Difference between revisions of "Aufgaben:Exercise 4.6Z: Locality Curve for Phase Modulation"

From LNTwww
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function
+
{{quiz-Header|Buchseite=Signal_Representation/Equivalent Low-Pass Signal and its Spectral Function
 
}}
 
}}
  
[[File:P_ID768__Sig_Z_4_6.png|right|frame|A possible locus curve with phase modulation]]
+
[[File:P_ID768__Sig_Z_4_6.png|right|frame|A possible locality curve with phase modulation]]
We assume here a message signal  $q(t)$ , which is considered normalised (dimensionless).
+
We assume a source signal  $q(t)$, which is considered normalised.
 
*The maximum value of this signal is  $q_{\rm max} = 1$  and the minimum signal value is  $q_{\rm min} = -0.5$.  
 
*The maximum value of this signal is  $q_{\rm max} = 1$  and the minimum signal value is  $q_{\rm min} = -0.5$.  
*Otherwise nothing is known about  $q(t)$ .
+
*Otherwise nothing is known about  $q(t)$.
  
  
The modulated signal with phase modulation is:
+
The modulated signal with phase modulation   ⇒   "transmission signal"  is:
 
:$$s(t) = s_0 \cdot  {\cos} (  \omega_{\rm T}\hspace{0.05cm} t + \eta \cdot q(t)).$$
 
:$$s(t) = s_0 \cdot  {\cos} (  \omega_{\rm T}\hspace{0.05cm} t + \eta \cdot q(t)).$$
Here  $\eta$  denotes the so-called modulation index. Let the constant envelope  $s_0$  also be a dimensionless quantity, which is set to  $s_0 = 2$  in the following (see diagram).
+
Here  $\eta$  denotes the so-called  "modulation index".  Let the constant envelope  $s_0$  also be a normalise quantity, which is set to  $s_0 = 2$  in the following (see diagram).
  
 
If one replaces the cosine function with the complex exponential function, one arrives at the analytical signal
 
If one replaces the cosine function with the complex exponential function, one arrives at the analytical signal
Line 25: Line 25:
  
  
 +
''Hints:''
 +
*This exercise belongs to the chapter  [[Signal_Representation/Equivalent_Low-Pass_Signal_and_its_Spectral_Function|Equivalent Low-Pass Signal and its Spectral Function]].
 +
 +
*You can check your solution with the interactive applet  [[Applets:Physical_Signal_%26_Equivalent_Lowpass_Signal|Physical Signal & Equivalent Low-Pass Signal]]    ⇒   "Locality Curve".
  
  
''Hints:''
 
*This task belongs to the chapter  [[Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function|Equivalent Low-Pass Signal and Its Spectral Function]].
 
 
*You can check your solution with the interactive applet  [[Applets:Physikalisches_Signal_%26_Äquivalentes_TP-Signal|Physical Signal and Equivalent Low-Pass Signal]]   ⇒   locus curve,
 
  
  
Line 36: Line 36:
  
 
<quiz display=simple>
 
<quiz display=simple>
{What is the magnitude function&nbsp; $a(t) = |s_{\rm TP}(t)|$? Which value is valid for&nbsp; $t = 0$?
+
{What is the magnitude function&nbsp; $a(t) = |s_{\rm TP}(t)|$?&nbsp; Which value is valid for&nbsp; $t = 0$?
 
|type="{}"}
 
|type="{}"}
 
$a(t = 0)\ = \ $  { 2 3% }
 
$a(t = 0)\ = \ $  { 2 3% }
Line 55: Line 55:
 
|type="[]"}
 
|type="[]"}
 
- From&nbsp; $q(t) = -0.5 = \text{const.}$&nbsp; follows&nbsp; $s(t) = s_0 \cdot \cos (\omega_T \cdot t)$.
 
- From&nbsp; $q(t) = -0.5 = \text{const.}$&nbsp; follows&nbsp; $s(t) = s_0 \cdot \cos (\omega_T \cdot t)$.
+ With a rectangular signal&nbsp; $q(t)$&nbsp; $($with only two possible signal values&nbsp; $\pm 0.5)$&nbsp; the locus curve degenerates to two points.
+
+ With a rectangular signal&nbsp; $($with only two possible signal values&nbsp; $q(t)=\pm 0.5)$&nbsp; the locality curve degenerates to two points.
+ With the signal values&nbsp; $\pm 1$&nbsp; $(q_{\rm min} = -0.5$&nbsp; is then no longer valid$)$ the locus curve degenerates to one point: &nbsp; $s_{\rm TP}(t) = -s_0$.  
+
+ With the signal values&nbsp; $\pm 1$&nbsp; $(q_{\rm min} = -0.5$&nbsp; is then no longer valid$)$ the locality curve degenerates to one point: &nbsp; $s_{\rm TP}(t) = -s_0$.  
  
  
Line 64: Line 64:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  The locus curve is a circular arc with radius&nbsp; $2$. Therefore, the magnitude function is constant&nbsp;  $\underline{a(t) = 2}$.
+
'''(1)'''&nbsp;  The locality curve is a circular arc with radius&nbsp; $2$.&nbsp; Therefore, the magnitude function is constant&nbsp;  $\underline{a(t) = 2}$.
  
  
Line 74: Line 74:
  
 
'''(3)'''&nbsp; In general, the relation&nbsp; $s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}
 
'''(3)'''&nbsp; In general, the relation&nbsp; $s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}
\phi(t)}.$ applies here. A comparison with the given function yields:
+
\phi(t)}$&nbsp; applies here.&nbsp; A comparison with the given function yields:
 
:$$\phi(t) = \eta \cdot q(t).$$
 
:$$\phi(t) = \eta \cdot q(t).$$
*The maximum phase value&nbsp; $\phi_{\rm max} = +\pi \; \Rightarrow  \; {180^\circ}$&nbsp; is obtained for the signal amplitude&nbsp; $q_{\rm max} = 1$. From this follows directly&nbsp; ${\eta = \pi} \; \underline{\approx 3.14}$.  
+
*The maximum phase value&nbsp; $\phi_{\rm max} = +\pi \; \Rightarrow  \; {180^\circ}$&nbsp; is obtained for the signal amplitude&nbsp; $q_{\rm max} = 1$.&nbsp; From this follows directly&nbsp; ${\eta = \pi} \; \underline{\approx 3.1415}$.  
 
*This modulation index is confirmed by the values&nbsp; $\phi_{\rm min} = -\pi /2$&nbsp; and&nbsp; $q_{\rm min} = -0.5$&nbsp;.
 
*This modulation index is confirmed by the values&nbsp; $\phi_{\rm min} = -\pi /2$&nbsp; and&nbsp; $q_{\rm min} = -0.5$&nbsp;.
  
  
[[File:P_ID769__Sig_Z_4_6_d_neu.png|right|frame|Locus curve (phase diagram) for a rectangular signal]]
+
[[File:P_ID769__Sig_Z_4_6_d_neu.png|right|frame|Locality curve (phase diagram) for a rectangular source signal]]
 
'''(4)'''&nbsp;  <u>The second and third proposed solutions</u> are correct:
 
'''(4)'''&nbsp;  <u>The second and third proposed solutions</u> are correct:
 
*If&nbsp; $q(t) = \text{const.} =-0.5$, the phase function is also constant:
 
*If&nbsp; $q(t) = \text{const.} =-0.5$, the phase function is also constant:
 
:$$\phi(t) = \eta \cdot q(t) = - {\pi}/{2}\hspace{0.3cm}
 
:$$\phi(t) = \eta \cdot q(t) = - {\pi}/{2}\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm} s_{\rm TP}(t) = - {\rm j} \cdot s_0  = - 2{\rm j}.$$
 
\Rightarrow \hspace{0.3cm} s_{\rm TP}(t) = - {\rm j} \cdot s_0  = - 2{\rm j}.$$
*Thus, for the actual, physical signal:
+
*Thus, for the actual physical signal:
 
:$$s(t) = s_0 \cdot  {\cos} (  \omega_{\rm T}\hspace{0.05cm} t -
 
:$$s(t) = s_0 \cdot  {\cos} (  \omega_{\rm T}\hspace{0.05cm} t -
 
  {\pi}/{2}) = 2 \cdot  {\sin} (  \omega_{\rm T} \hspace{0.05cm} t ).$$
 
  {\pi}/{2}) = 2 \cdot  {\sin} (  \omega_{\rm T} \hspace{0.05cm} t ).$$
 
*In contrast,&nbsp; $q(t) = +0.5$&nbsp; leads to &nbsp;$\phi (t) = \pi /2$&nbsp; and to &nbsp;$s_{\rm TP}(t) = 2{\rm j}$.  
 
*In contrast,&nbsp; $q(t) = +0.5$&nbsp; leads to &nbsp;$\phi (t) = \pi /2$&nbsp; and to &nbsp;$s_{\rm TP}(t) = 2{\rm j}$.  
*If&nbsp; $q(t)$&nbsp; is a rectangular signal that alternates between&nbsp; $+0.5$&nbsp; and&nbsp; $–0.5$&nbsp; , then the locus curve consists of only two points on the imaginary axis, regardless of how long the intervals with &nbsp; $+0.5$&nbsp; and&nbsp; $–0.5$ last.
+
*If&nbsp; $q(t)$&nbsp; is a rectangular signal that alternates between&nbsp; $+0.5$&nbsp; and&nbsp; $–0.5$&nbsp; , then the locality curve consists of only two points on the imaginary axis, regardless of how long the intervals with &nbsp; $+0.5$&nbsp; and&nbsp; $–0.5$&nbsp; last.
 
*If, on the other hand,&nbsp; $q(t) = \pm 1$, then the possible phase values&nbsp; $+\pi$&nbsp; and&nbsp; $-\pi$ result purely formally, but they are identical.  
 
*If, on the other hand,&nbsp; $q(t) = \pm 1$, then the possible phase values&nbsp; $+\pi$&nbsp; and&nbsp; $-\pi$ result purely formally, but they are identical.  
*The „locus curve” then consists of only one point: &nbsp; $s_{\rm TP}(t) = - s_0$ &nbsp; <br>&rArr; &nbsp;  the signal&nbsp; $s(t)$&nbsp; is  „minus-cosine” for all times&nbsp; $t$&nbsp;.
+
*The locality curve then consists of only one point: &nbsp; $s_{\rm TP}(t) = - s_0$ &nbsp; &rArr; &nbsp;  the signal&nbsp; $s(t)$&nbsp; is&nbsp; "minus-cosine"&nbsp; for all times&nbsp; $t$.
  
  

Latest revision as of 15:02, 24 May 2021

A possible locality curve with phase modulation

We assume a source signal  $q(t)$, which is considered normalised.

  • The maximum value of this signal is  $q_{\rm max} = 1$  and the minimum signal value is  $q_{\rm min} = -0.5$.
  • Otherwise nothing is known about  $q(t)$.


The modulated signal with phase modulation   ⇒   "transmission signal"  is:

$$s(t) = s_0 \cdot {\cos} ( \omega_{\rm T}\hspace{0.05cm} t + \eta \cdot q(t)).$$

Here  $\eta$  denotes the so-called  "modulation index".  Let the constant envelope  $s_0$  also be a normalise quantity, which is set to  $s_0 = 2$  in the following (see diagram).

If one replaces the cosine function with the complex exponential function, one arrives at the analytical signal

$$s_{\rm +}(t) = s_0\cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}( \omega_{\rm T} \hspace{0.05cm}\cdot \hspace{0.05cm} t + \eta \hspace{0.05cm} \cdot \hspace{0.05cm} q(t)) }.$$

From this, one can calculate the equivalent low-pass signal sketched in the graph as follows:

$$s_{\rm TP}(t) = s_{\rm +}(t) \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot\hspace{0.05cm} \omega_{\rm T} \hspace{0.05cm}\cdot\hspace{0.05cm} t } = s_0\cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm} \eta \hspace{0.05cm} \cdot \hspace{0.05cm} q(t) }.$$



Hints:



Questions

1

What is the magnitude function  $a(t) = |s_{\rm TP}(t)|$?  Which value is valid for  $t = 0$?

$a(t = 0)\ = \ $

2

Between which extreme values  $\phi_{\rm min}$  and  $\phi_{\rm max}$  does the phase  $\phi (t)$?

$\phi_{\rm min}\ = \ $

 $\text{deg}$
$\phi_{\rm min}\ = \ $

 $\text{deg}$

3

Determine the modulation index  $\eta$  from the phase function  $\phi (t)$.

$\eta\ = \ $

4

Which of the following statements are true?

From  $q(t) = -0.5 = \text{const.}$  follows  $s(t) = s_0 \cdot \cos (\omega_T \cdot t)$.
With a rectangular signal  $($with only two possible signal values  $q(t)=\pm 0.5)$  the locality curve degenerates to two points.
With the signal values  $\pm 1$  $(q_{\rm min} = -0.5$  is then no longer valid$)$ the locality curve degenerates to one point:   $s_{\rm TP}(t) = -s_0$.


Solution

(1)  The locality curve is a circular arc with radius  $2$.  Therefore, the magnitude function is constant  $\underline{a(t) = 2}$.


(2)  From the graph it can be seen that the following numerical values apply:

  • $\phi_{\rm min} =- \pi /2 \; \Rightarrow \; \underline{-90^\circ}$,
  • $\phi_{\rm max} = +\pi \; \Rightarrow \; \underline{+180^\circ}$.


(3)  In general, the relation  $s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t)}$  applies here.  A comparison with the given function yields:

$$\phi(t) = \eta \cdot q(t).$$
  • The maximum phase value  $\phi_{\rm max} = +\pi \; \Rightarrow \; {180^\circ}$  is obtained for the signal amplitude  $q_{\rm max} = 1$.  From this follows directly  ${\eta = \pi} \; \underline{\approx 3.1415}$.
  • This modulation index is confirmed by the values  $\phi_{\rm min} = -\pi /2$  and  $q_{\rm min} = -0.5$ .


Locality curve (phase diagram) for a rectangular source signal

(4)  The second and third proposed solutions are correct:

  • If  $q(t) = \text{const.} =-0.5$, the phase function is also constant:
$$\phi(t) = \eta \cdot q(t) = - {\pi}/{2}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} s_{\rm TP}(t) = - {\rm j} \cdot s_0 = - 2{\rm j}.$$
  • Thus, for the actual physical signal:
$$s(t) = s_0 \cdot {\cos} ( \omega_{\rm T}\hspace{0.05cm} t - {\pi}/{2}) = 2 \cdot {\sin} ( \omega_{\rm T} \hspace{0.05cm} t ).$$
  • In contrast,  $q(t) = +0.5$  leads to  $\phi (t) = \pi /2$  and to  $s_{\rm TP}(t) = 2{\rm j}$.
  • If  $q(t)$  is a rectangular signal that alternates between  $+0.5$  and  $–0.5$  , then the locality curve consists of only two points on the imaginary axis, regardless of how long the intervals with   $+0.5$  and  $–0.5$  last.
  • If, on the other hand,  $q(t) = \pm 1$, then the possible phase values  $+\pi$  and  $-\pi$ result purely formally, but they are identical.
  • The locality curve then consists of only one point:   $s_{\rm TP}(t) = - s_0$   ⇒   the signal  $s(t)$  is  "minus-cosine"  for all times  $t$.