Difference between revisions of "Aufgaben:Exercise 5.2Z: About PN Modulation"

From LNTwww
 
(16 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/PN–Modulation
+
{{quiz-Header|Buchseite=Modulation_Methods/Direct-Sequence_Spread_Spectrum_Modulation
 
}}
 
}}
  
[[File:P_ID1871__Mod_Z_5_2.png|right|frame|Modelle von PN–Modulation (oben) und BPSK (unten)]]
+
[[File:EN_Bei_A_4_5.png|right|frame|Models of PN modulation (top) and BPSK (bottom)]]
Die Grafik zeigt das Ersatzschaltbild der PN–Modulation (''engl. Direct Sequence Spread Spectrum'', abgekürzt DS–SS) im äquivalenten Tiefpassbereich, wobei AWGN–Rauschen $n(t)$ zugrunde liegt. Darunter dargestellt ist das TP–Modell der binären Phasenmodulation (BPSK).  
+
The upper diagram shows the equivalent circuit of  $\rm PN$  modulation  $($Direct-Sequence Spread Spectrum, abbreviated  $\rm DS–SS)$  in the equivalent low-pass range,  based on AWGN noise  $n(t)$. 
  
Das Tiefpass–Sendesignal $s(t)$ ist aus Gründen einheitlicher Darstellung gleich dem rechteckförmigen Quellensignal $q(t) ∈ \{+1, –1\}$ mit Rechteckdauer $T$ gesetzt ist. Die Funktion des Integrators kann wie folgt beschrieben werden:
+
Shown below is the low-pass model of binary phase shift keying  $\rm (BPSK)$. 
 +
*The low-pass transmitted signal  $s(t)$  is set equal to the rectangular source signal  $q(t) ∈ \{+1, –1\}$  with rectangular duration  $T$  for reasons of uniformity.
 +
 
 +
*The function of the integrator can be described as follows:
 
:$$d (\nu T) = \frac{1}{T} \cdot \hspace{-0.1cm} \int_{(\nu -1 )T }^{\nu T} \hspace{-0.3cm} b (t )\hspace{0.1cm} {\rm d}t \hspace{0.05cm}.$$
 
:$$d (\nu T) = \frac{1}{T} \cdot \hspace{-0.1cm} \int_{(\nu -1 )T }^{\nu T} \hspace{-0.3cm} b (t )\hspace{0.1cm} {\rm d}t \hspace{0.05cm}.$$
  
Die beiden Modelle unterscheiden sich durch die Multiplikation mit dem $±1$–Spreizsignal $c(t)$ bei Sender und Empfänger, wobei von $c(t)$ lediglich der Spreizgrad $J$ bekannt ist.  
+
*The two models differ by multiplication with the  $±1$ spreading signal  $c(t)$  at transmitter and receiver,  where only the spreading factor  $J$  is known from  $c(t)$. 
  
Zu untersuchen ist, ob sich das untere BPSK–Modell auch bei PN–Modulation anwenden lässt und ob die BPSK–Fehlerwahrscheinlichkeit
+
 
 +
It has to be investigated whether the lower BPSK model can also be used for PN modulation and whether the BPSK error probability
 
:$$p_{\rm B} = {\rm Q} \left( \hspace{-0.05cm} \sqrt { {2 \cdot E_{\rm B}}/{N_{\rm 0}} } \hspace{0.05cm} \right )$$
 
:$$p_{\rm B} = {\rm Q} \left( \hspace{-0.05cm} \sqrt { {2 \cdot E_{\rm B}}/{N_{\rm 0}} } \hspace{0.05cm} \right )$$
auch für die PN–Modulation gültig ist, bzw. wie die angegebene Gleichung zu modifizieren ist.
+
is also valid for PN modulation,  or how the given equation should be modified.
 +
 
 +
 
 +
 
 +
 
  
 +
Notes:
 +
*This exercise belongs to the chapter  [[Modulation_Methods/Direct-Sequence_Spread_Spectrum_Modulation|Direct-Sequence Spread Spectrum Modulation]].
  
''Hinweise:''
+
*For the solution of this exercise,  the specification of the specific spreading sequence  $($M-sequence or Walsh function$)$  is not important.
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/PN–Modulation|PN–Modulation]].
+
*Für die Lösung dieser Aufgabe ist die Angabe der spezifischen Spreizfolge (M–Sequenz oder Walsh–Funktion) nicht von Bedeutung.
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Detektionssignalwerte sind bei BPSK (im rauschfreien Fall) möglich?
+
{Which detection signal values are possible with BPSK&nbsp; (in the noise-free case)?
 
|type="[]"}
 
|type="[]"}
- $d(νT)$ kann gaußverteilt sein.
+
- $d(νT)$&nbsp; can be Gaussian distributed.
- $d(νT)$ kann die Werte $+1$, $0$ und $-1$ annehmen.
+
- $d(νT)$&nbsp; can take the values &nbsp;$+1$, &nbsp;$0$&nbsp; and &nbsp;$-1$.&nbsp;
+ Es sind nur die Werte $d(νT) = +1$ und $d(νT) = -1$ möglich.
+
+ Only the values &nbsp;$d(νT) = +1$&nbsp; and &nbsp;$d(νT) = -1$&nbsp; are possible.
  
{Welche Werte sind bei PN–Modulation (im rauschfreien) Fall möglich?
+
{Which values are possible in PN modulation&nbsp; (in the noise-free)&nbsp; case?
 
|type="[]"}
 
|type="[]"}
- $d(νT)$ kann gaußverteilt sein.
+
- $d(νT)$&nbsp; can be Gaussian distributed.
- $d(νT)$ kann die Werte $+1$, $0$ und $-1$ annehmen.
+
- $d(νT)$&nbsp; can take the values &nbsp;$+1$, &nbsp;$0$&nbsp; and &nbsp;$-1$.&nbsp;
+ Es sind nur die Werte $d(νT) = +1$ und $d(νT) = -1$ möglich.
+
+ Only the values &nbsp;$d(νT) = +1$&nbsp; and &nbsp;$d(νT) = -1$&nbsp; are possible.
  
{Welche Modifikation muss am BPSK–Modell vorgenommen werden, damit es auch für die PN–Modulation anwendbar ist?
+
{What modification must be made to the BPSK model to make it applicable to PN modulation?
 
|type="[]"}
 
|type="[]"}
+ Das Rauschen $n(t)$ muss durch $n'(t) = n(t) · c(t)$ ersetzt werden.
+
+ The noise &nbsp;$n(t)$&nbsp; must be replaced by &nbsp;$n'(t) = n(t) · c(t)$.&nbsp;
- Die Integration muss nun über $J · T$ erfolgen.
+
- The integration must now be done over &nbsp;$J · T$.&nbsp;
- Die Rauschleistung $σ_n^2$ muss um den Faktor $J$ vermindert werden.
+
- The noise power &nbsp;$σ_n^2$&nbsp; must be reduced by a factor of &nbsp;$J$.&nbsp;
  
{Welche Bitfehlerwahrscheinlichkeit $p_B$ ergibt sich für $10 \lg \  (E_{\rm B}/N_0) = 6\ \rm  dB$ bei PN–Modulation?  
+
{What is the bit error probability &nbsp;$p_{\rm B}$&nbsp; for &nbsp;$10 \lg \  (E_{\rm B}/N_0) = 6\ \rm  dB$&nbsp; for PN modulation?&nbsp; <br>Note: &nbsp; For BPSK, the following applies in this case: &nbsp; $p_{\rm B} ≈ 2.3 · 10^{–3}$.
<br>''Hinweis.'' Bei BPSK gilt in diesem Fall: &nbsp; $p_{\rm B} ≈ 2.3 · 10^{–3}$.
+
|type="()"}
|type="[]"}
+
- The larger &nbsp;$J$&nbsp; is chosen, the smaller &nbsp;$p_{\rm B}$ is.
- Je größer $J$ gewählt wird, desto kleiner ist $p_{\rm B}$.
+
- The larger &nbsp;$J$&nbsp; is chosen, the larger &nbsp;$p_{\rm B}$ is.
- Je größer $J$ gewählt wird, desto größer ist $p_{\rm B}$.
+
+ Independent of &nbsp;$J$,&nbsp; the value &nbsp;$p_{\rm B} ≈ 2.3 · 10^{–3}$ is always obtained.
+ Es ergibt sich unabhängig von $J$ stets der Wert $p_{\rm B} ≈ 2.3 · 10^{–3}$.
 
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist der <u>letzte Lösungsvorschlag</u>:
+
'''(1)'''&nbsp; The&nbsp; <u>last solution</u>&nbsp; is correct:
*Es handelt sich hier um einen optimalen Empfänger.  
+
*We are dealing here with an optimal receiver.
*Ohne Rauschen ist Signal $b(t)$ innerhalb eines jeden Bits konstant gleich $+1$ oder $-1$. Aus der angegebenen Gleichung für den Integrator
+
*Without noise,&nbsp; the signal&nbsp; $b(t)$&nbsp; within each bit is constantly equal to&nbsp; $+1$&nbsp; or&nbsp; $-1$.  
 +
*From the given equation for the integrator
 
:$$d (\nu T) = \frac{1}{T} \cdot \hspace{-0.1cm} \int_{(\nu -1 )T }^{\nu T} \hspace{-0.3cm} b (t )\hspace{0.1cm} {\rm d}t $$
 
:$$d (\nu T) = \frac{1}{T} \cdot \hspace{-0.1cm} \int_{(\nu -1 )T }^{\nu T} \hspace{-0.3cm} b (t )\hspace{0.1cm} {\rm d}t $$
:folgt, dass $d(νT)$ nur die Werte $+1$ und $-1$ annehmen kann.  
+
:it follows that&nbsp; $d(νT)$&nbsp; can take only the values&nbsp; $+1$&nbsp; and&nbsp; $-1$.&nbsp;
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; Again the&nbsp; <u>last solution</u>&nbsp; is correct:
 +
* In the noise-free and interference-free case &nbsp; ⇒ &nbsp; $n(t) = 0$,&nbsp; the twofold multiplication by&nbsp; $c(t) ∈ \{+1, –1\}$&nbsp; can be omitted,
 +
*so that the upper model is identical to the lower model.
  
  
'''(2)'''&nbsp; Richtig ist wieder der <u>letzte Lösungsvorschlag</u>:
 
* Im rausch&ndash; und störungsfreien Fall ⇒ $n(t) = 0$ kann auf die zweifache Multiplikation mit $c(t) ∈ \{+1, –1\}$ verzichtet werden, so dass das obere Modell mit dem unteren Modell identisch ist.
 
  
 +
'''(3)'''&nbsp; <u>Solution 1</u>&nbsp; is correct:
 +
*Since both models are identical in the noise-free case,&nbsp; only the noise signal has to be adjusted: &nbsp; $n'(t) = n(t) · c(t)$.
 +
*In contrast,&nbsp; the other two solutions are not applicable:
 +
*The integration must still be done over&nbsp; $T = J · T_c$&nbsp; and the PN modulation does not reduce the AWGN noise.
  
'''(3)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 1</u>:
 
*Da beide Modelle im rauschfreien Fall identisch sind, muss nur das Rauschsignal angepasst werden: $n'(t) = n(t) · c(t)$.
 
*Die beiden anderen Lösungsvorschläge sind dagegen nicht zutreffend: Die Integration muss weiterhin über $T = J · T_c$ erfolgen und die PN–Modulation verringert das AWGN–Rauschen nicht.
 
  
  
'''(4)'''&nbsp; Richtig ist  der <u>letzte Lösungsvorschlag</u>:
+
'''(4)'''&nbsp; The&nbsp; <u>last solution</u>&nbsp; is correct:
*Multipliziert man das AWGN–Rauschen mit dem hochfrequenten $±1$–Signal $c(t)$, so ist auch das Produkt gaußförmig und weiß.
+
*Multiplying the AWGN noise by the high-frequency&nbsp; $±1$ signal&nbsp; $c(t)$,&nbsp; the product is also Gaussian and white.
* Wegen ${\rm E}[c^2(t)] = 1$ wird auch die Rauschvarianz nicht verändert.  
+
*Because of &nbsp;${\rm E}\big[c^2(t)\big] = 1$,&nbsp; the noise variance is not changed either.&nbsp; Thus:                                                           
*Die für BPSK gültige Gleichung $p_{\rm B} = {\rm Q} \left( \hspace{-0.05cm} \sqrt {{2 E_{\rm B}}/{N_{\rm 0}} } \hspace{0.05cm} \right )$ ist somit auch bei der PN–Modulation anwendbar und zwar unabhängig vom Spreizfaktor $J$ und von der spezifischen Spreizfolge.  
+
*The equation&nbsp; $p_{\rm B} = {\rm Q} \left( \hspace{-0.05cm} \sqrt {{2 E_{\rm B}}/{N_{\rm 0}} } \hspace{0.05cm} \right )$&nbsp; valid for BPSK is also applicable for PN modulation,&nbsp; independent of spreading factor&nbsp; $J$&nbsp; and specific spreading sequence.
*Ergo: &nbsp; Bei AWGN–Rauschen wird die Fehlerwahrscheinlichkeit durch Bandspreizung weder vergrößert noch verkleinert.  
+
*Ergo:&nbsp; For AWGN noise,&nbsp; band spreading neither increases nor decreases the error probability.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Modulationsverfahren|^5.2 PN–Modulation^]]
+
[[Category:Modulation Methods: Exercises|^5.2 PN Modulation^]]

Latest revision as of 18:55, 4 March 2023

Models of PN modulation (top) and BPSK (bottom)

The upper diagram shows the equivalent circuit of  $\rm PN$  modulation  $($Direct-Sequence Spread Spectrum, abbreviated  $\rm DS–SS)$  in the equivalent low-pass range,  based on AWGN noise  $n(t)$. 

Shown below is the low-pass model of binary phase shift keying  $\rm (BPSK)$. 

  • The low-pass transmitted signal  $s(t)$  is set equal to the rectangular source signal  $q(t) ∈ \{+1, –1\}$  with rectangular duration  $T$  for reasons of uniformity.
  • The function of the integrator can be described as follows:
$$d (\nu T) = \frac{1}{T} \cdot \hspace{-0.1cm} \int_{(\nu -1 )T }^{\nu T} \hspace{-0.3cm} b (t )\hspace{0.1cm} {\rm d}t \hspace{0.05cm}.$$
  • The two models differ by multiplication with the  $±1$ spreading signal  $c(t)$  at transmitter and receiver,  where only the spreading factor  $J$  is known from  $c(t)$. 


It has to be investigated whether the lower BPSK model can also be used for PN modulation and whether the BPSK error probability

$$p_{\rm B} = {\rm Q} \left( \hspace{-0.05cm} \sqrt { {2 \cdot E_{\rm B}}/{N_{\rm 0}} } \hspace{0.05cm} \right )$$

is also valid for PN modulation,  or how the given equation should be modified.



Notes:

  • For the solution of this exercise,  the specification of the specific spreading sequence  $($M-sequence or Walsh function$)$  is not important.


Questions

1

Which detection signal values are possible with BPSK  (in the noise-free case)?

$d(νT)$  can be Gaussian distributed.
$d(νT)$  can take the values  $+1$,  $0$  and  $-1$. 
Only the values  $d(νT) = +1$  and  $d(νT) = -1$  are possible.

2

Which values are possible in PN modulation  (in the noise-free)  case?

$d(νT)$  can be Gaussian distributed.
$d(νT)$  can take the values  $+1$,  $0$  and  $-1$. 
Only the values  $d(νT) = +1$  and  $d(νT) = -1$  are possible.

3

What modification must be made to the BPSK model to make it applicable to PN modulation?

The noise  $n(t)$  must be replaced by  $n'(t) = n(t) · c(t)$. 
The integration must now be done over  $J · T$. 
The noise power  $σ_n^2$  must be reduced by a factor of  $J$. 

4

What is the bit error probability  $p_{\rm B}$  for  $10 \lg \ (E_{\rm B}/N_0) = 6\ \rm dB$  for PN modulation? 
Note:   For BPSK, the following applies in this case:   $p_{\rm B} ≈ 2.3 · 10^{–3}$.

The larger  $J$  is chosen, the smaller  $p_{\rm B}$ is.
The larger  $J$  is chosen, the larger  $p_{\rm B}$ is.
Independent of  $J$,  the value  $p_{\rm B} ≈ 2.3 · 10^{–3}$ is always obtained.


Solution

(1)  The  last solution  is correct:

  • We are dealing here with an optimal receiver.
  • Without noise,  the signal  $b(t)$  within each bit is constantly equal to  $+1$  or  $-1$.
  • From the given equation for the integrator
$$d (\nu T) = \frac{1}{T} \cdot \hspace{-0.1cm} \int_{(\nu -1 )T }^{\nu T} \hspace{-0.3cm} b (t )\hspace{0.1cm} {\rm d}t $$
it follows that  $d(νT)$  can take only the values  $+1$  and  $-1$. 


(2)  Again the  last solution  is correct:

  • In the noise-free and interference-free case   ⇒   $n(t) = 0$,  the twofold multiplication by  $c(t) ∈ \{+1, –1\}$  can be omitted,
  • so that the upper model is identical to the lower model.


(3)  Solution 1  is correct:

  • Since both models are identical in the noise-free case,  only the noise signal has to be adjusted:   $n'(t) = n(t) · c(t)$.
  • In contrast,  the other two solutions are not applicable:
  • The integration must still be done over  $T = J · T_c$  and the PN modulation does not reduce the AWGN noise.


(4)  The  last solution  is correct:

  • Multiplying the AWGN noise by the high-frequency  $±1$ signal  $c(t)$,  the product is also Gaussian and white.
  • Because of  ${\rm E}\big[c^2(t)\big] = 1$,  the noise variance is not changed either.  Thus:
  • The equation  $p_{\rm B} = {\rm Q} \left( \hspace{-0.05cm} \sqrt {{2 E_{\rm B}}/{N_{\rm 0}} } \hspace{0.05cm} \right )$  valid for BPSK is also applicable for PN modulation,  independent of spreading factor  $J$  and specific spreading sequence.
  • Ergo:  For AWGN noise,  band spreading neither increases nor decreases the error probability.