hspace{0.05cm} \cdot \hspace{0.05cm} q(t) }.$$



Hints:



Questions

1

What is the magnitude function  $a(t) = |s_{\rm TP}(t)|$?  Which value is valid for  $t = 0$?

$a(t = 0)\ = \ $

2

Between which extreme values  $\phi_{\rm min}$  and  $\phi_{\rm max}$  does the phase  $\phi (t)$?

$\phi_{\rm min}\ = \ $

 $\text{deg}$
$\phi_{\rm min}\ = \ $

 $\text{deg}$

3

Determine the modulation index  $\eta$  from the phase function  $\phi (t)$.

$\eta\ = \ $

4

Which of the following statements are true?

From  $q(t) = -0.5 = \text{const.}$  follows  $s(t) = s_0 \cdot \cos (\omega_T \cdot t)$.
With a rectangular signal  $($with only two possible signal values  $q(t)=\pm 0.5)$  the locality curve degenerates to two points.
With the signal values  $\pm 1$  $(q_{\rm min} = -0.5$  is then no longer valid$)$ the locality curve degenerates to one point:   $s_{\rm TP}(t) = -s_0$.


Solution

(1)  The locality curve is a circular arc with radius  $2$.  Therefore, the magnitude function is constant  $\underline{a(t) = 2}$.


(2)  From the graph it can be seen that the following numerical values apply:

  • $\phi_{\rm min} =- \pi /2 \; \Rightarrow \; \underline{-90^\circ}$,
  • $\phi_{\rm max} = +\pi \; \Rightarrow \; \underline{+180^\circ}$.


(3)  In general, the relation  $s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t)}$  applies here.  A comparison with the given function yields:

$$\phi(t) = \eta \cdot q(t).$$
  • The maximum phase value  $\phi_{\rm max} = +\pi \; \Rightarrow \; {180^\circ}$  is obtained for the signal amplitude  $q_{\rm max} = 1$.  From this follows directly  ${\eta = \pi} \; \underline{\approx 3.1415}$.
  • This modulation index is confirmed by the values  $\phi_{\rm min} = -\pi /2$  and  $q_{\rm min} = -0.5$ .


Locality curve (phase diagram) for a rectangular source signal

(4)  The second and third proposed solutions are correct:

  • If  $q(t) = \text{const.} =-0.5$, the phase function is also constant:
$$\phi(t) = \eta \cdot q(t) = - {\pi}/{2}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} s_{\rm TP}(t) = - {\rm j} \cdot s_0 = - 2{\rm j}.$$
  • Thus, for the actual physical signal:
$$s(t) = s_0 \cdot {\cos} ( \omega_{\rm T}\hspace{0.05cm} t - {\pi}/{2}) = 2 \cdot {\sin} ( \omega_{\rm T} \hspace{0.05cm} t ).$$
  • In contrast,  $q(t) = +0.5$  leads to  $\phi (t) = \pi /2$  and to  $s_{\rm TP}(t) = 2{\rm j}$.
  • If  $q(t)$  is a rectangular signal that alternates between  $+0.5$  and  $–0.5$  , then the locality curve consists of only two points on the imaginary axis, regardless of how long the intervals with   $+0.5$  and  $–0.5$  last.
  • If, on the other hand,  $q(t) = \pm 1$, then the possible phase values  $+\pi$  and  $-\pi$ result purely formally, but they are identical.
  • The locality curve then consists of only one point:   $s_{\rm TP}(t) = - s_0$   ⇒   the signal  $s(t)$  is  "minus-cosine"  for all times  $t$.