Difference between revisions of "Aufgaben:Exercise 5.1Z: Cosine Square Noise Limitation"

From LNTwww
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID491__Sto_Z_5_1.png|right|frame|Top:&nbsp; Input PDS&nbsp; ${\it Φ}_x(f)$, <br>Bottom:&nbsp; Filter frequency response $H(f)$]]
+
[[File:P_ID491__Sto_Z_5_1.png|right|frame|Top:&nbsp; Input PSD&nbsp; ${\it Φ}_x(f)$, Bottom:&nbsp; Frequency response&nbsp; $H(f)$]]
We consider bandlimited white noise&nbsp; $x(t)$&nbsp; with the power density spectrum&nbsp; ${\it Φ}_x(f)$&nbsp; sketched above. This is constant equal to&nbsp; $N_0/2$&nbsp; in the range&nbsp; $|f| \le B_x$&nbsp;  and zero outside.
+
We consider bandlimited white noise&nbsp; $x(t)$&nbsp; with the power-spectral density&nbsp; ${\it Φ}_x(f)$&nbsp; sketched above.&nbsp; This is constant equal to&nbsp; $N_0/2$&nbsp; in the range&nbsp; $|f| \le B_x$&nbsp;  and zero outside.
  
 
Assume the following numerical values:
 
Assume the following numerical values:
  
*Noise power density&nbsp; $N_0 = 10^{-16} \ \rm V^2/Hz$,  
+
*Noise power-spectral density&nbsp; $N_0 = 10^{-16} \ \rm V^2/Hz$,  
*(one-sided) noise bandwidth&nbsp; $B_x = 10 \ \rm kHz$.
+
*(one-sided)&nbsp; noise bandwidth&nbsp; $B_x = 10 \ \rm kHz$.
  
  
 
This signal is applied to the input of a low-pass filter with frequency response
 
This signal is applied to the input of a low-pass filter with frequency response
$$H(f) = \left\{ {\begin{array}{*{20}c}  {\cos ^2 \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)} & {\rm{f\ddot{u}r}\quad \left| \it f \right| \le \it f_{\rm 0} ,}  \\  0 & {{\rm{else}}}  \\\end{array}} \right.$$
+
:$$H(f) = \left\{ {\begin{array}{*{20}c}  {\cos ^2 \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)} & {\rm{f\ddot{u}r}\quad \left| \it f \right| \le \it f_{\rm 0} ,}  \\  0 & {{\rm{else}}}  \\\end{array}} \right.$$
  
&nbsp; Here&nbsp; $f_0$&nbsp; denotes the absolute filter bandwidth, which can vary between&nbsp; $B_x/2$&nbsp; and&nbsp; $2B_x$.&nbsp;  
+
*Here, $f_0$&nbsp; denotes the absolute filter bandwidth,&nbsp; which can vary between&nbsp; $B_x/2$&nbsp; and&nbsp; $2B_x$.&nbsp;  
  
The filter output signal is denoted by&nbsp; $y(t)$.&nbsp;  
+
*The filter output signal is denoted by&nbsp; $y(t)$.&nbsp;  
  
  
Line 28: Line 28:
 
''Notes:''  
 
''Notes:''  
 
*The exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Stochastic_System_Theory|Stochastic System Theory]].
 
*The exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Stochastic_System_Theory|Stochastic System Theory]].
*Reference is also made to the chapters&nbsp; [[Theory_of_Stochastic_Signals/Gaußverteilte_Zufallsgrößen|Gaussian Distributed Random Variables]]&nbsp; and&nbsp; [[Theory_of_Stochastic_Signals/Leistungsdichtespektrum_(LDS)|Power Density Spectrum]].  
+
*Reference is also made to the chapters&nbsp; [[Theory_of_Stochastic_Signals/Gaußverteilte_Zufallsgrößen|Gaussian Distributed Random Variables]]&nbsp; and&nbsp; [[Theory_of_Stochastic_Signals/Leistungsdichtespektrum_(LDS)|Power-Spectral Density]].  
 
   
 
   
 
*Use the following equations if necessary:
 
*Use the following equations if necessary:
 
:$${\rm Q}(x) \approx \frac{1}{{\sqrt {2{\rm{\pi }}}  \cdot x}} \cdot {\rm{e}}^{ - x^2 /2} \hspace{0.15cm}(
 
:$${\rm Q}(x) \approx \frac{1}{{\sqrt {2{\rm{\pi }}}  \cdot x}} \cdot {\rm{e}}^{ - x^2 /2} \hspace{0.15cm}(
\text{für große }x),$$
+
\text{for large }x),$$
 
:$$\int {\rm{cos}}^{\rm{2}}( {ax} )\hspace{0.1cm}{\rm{d}}x = \frac{1}{2} \cdot x + \frac{1}{4a} \cdot \sin ( {2ax} ),$$
 
:$$\int {\rm{cos}}^{\rm{2}}( {ax} )\hspace{0.1cm}{\rm{d}}x = \frac{1}{2} \cdot x + \frac{1}{4a} \cdot \sin ( {2ax} ),$$
 
:$$\int {\cos ^4 } ( {ax} )\hspace{0.1cm}{\rm{d}}x = \frac{3}{8} \cdot x + \frac{1}{4a} \cdot \sin ( {2ax} ) + \frac{1}{32a} \cdot \sin ( {4ax} ).$$
 
:$$\int {\cos ^4 } ( {ax} )\hspace{0.1cm}{\rm{d}}x = \frac{3}{8} \cdot x + \frac{1}{4a} \cdot \sin ( {2ax} ) + \frac{1}{32a} \cdot \sin ( {4ax} ).$$

Revision as of 19:06, 9 February 2022

Top:  Input PSD  ${\it Φ}_x(f)$, Bottom:  Frequency response  $H(f)$

We consider bandlimited white noise  $x(t)$  with the power-spectral density  ${\it Φ}_x(f)$  sketched above.  This is constant equal to  $N_0/2$  in the range  $|f| \le B_x$  and zero outside.

Assume the following numerical values:

  • Noise power-spectral density  $N_0 = 10^{-16} \ \rm V^2/Hz$,
  • (one-sided)  noise bandwidth  $B_x = 10 \ \rm kHz$.


This signal is applied to the input of a low-pass filter with frequency response

$$H(f) = \left\{ {\begin{array}{*{20}c} {\cos ^2 \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)} & {\rm{f\ddot{u}r}\quad \left| \it f \right| \le \it f_{\rm 0} ,} \\ 0 & {{\rm{else}}} \\\end{array}} \right.$$
  • Here, $f_0$  denotes the absolute filter bandwidth,  which can vary between  $B_x/2$  and  $2B_x$. 
  • The filter output signal is denoted by  $y(t)$. 





Notes:

  • Use the following equations if necessary:
$${\rm Q}(x) \approx \frac{1}{{\sqrt {2{\rm{\pi }}} \cdot x}} \cdot {\rm{e}}^{ - x^2 /2} \hspace{0.15cm}( \text{for large }x),$$
$$\int {\rm{cos}}^{\rm{2}}( {ax} )\hspace{0.1cm}{\rm{d}}x = \frac{1}{2} \cdot x + \frac{1}{4a} \cdot \sin ( {2ax} ),$$
$$\int {\cos ^4 } ( {ax} )\hspace{0.1cm}{\rm{d}}x = \frac{3}{8} \cdot x + \frac{1}{4a} \cdot \sin ( {2ax} ) + \frac{1}{32a} \cdot \sin ( {4ax} ).$$



Questions

1

What is the rms value of the input signal  $x(t)$?

$\sigma_x \ = \ $

$\ \rm µ V$

2

What is the probability that an instantaneous voltage value of the input signal is greater than  $5 \hspace{0.05cm} \rm µ V$  in magnitude?

${\rm Pr}(|x(t)| > 5 \hspace{0.05cm} \rm µ V) \ = \ $

$\ \cdot 10^{-6}$

3

What is the mean value (DC component) of the output signal  $y(t)$?

$m_y\ \ = \ $

$\ \rm µ V$

4

Calculate the rms value of the output signal  $y(t)$  for  $f_0 = B_x/2$.

$\sigma_y \ = \ $

$\ \rm µ V$

5

Calculate the rms value of  $y(t)$  under the condition  $f_0 = 2 \cdot B_x$.

$\sigma_y \ = \ $

$\ \rm µ V$

6

Let  $f_0 = 2 \cdot B_x$  be further valid. What is the probability that the output signal  $y(t)$  is greater than  $5 \hspace{0.05cm} \rm µ V$  in magnitude?

${\rm Pr}(|y(t)| > 5 \hspace{0.05cm} \rm µ V) \ = \ $

$\ \cdot 10^{-12}$


Solution

(1)  The variance (power)   ⇒   rms squared of the signal  $x(t)$  is

$$\sigma _x ^2 = \frac{N_0 }{2} \cdot 2B_x = N_0 \cdot B_x = 10^{ - 12} \;{\rm{V}}^2 \hspace{0.3cm}\Rightarrow\hspace{0.3cm} \sigma _x \hspace{0.15cm}\underline{ = 1\,\,{\rm µ}{\rm V}}.$$


(2)  According to the chapter "Gaussian Distributed Random Variables" and the approximation given here  $($for large  $x)$,  we obtain:

$$\Pr \left( {\left| {x(t)} \right| > 5\;{\rm{µ V}}} \right) = 2 \cdot {\rm Q}(5) = \frac{2}{{\sqrt {2{\rm{\pi }}} \cdot 5}} \cdot {\rm{e}}^{ - 12.5}\hspace{0.15cm} \underline{ \approx 0.6 \cdot 10^{ - 6}} .$$


(3)  The input signal  $x(t)$  is mean-free  $(m_x = 0)$.

  • Otherwise  ${\it Φ}_x(f)$  would still have to contain a Dirac function at  $f= 0$. 
  • The mean is not changed by the linear filter   ⇒   $m_y\hspace{0.05cm}\underline{ = 0}$.


(4)  For the power density spectrum of the output signal generally applies:

$${\it \Phi}_y (f) = {N_0 }/{2} \cdot \left| {H( f )} \right|^2 .$$
  • Thus, the variance  $\sigma _y^2$  can be calculated.  Taking advantage of the symmetry, we obtain:
$$\sigma _y ^2 = {N_0 }/{2} \cdot \int_{ - \infty }^{ + \infty } {\left| {H( f )} \right|^2 \hspace{0.1cm}{\rm{d}}f} = N_0 \cdot \int_0^{f_0 } {\cos ^4 } \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f .$$
  • The definite integral is given.  For each of the three solution terms, the value of the lower bound is zero.  It follows that:
$$\sigma _y ^2 = {N_0}/{2} \cdot \left( {\frac{3}{8} \cdot f_0 + \frac{f_0 }{{2{\rm{\pi }}}} \cdot \sin ( {\rm{\pi }} ) + \frac{f_0 }{{16{\rm{\pi }}}} \cdot \sin ( {{\rm{2\pi }}} )} \right) = \frac{3}{8} \cdot N_0 \cdot f_0 $$
$$\Rightarrow \hspace{0.3cm} f_0 = B_x/2\text{:}\hspace{0.2cm}\sigma _y ^2 = \frac{3}{16} \cdot N_0 \cdot B_x = \frac{3}{16} \cdot \sigma _x ^2 = 0.1875 \cdot 10^{ - 12} \;{\rm{V}}^2 \hspace{0.2cm}\Rightarrow \hspace{0.2cm}\sigma _y \hspace{0.15cm}\underline{ = 0.433\;{\rm{µ V}}}{\rm{.}}$$


(5)  Now the input PDS for  $|f| > B_x$  has no components.

  • Therefore holds:
$$\sigma _y ^2 = N_0\cdot \int_0^{B_x } {\cos ^4 \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f = N_0 \cdot \int_0^{f_0 /2} {\cos ^4 } \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f.}$$
  • The numerical evaluation yields for this:
$$\sigma _y ^2 = N_0 \left( {\frac{3}{8} \cdot B_x + \frac{B_x }{{2{\rm{\pi }}}} \cdot \sin ( {\frac{{\rm{\pi }}}{2}} ) + \frac{B_x }{{{\rm{16\pi }}}} \cdot \sin ( {\rm{\pi }} )} \right) = N_0 \cdot B_x \left( {\frac{3}{8} + \frac{1}{{2{\rm{\pi }}}}} \right) = 0.534\cdot \sigma _x ^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\sigma _y \hspace{0.15cm}\underline{ = 0.731\;{\rm{µ V}}}{\rm{.}}$$


(6)  Analogous to the sample solution of subtask  (2)  holds:

$$\Pr \left( {\left| {y\left( t \right)} \right| > 5\;{\rm{µ V}}} \right) = 2 \cdot {\rm Q}\left( {\frac{{5\;{\rm{µ V}}}}{{0.731\;{\rm{µ V}}}}} \right) = 2 \cdot {\rm Q}( {6.84} ).$$
  • With the given approximation, this probability has the following value:
$$\Pr \left( {\left| {y\left( t \right)} \right| > 5\;{\rm{µ V}}} \right) \hspace{0.15cm} \underline{ \approx 8 \cdot 10^{ - 12}}.$$