Difference between revisions of "Aufgaben:Exercise 4.7: About the Rake Receiver"

From LNTwww
 
(21 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/Nachrichtentechnische Aspekte von UMTS}}
+
{{quiz-Header|Buchseite=Examples_of_Communication_Systems/Telecommunications_Aspects_of_UMTS}}
  
[[File:P_ID1976__Mod_Z_5_5.png|right|frame|Zweiwegekanal und RAKE–Empfänger]]
+
[[File:EN_Mod_Z_5_5.png|right|frame|Two-way channel <br>& rake receiver]]
  
Die Grafik zeigt einen Zweiwegekanal (gelbe Hinterlegung). Die entsprechende Beschreibungsgleichung lautet:
+
The graphic shows a two-way channel (yellow background). The corresponding description equation is:
  
 
:$$r(t) =0.6 \cdot s(t) + 0.4 \cdot s (t - \tau) \hspace{0.05cm}.$$
 
:$$r(t) =0.6 \cdot s(t) + 0.4 \cdot s (t - \tau) \hspace{0.05cm}.$$
  
Die Verzögerung auf dem Nebenpfad sei $\tau = 1 \ \rm \mu s$. Darunter gezeichnet ist die Struktur eines RAKE–Empfängers (grüne Hinterlegung) mit den allgemeinen Koeffizienten $K, h_{0}, h_{1}, \tau_{0}$ und $\tau_{1}$.
+
Let the delay on the side path be&nbsp; $\tau = 1 \ \rm &micro; s$. Drawn below is the structure of a RAKE receiver (green background) with general coefficients&nbsp; $K, \ h_{0}, \ h_{1}, \ \tau_{0}$&nbsp; and&nbsp; $\tau_{1}$.
  
Der RAKE–Empfänger hat die Aufgabe, die Energie der beiden Signalpfade zu bündeln und dadurch die Entscheidung sicherer zu machen. Die gemeinsame Impulsantwort von Kanal und RAKE–Empfänger kann in der Form
+
The RAKE receiver has the task of combining the energy of the two signal paths to make the decision more reliable. The joint impulse response of the channel and the RAKE receiver can be expressed in the form
  
 
:$$h_{\rm KR}(t) = A_0 \cdot \delta (t ) + A_1 \cdot \delta (t - \tau) + A_2 \cdot \delta (t - 2\tau)$$
 
:$$h_{\rm KR}(t) = A_0 \cdot \delta (t ) + A_1 \cdot \delta (t - \tau) + A_2 \cdot \delta (t - 2\tau)$$
  
angegeben werden, allerdings nur dann, wenn die RAKE–Koeffizienten $h_{0}, h_{1}, \tau_{0}$ und $\tau_{1}$ geeignet gewählt werden. Der Hauptanteil von $h_{\rm KR}(t)$ soll bei $t = \tau$ liegen.
+
can be given, but only if the RAKE coefficients&nbsp; $h_{0}, \ h_{1}, \ \tau_{0}$&nbsp; and&nbsp; $\tau_{1}$&nbsp; are appropriately chosen. The main part of&nbsp; $h_{\rm KR}(t)$&nbsp; shall be at&nbsp; $t = \tau$&nbsp; .
  
Die Konstante $K$ ist aus Normierungsgründen notwendig. Um den Einfluss von AWGN–Rauschen nicht zu verfälschen, muss folgende Bedingung erfüllt sein:
+
The constant&nbsp; $K$&nbsp; is necessary for normalization reasons. In order not to distort the influence of AWGN noise, the following condition must be fulfilled:
 
:$$K= \frac{1}{h_0^2 + h_1^2}.$$
 
:$$K= \frac{1}{h_0^2 + h_1^2}.$$
  
Gesucht sind außer den geeigneten RAKE–Parametern auch die Signale $r(t)$ und $b(t)$, wenn $s(t)$ ein Rechteck der Höhe $1$ und der Breite $T = 5 \ \rm \mu s$ ist.
+
Besides the appropriate RAKE parameters, the signals&nbsp; $r(t)$&nbsp; and&nbsp; $b(t)$ are also sought if&nbsp; $s(t)$&nbsp; describes a rectangle of height&nbsp; $1$&nbsp; and width&nbsp; $T = 5 \ \rm &micro; s$&nbsp;.
  
  
''Hinweis:''
 
  
Die Aufgabe bezieht sich auf [[Beispiele_von_Nachrichtensystemen/Nachrichtentechnische_Aspekte_von_UMTS|Nachrichtentechnische Aspekte von UMTS]] dieses Buches sowie auf [[Modulationsverfahren/Fehlerwahrscheinlichkeit_der_PN–Modulation#Untersuchungen_zum_RAKE.E2.80.93Empf.C3.A4nger|Untersuchungen zum RAKE–Empfänger]] von [[Modulationsverfahren/Fehlerwahrscheinlichkeit_der_PN–Modulation|Fehlerwahrscheinlichkeit der PN–Modulation]] im Buch „Modulationsverfahren”.
+
 
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
Hints:
 +
*The task belongs to the chapter [[Examples_of_Communication_Systems/Telecommunications_Aspects_of_UMTS|"Telecommunications Aspects of UMTS"]].
 +
*Reference is also made to the page&nbsp; [[Modulation_Methods/Error_Probability_of_Direct-Sequence_Spread_Spectrum_Modulation#Examinations_of_the_rake_receiver|"Examinations of the rake receiver"]] in the book "Modulation Methods".
 +
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
 
 +
{What statements are valid for the channel impulse response&nbsp; $h_{\rm K}(t)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
+ $h_{\rm K}(t)$&nbsp; consists of two Dirac delta functions.
+ Richtig
+
- $h_{\rm K}(t)$&nbsp; is complex-valued.
 +
- $h_{\rm K}(t)$&nbsp; is a function periodic with the delay time&nbsp; $\tau$&nbsp;.
  
{Multiple-Choice Frage
+
{What statements hold for the channel frequency response&nbsp; $H_{\rm K}(f)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
- It holds&nbsp; $H_{\rm K}(f = 0) = 2$.
+ Richtig
+
+ $H_{\rm K}(f)$&nbsp; is complex-valued.
 +
+ $|H_{\rm K}(f)|$&nbsp; is a function periodic with frequency&nbsp; $1/ \tau$&nbsp;.
  
{Input-Box Frage
+
{Set&nbsp; $K = 1, \ h_{0} = 0.6$&nbsp; and &nbsp; $h_{1} = 0.4$. Determine the delays&nbsp; $\tau_{0}$&nbsp; and&nbsp; $\tau_{1}$ so that the&nbsp; $h_{\rm KR}(t)$ equation is satisfied with&nbsp; $A_{0} = A_{2}$&nbsp; .
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$\tau_{0} \ = \ $ { 1 3% } $\ \rm &micro; s$
 +
$\tau_{1} \ = \ $ { 0 3% } $\ \rm&micro; s$
  
{Input-Box Frage
+
{What value to choose for the constant&nbsp; $K$&nbsp; ?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$K \ = \ $ { 1.923 3% }
  
{Multiple-Choice Frage
+
{What statements hold for the signals&nbsp; $r(t)$&nbsp; and&nbsp; $b(t)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
+ The maximum value of&nbsp; $r(t)$&nbsp; is&nbsp; $1$.
+ Richtig
+
- The width of&nbsp; $r(t)$&nbsp; is&nbsp; $7 \ \rm &micro; s$.
 
+
- The maximum value of&nbsp; $b(t)$&nbsp; is&nbsp; $1 \ \rm &micro; s$.
 +
+ The width of&nbsp; $b(t)$&nbsp; is&nbsp; $7 \ \rm &micro; s$.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp;
+
'''(1)'''&nbsp; Correct is <u>solution 1</u>:
 +
*The impulse response&nbsp; $h_{\rm K}(t)$&nbsp; is obtained as the received signal&nbsp; $r(t)$ when a dirac impulse is present at the input&nbsp; $\Rightarrow s(t) = \delta(t)$.
 +
* From this follows:
 +
:$$h_{\rm K}(t) = 0.6 \cdot \delta (t ) + 0.4 \cdot \delta (t - \tau) \hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; Correct are <u>solutions 2 and 3</u>:
 +
*The channel frequency response&nbsp; $H_{\rm K}(f)$&nbsp; is by definition the Fourier transform of the impulse response&nbsp; $h_{\rm K}(t)$. Using the displacement theorem, this results in:
 +
:$$H_{\rm K}(f) = 0.6 + 0.4 \cdot {\rm e}^{ \hspace{0.03cm}{\rm j} \hspace{0.03cm} \cdot \hspace{0.03cm}2 \pi f \tau}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} H_{\rm K}(f= 0) = 0.6 + 0.4 = 1 \hspace{0.05cm}.$$
 +
*The first proposed solution is accordingly wrong in contrast to the other two:
 +
 +
*$H_{\rm K}(f)$&nbsp; is complex-valued and the magnitude is periodic with&nbsp; $1/\tau$, as the following calculation shows:
 +
:$$|H_{\rm K}(f)|^2 = \left [0.6 + 0.4 \cdot \cos(2 \pi f \tau) \right ]^2 + \left [ 0. 4 \cdot \sin(2 \pi f \tau) \right ]^2 = \left [0.6^2 + 0.4^2 \cdot \left ( \cos^2(2 \pi f \tau) + \sin^2(2 \pi f \tau)\right ) \right ] + 2 \cdot 0.6 \cdot 0.4 \cdot \cos(2 \pi f \tau)$$
 +
:$$\Rightarrow \hspace{0.3cm}|H_{\rm K}(f)| = \sqrt { 0.52 + 0.48 \cdot \cos(2 \pi f \tau) } \hspace{0.05cm}.$$
 +
*For&nbsp; $f = 0$&nbsp; is&nbsp; $|H_{\rm K}(f)| = 1$. At the respective frequency interval&nbsp; $1/\tau$&nbsp; this value repeats.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; We first set&nbsp; $K = 1$ as agreed. In total, there are four ways to get from&nbsp; $s(t)$&nbsp; to the output signal&nbsp; $b(t)$.
 +
*To satisfy the given&nbsp; $h_{\rm KR}(t)$ equation, either&nbsp; $\tau_{0} = 0$&nbsp; must hold or&nbsp; $\tau_{1}= 0$. With&nbsp; $\tau_{0} = 0$&nbsp; we obtain for the impulse response:
 +
:$$ h_{\rm KR}(t) \ = \ 0.6 \cdot h_0 \cdot \delta (t ) + 0.4 \cdot h_0 \cdot \delta (t - \tau) + 0. 6 \cdot h_1 \cdot \delta (t -\tau_1) + 0.4 \cdot h_1 \cdot \delta (t - \tau-\tau_1) \hspace{0.05cm}.$$
 +
*To be able to concentrate the "main energy" on a time point, then&nbsp; $\tau_{1} = \tau$&nbsp; would have to be chosen. With&nbsp; $h_{0} = 0.6$&nbsp; and&nbsp; $h_{1} = 0.4$&nbsp; one then gets&nbsp; $A_{0} \neq A_{2}$:
 +
:$$h_{\rm KR}(t) = 0.36 \cdot \delta (t ) \hspace{-0.05cm}+\hspace{-0.05cm}0.48 \cdot \delta (t - \tau) \hspace{-0.05cm}+\hspace{-0.05cm} 0.16 \cdot \delta (t - 2\tau)\hspace{0.05cm}.$$
 +
*In contrast, with&nbsp; $h_{0} = 0.6$,&nbsp; $h_{1} = 0.4,&nbsp; \tau_{0} = \tau$&nbsp; und&nbsp; $\tau_{1} = 0$:
 +
:$$h_{\rm KR}(t)= 0.6 \cdot h_0 \cdot \delta (t - \tau ) \hspace{-0.05cm}+\hspace{-0.05cm} 0.4 \cdot h_0 \cdot \delta (t - 2\tau) \hspace{-0.05cm}+\hspace{-0.05cm} 0.6 \cdot h_1 \cdot \delta (t) \hspace{-0.05cm}+\hspace{-0.05cm} 0.4 \cdot h_1 \cdot \delta (t - \tau)= 0.52 \cdot \delta (t - \tau) \hspace{-0.05cm}+\hspace{-0.05cm} 0.24 \cdot \big[ \delta (t ) +\delta (t - 2\tau)\big] \hspace{0.05cm}.$$ 
 +
*Here the additional condition&nbsp; $A_{0} = A_{2}$&nbsp; is satisfied. Thus, the result we are looking for is:
 +
:$$\tau_0 = \tau \hspace{0.15cm}\underline {= 1\,{\rm &micro; s}} \hspace{0.05cm},\hspace{0.2cm}\tau_1 \hspace{0.15cm}\underline {=0} \hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; It holds according to the given equation.
 +
:$$K= \frac{1}{h_0^2 + h_1^2} = \frac{1}{0.6^2 + 0.4^2} = \frac{1}{0.52}\hspace{0.15cm}\underline { \approx 1.923 } \hspace{0.05cm}.$$
 +
*Thus, for the joint impulse response&nbsp; (it holds&nbsp; $0.24/0.52 = 6/13$) we obtain:
 +
:$$h_{\rm KR}(t) = \frac{6}{13} \cdot \delta (t ) + 1.00 \cdot \delta (t - \tau) + \frac{6}{13} \cdot \delta (t - 2\tau)\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; For the received signal&nbsp; $r(t)$&nbsp; and for the RAKE output signal&nbsp; $b(t)$&nbsp; hold:
 +
[[File:P_ID1980__Mod_Z_5_5e.png|right|frame|Signals to illustrate the RAKE receiver]]
 +
:$$ r(t) = 0.6 \cdot s(t) + 0.4 \cdot s (t - 1\,{\rm \mu s})\hspace{0.05cm},$$
 +
:$$ b(t) = \frac{6}{13} \cdot s(t) \hspace{-0.05cm} + \hspace{-0.05cm} 1.00 \cdot s (t \hspace{-0.05cm} - \hspace{-0.05cm}1\,{\rm \mu s}) \hspace{-0.05cm}+ \hspace{-0.05cm}\frac{6}{13} \cdot s (t \hspace{-0.05cm}- \hspace{-0.05cm} 2\,{\rm \mu s}) \hspace{0.05cm}.$$
  
'''(2)'''&nbsp;
+
Correct are <u>statements 1 and 4</u>, as the graph shows.
  
'''(3)'''&nbsp;
+
Regarding the AWGN noise behavior,&nbsp; $r(t)$&nbsp; and&nbsp; $b(t)$&nbsp; are comparable.
  
'''(4)'''&nbsp;
 
  
'''(5)'''&nbsp;
 
  
  
Line 71: Line 125:
  
  
[[Category:Aufgaben zu Beispiele von Nachrichtensystemen|^4.3 Nachrichtentechnische Aspekte von UMTS
+
[[Category:Examples of Communication Systems: Exercises|^4.3 Telecommunications Aspects
 
^]]
 
^]]

Latest revision as of 14:28, 3 March 2023

Two-way channel
& rake receiver

The graphic shows a two-way channel (yellow background). The corresponding description equation is:

$$r(t) =0.6 \cdot s(t) + 0.4 \cdot s (t - \tau) \hspace{0.05cm}.$$

Let the delay on the side path be  $\tau = 1 \ \rm µ s$. Drawn below is the structure of a RAKE receiver (green background) with general coefficients  $K, \ h_{0}, \ h_{1}, \ \tau_{0}$  and  $\tau_{1}$.

The RAKE receiver has the task of combining the energy of the two signal paths to make the decision more reliable. The joint impulse response of the channel and the RAKE receiver can be expressed in the form

$$h_{\rm KR}(t) = A_0 \cdot \delta (t ) + A_1 \cdot \delta (t - \tau) + A_2 \cdot \delta (t - 2\tau)$$

can be given, but only if the RAKE coefficients  $h_{0}, \ h_{1}, \ \tau_{0}$  and  $\tau_{1}$  are appropriately chosen. The main part of  $h_{\rm KR}(t)$  shall be at  $t = \tau$  .

The constant  $K$  is necessary for normalization reasons. In order not to distort the influence of AWGN noise, the following condition must be fulfilled:

$$K= \frac{1}{h_0^2 + h_1^2}.$$

Besides the appropriate RAKE parameters, the signals  $r(t)$  and  $b(t)$ are also sought if  $s(t)$  describes a rectangle of height  $1$  and width  $T = 5 \ \rm µ s$ .





Hints:



Questions

1

What statements are valid for the channel impulse response  $h_{\rm K}(t)$ ?

$h_{\rm K}(t)$  consists of two Dirac delta functions.
$h_{\rm K}(t)$  is complex-valued.
$h_{\rm K}(t)$  is a function periodic with the delay time  $\tau$ .

2

What statements hold for the channel frequency response  $H_{\rm K}(f)$ ?

It holds  $H_{\rm K}(f = 0) = 2$.
$H_{\rm K}(f)$  is complex-valued.
$|H_{\rm K}(f)|$  is a function periodic with frequency  $1/ \tau$ .

3

Set  $K = 1, \ h_{0} = 0.6$  and   $h_{1} = 0.4$. Determine the delays  $\tau_{0}$  and  $\tau_{1}$ so that the  $h_{\rm KR}(t)$ equation is satisfied with  $A_{0} = A_{2}$  .

$\tau_{0} \ = \ $

$\ \rm µ s$
$\tau_{1} \ = \ $

$\ \rmµ s$

4

What value to choose for the constant  $K$  ?

$K \ = \ $

5

What statements hold for the signals  $r(t)$  and  $b(t)$ ?

The maximum value of  $r(t)$  is  $1$.
The width of  $r(t)$  is  $7 \ \rm µ s$.
The maximum value of  $b(t)$  is  $1 \ \rm µ s$.
The width of  $b(t)$  is  $7 \ \rm µ s$.


Solution

(1)  Correct is solution 1:

  • The impulse response  $h_{\rm K}(t)$  is obtained as the received signal  $r(t)$ when a dirac impulse is present at the input  $\Rightarrow s(t) = \delta(t)$.
  • From this follows:
$$h_{\rm K}(t) = 0.6 \cdot \delta (t ) + 0.4 \cdot \delta (t - \tau) \hspace{0.05cm}.$$


(2)  Correct are solutions 2 and 3:

  • The channel frequency response  $H_{\rm K}(f)$  is by definition the Fourier transform of the impulse response  $h_{\rm K}(t)$. Using the displacement theorem, this results in:
$$H_{\rm K}(f) = 0.6 + 0.4 \cdot {\rm e}^{ \hspace{0.03cm}{\rm j} \hspace{0.03cm} \cdot \hspace{0.03cm}2 \pi f \tau}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} H_{\rm K}(f= 0) = 0.6 + 0.4 = 1 \hspace{0.05cm}.$$
  • The first proposed solution is accordingly wrong in contrast to the other two:
  • $H_{\rm K}(f)$  is complex-valued and the magnitude is periodic with  $1/\tau$, as the following calculation shows:
$$|H_{\rm K}(f)|^2 = \left [0.6 + 0.4 \cdot \cos(2 \pi f \tau) \right ]^2 + \left [ 0. 4 \cdot \sin(2 \pi f \tau) \right ]^2 = \left [0.6^2 + 0.4^2 \cdot \left ( \cos^2(2 \pi f \tau) + \sin^2(2 \pi f \tau)\right ) \right ] + 2 \cdot 0.6 \cdot 0.4 \cdot \cos(2 \pi f \tau)$$
$$\Rightarrow \hspace{0.3cm}|H_{\rm K}(f)| = \sqrt { 0.52 + 0.48 \cdot \cos(2 \pi f \tau) } \hspace{0.05cm}.$$
  • For  $f = 0$  is  $|H_{\rm K}(f)| = 1$. At the respective frequency interval  $1/\tau$  this value repeats.


(3)  We first set  $K = 1$ as agreed. In total, there are four ways to get from  $s(t)$  to the output signal  $b(t)$.

  • To satisfy the given  $h_{\rm KR}(t)$ equation, either  $\tau_{0} = 0$  must hold or  $\tau_{1}= 0$. With  $\tau_{0} = 0$  we obtain for the impulse response:
$$ h_{\rm KR}(t) \ = \ 0.6 \cdot h_0 \cdot \delta (t ) + 0.4 \cdot h_0 \cdot \delta (t - \tau) + 0. 6 \cdot h_1 \cdot \delta (t -\tau_1) + 0.4 \cdot h_1 \cdot \delta (t - \tau-\tau_1) \hspace{0.05cm}.$$
  • To be able to concentrate the "main energy" on a time point, then  $\tau_{1} = \tau$  would have to be chosen. With  $h_{0} = 0.6$  and  $h_{1} = 0.4$  one then gets  $A_{0} \neq A_{2}$:
$$h_{\rm KR}(t) = 0.36 \cdot \delta (t ) \hspace{-0.05cm}+\hspace{-0.05cm}0.48 \cdot \delta (t - \tau) \hspace{-0.05cm}+\hspace{-0.05cm} 0.16 \cdot \delta (t - 2\tau)\hspace{0.05cm}.$$
  • In contrast, with  $h_{0} = 0.6$,  $h_{1} = 0.4,  \tau_{0} = \tau$  und  $\tau_{1} = 0$:
$$h_{\rm KR}(t)= 0.6 \cdot h_0 \cdot \delta (t - \tau ) \hspace{-0.05cm}+\hspace{-0.05cm} 0.4 \cdot h_0 \cdot \delta (t - 2\tau) \hspace{-0.05cm}+\hspace{-0.05cm} 0.6 \cdot h_1 \cdot \delta (t) \hspace{-0.05cm}+\hspace{-0.05cm} 0.4 \cdot h_1 \cdot \delta (t - \tau)= 0.52 \cdot \delta (t - \tau) \hspace{-0.05cm}+\hspace{-0.05cm} 0.24 \cdot \big[ \delta (t ) +\delta (t - 2\tau)\big] \hspace{0.05cm}.$$
  • Here the additional condition  $A_{0} = A_{2}$  is satisfied. Thus, the result we are looking for is:
$$\tau_0 = \tau \hspace{0.15cm}\underline {= 1\,{\rm µ s}} \hspace{0.05cm},\hspace{0.2cm}\tau_1 \hspace{0.15cm}\underline {=0} \hspace{0.05cm}.$$


(4)  It holds according to the given equation.

$$K= \frac{1}{h_0^2 + h_1^2} = \frac{1}{0.6^2 + 0.4^2} = \frac{1}{0.52}\hspace{0.15cm}\underline { \approx 1.923 } \hspace{0.05cm}.$$
  • Thus, for the joint impulse response  (it holds  $0.24/0.52 = 6/13$) we obtain:
$$h_{\rm KR}(t) = \frac{6}{13} \cdot \delta (t ) + 1.00 \cdot \delta (t - \tau) + \frac{6}{13} \cdot \delta (t - 2\tau)\hspace{0.05cm}.$$


(5)  For the received signal  $r(t)$  and for the RAKE output signal  $b(t)$  hold:

Signals to illustrate the RAKE receiver
$$ r(t) = 0.6 \cdot s(t) + 0.4 \cdot s (t - 1\,{\rm \mu s})\hspace{0.05cm},$$
$$ b(t) = \frac{6}{13} \cdot s(t) \hspace{-0.05cm} + \hspace{-0.05cm} 1.00 \cdot s (t \hspace{-0.05cm} - \hspace{-0.05cm}1\,{\rm \mu s}) \hspace{-0.05cm}+ \hspace{-0.05cm}\frac{6}{13} \cdot s (t \hspace{-0.05cm}- \hspace{-0.05cm} 2\,{\rm \mu s}) \hspace{0.05cm}.$$

Correct are statements 1 and 4, as the graph shows.

Regarding the AWGN noise behavior,  $r(t)$  and  $b(t)$  are comparable.