Difference between revisions of "Aufgaben:Exercise 5.4Z: On the Hanning Window"

From LNTwww
 
(25 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signaldarstellung/Spektralanalyse
+
{{quiz-Header|Buchseite=Signal_Representation/Spectrum_Analysis
 
}}
 
}}
  
[[File:P_ID1168__Sig_Z_5_4.png|250px|right|Hanning-Fenster]]
+
[[File:P_ID1168__Sig_Z_5_4.png|250px|right|frame|Characterisation of the Hanning window]]
  
In dieser Aufgabe sollen wichtige Eigenschaften des häufig verwendeten Hanning–Fensters hergeleitet werden. Die zeitkontinuierliche Darstellung im Intervall von $–T_{\rm P}/2$ bis $+T_{\rm P}/2$ lautet hier wie folgt:
+
In this task, important properties of the frequently used Hanning window are to be derived.  The continuous-time representation in the interval from  $-T_{\rm P}/2$  to  $+T_{\rm P}/2$  is here as follows:
$$w(t)= {\rm cos}^2(\pi \cdot
+
:$$w(t)= {\rm cos}^2(\pi \cdot
{t}/{T_{\rm P}})=  0.5\cdot \left(1 + {\rm cos}(2\pi \cdot
+
{t}/{T_{\rm P}})=  0.5\cdot \big(1 + {\rm cos}(2\pi \cdot
{t}/{T_{\rm P}}) \right )
+
{t}/{T_{\rm P}}) \big )
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
Außerhalb des symmetrischen Zeitbereichs der Dauer $T_{\rm P}$ ist $w(t) \equiv 0$.
+
Outside the symmetric time domain of duration  $T_{\rm P}$:    $w(t) \equiv 0$.
  
Die obere Grafik zeigt die zeitdiskrete Darstellung $w(\nu) = w({\nu}  \cdot T_{\rm A})$, wobei $T_{\rm A}$ um den Faktor $N = 32$ kleiner ist als $T_{\rm P}$. Der Definitionsbereich der diskreten Zeitvariablen $ν$ reicht von $–16$ bis $+15$.
+
The upper graph shows the discrete-time representation  $w(\nu) = w({\nu}  \cdot T_{\rm A})$, where  $T_{\rm A}$  is smaller than   $T_{\rm P}$ by a factor  $N = 32$.  The definition range of the discrete time variable  $ν$  extends from  $-16$  to  $+15$.
  
In der unteren Grafik ist die Fouriertransformierte $W(f)$ der zeitkontinuierlichen Fensterfunktion $w(t)$ logarithmisch dargestellt. Die Abszisse ist hierbei auf $f_{\rm A} = 1/T_{\rm P}$ normiert ist. Man erkennt:
+
In the lower graph, the Fourier transform  $W(f)$  of the continuous-time window function  $w(t)$  is shown logarithmically.  The abscissa is normalised to  $f_{\rm A} = 1/T_{\rm P}$.  One can see:
*Die äquidistanten Werte $W({\mu}  \cdot f_{\rm A})$ sind $0$ mit Ausnahme von $μ = 0$ und $μ = ±1$.  
+
*The equidistant values  $W({\mu}  \cdot f_{\rm A})$  are zero except for  $μ = 0$  and  $μ = ±1$.  
*Die Hauptkeule erstreckt sich somit auf den Frequenzbereich $|f| ≤ 2 · f_{\rm A}$.  
+
*The main lobe thus extends to the frequency range  $|f| ≤ 2 · f_{\rm A}$.  
*$W(f)$ ist außerhalb der Hauptkeule betragsmäßig für $f = ±2.5 · f_{\rm A}$ am größten.  
+
*$W(f)$  is largest in magnitude outside the main lobe for  $f = ±2.5 · f_{\rm A}$.  
*Somit gilt hier für den minimalen Abstand zwischen Haupt– und Seitenkeulen:
+
*Thus, the minimum distance between the main and the side lobes applies here:
  
$$A_{\rm H/S} = 20 \cdot {\rm lg}\hspace{0.15cm}
+
:$$D_{\text{min (main lobe / side lobes) } } = 20 \cdot {\rm lg}\hspace{0.15cm}
 
  \frac{|W(0)|}{|W(2.5 \cdot f_{\rm A})|} \hspace{0.15cm}{\rm (in}\hspace{0.1cm}{\rm dB)}\hspace{0.05cm}.$$  
 
  \frac{|W(0)|}{|W(2.5 \cdot f_{\rm A})|} \hspace{0.15cm}{\rm (in}\hspace{0.1cm}{\rm dB)}\hspace{0.05cm}.$$  
  
''Hinweise:''
 
*Die Aufgabe gehört zum  Kapitel [[Signaldarstellung/Spektralanalyse|Spektralanalyse]].
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
  
  
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
 
 +
''Hints:''
 +
*This task belongs to the chapter  [[Signal_Representation/Spectrum_Analysis|Spectral Analysis]].
 +
*Note that the frequency resolution $f_{\rm A}$  is equal to the reciprocal of the adjustable parameter  $T_{\rm P}$.
 +
*In this exercise we use the  ${\rm si}$–function:   ${\rm si}(x) = \sin(x)/x$.
 +
 +
 
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Wie lautet $Y(f)$ bei Verwendung des Hanning–Fensters und  $T_{\rm P} = 8 \ \text{ms}$, wenn das Eingangsspektrum $X(f) = Y_{\rm A}(f)$ anliegt? Geben Sie die Gewichte der Diraclinien bei $f_1= 1\ \text{kHz}$ und $f_2 = 1.125\ \text{kHz}$ an.
+
{Give the discrete-time coefficients&nbsp; $w(ν)$&nbsp; of the Hanning window analytically.&nbsp; What are the numerical values for&nbsp; $ν = 0$,&nbsp; $ν = 1$&nbsp; and&nbsp; $ν = -\hspace{0.05cm}8$?
 
|type="{}"}
 
|type="{}"}
$G(f_1 = 1 \ \text{kHz}) &nbsp;=$ { 0.625 3% } &nbsp;$\text{V}$
+
$w(ν = 0) \hspace{0.37cm} = \ $ { 1 1% }  
$G(f_1 = 1.125 \ \text{kHz})  &nbsp;=$ { 0.5 3% } &nbsp;$\text{V}$
+
$w(ν = 1) \hspace{0.37cm} = \ $ { 0.99 1% }
 +
$w(ν = -8) \hspace{0.03cm} = \ $ { 0.5 1% }  
  
{Welche der folgenden Aussagen treffen mit Sicherheit zu, wenn die DFT das Ausgangsspektrum $Y_{\rm A}(f)$ anzeigt?
+
{Calculate the spectral function&nbsp; $W(f)$&nbsp; in general.&nbsp; Which of the following statements are correct?
 
|type="[]"}
 
|type="[]"}
+ Zur Gewichtung wurde das Rechteckfenster verwendet.
+
- $W(f)$&nbsp; yields complex results for special frequency values.
- Zur Gewichtung wurde das Hanning–Fenster verwendet.
+
+ $W(f)$&nbsp; is even with respect to&nbsp; $f$&nbsp;, i.e.&nbsp; $W(-f) = W(+f)$.
- Es wurde der DFT–Parameter $T_{\rm P} = 4\ \text{ms}$ verwendet.
+
+ The spectral value&nbsp; $W(f = 0)=0.5/f_{\rm A}$&nbsp; and thus real.
+ Das DFT–Spektrum $Y_{\rm A}(f)$ ist identisch mit dem Spektrum $X(f)$.
 
  
 +
{What are&nbsp; $W(f = ±f_{\rm A})$&nbsp; and the&nbsp; $\text{6dB}$&nbsp; bandwidth normalised to &nbsp; $f_{\rm A}$?
 +
|type="{}"}
 +
$W(±f_{\rm A})  \hspace{0.15cm} = \ $ { 0.25 1% } $\ \cdot \ 1/f_{\rm A}$
 +
$B_{\rm 6\hspace{0.05cm}dB}\hspace{-0.05cm}/\hspace{-0.05cm}f_{\rm A}  \hspace{0.2cm} = \ $ { 2 1% }
 +
 +
{What is the minimum distance between the main lobe and the side lobes.
 +
|type="{}"}
 +
$D_{\text{min (main lobe / side lobes) } } \ = \ $ { 32.3 1% } $\ \rm dB$
  
 
{Wir betrachten das $1\ \text{kHz}$–Cosinussignal $x(t)$. Welches Spektrum - $Y_{\rm B}(f)$ oder $Y_{\rm C}(f)$ – ergibt sich mit dem Rechteck– bzw. dem Hanning–Fenster, wenn der DFT-Parameter  $T_{\rm P} = 8.5 \ \text{ms}$ ungünstig gewählt ist?
 
|type="[]"}
 
- $Y_{\rm B}(f)$ergibt sich bei Rechteckfensterung.
 
+ $Y_{\rm B}(f)$ ergibt sich mit dem Hanning-Fenster.
 
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' Richtig sind die <u>Lösungsvorschläge 1 und 4</u>:
+
'''(1)'''&nbsp; After trigonometric transformation, the result for the continuous-time window function is:
*Bei Verwendung des Hanning–Fensters müssten selbst dann drei Diracfunktionen zu erkennen sein, auch wenn $x(t)$ nur eine Frequenz beinhaltet &nbsp; ⇒ &nbsp; es wurde das Rechteckfenster verwendet.
+
:$$w(t) = {\rm cos}^2(\pi \cdot
*Mit $T_{\rm P} = 4 \ \text{ms}$ ergibt sich für die Frequenzauflösung $f_{\rm A}= 1/T_{\rm P} = 0.25 \ \text{kHz}$ Damit liegt die Frequenz $f_2$ nicht im vorgegebenen Raster und $Y(f)$ würde sich aus sehr vielen Diraclinien zusammensetzen. Das heißt: die dritte Aussage ist falsch.
+
{t}/{T_{\rm P}}) = 0.5+ 0.5\cdot {\rm
*Wie aus der nachfolgenden Grafik hervorgeht, hat $x(t)$ die Periodendauer $T_{\rm 0} = 8 \ \text{ms}$. Wählt man den DFT–Parameter gleich $T_{\rm P} = 4 \ \text{ms}$ (oder ein ganzzahliges Vielfaches davon), so stimmt die periodische Fortsetzung ${\rm P}\{ x(t)\} $ im Intervall $|t| \leq T_{\rm P}/2$ mit $x(t)$ überein, so dass sich die Gewichtungsfunktion $w(t)$ nicht störend auswirkt: Das DFT–Spektrum $Y(f)$ stimmt somit mit dem tatsächlichen Spektrum überein.
+
cos}(2\pi \cdot {t}/{T_{\rm P}})\hspace{0.05cm}.$$
 +
*After time discretisation with&nbsp; $ν = t/T_{\rm A}$&nbsp; and&nbsp; $T_{\rm P}/T_{\rm A} = N = 32$, one obtains for the discrete-time window:
 +
:$$w(\nu) =  w(\nu \cdot T_{\rm A}) = 0.5+ 0.5\cdot {\rm
 +
cos}(2\pi \cdot {\nu}/{N})\hspace{0.8cm}
 +
\Rightarrow \hspace{0.3cm}w(\nu = 0) \hspace{0.15 cm}\underline{= 1},$$
 +
:$$w(\nu = 1) = 0.5+ 0.5\cdot {\rm cos}(
 +
\frac{\pi}{16})\hspace{0.15 cm}\underline{ = 0.99}, $$
 +
:$$w(\nu = -8)=0.5+
 +
0.5\cdot {\rm cos}( \frac{-\pi}{2}) \hspace{0.15 cm}\underline{=
 +
0.5}\hspace{0.05cm}.$$
  
[[File:P_ID1167__Sig_A_5_4a.png|Beispielsignal 1 zur Spektralanalyse]]
 
  
 +
'''(2)'''&nbsp; The correct <u>solutions are 2 and 3:</u>:
 +
*The periodic continuation of&nbsp; $w(t)$&nbsp; corresponding to the period&nbsp; $T_{\rm P}$&nbsp; yields a (periodic) signal with a DC and a cosine component.
 +
*From this follows with &nbsp; $f_{\rm A} = 1/T_{\rm P}$:
 +
:$${\rm P}\{w(t)\} = 0.5+0.5\cdot {\rm
 +
cos}(2\pi \cdot f_{\rm A} \cdot t)
 +
\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,
 +
\hspace{0.2cm}0.5\cdot {\rm \delta}(f) + 0.25\cdot {\rm
 +
\delta}(f \pm f_{\rm A}))\hspace{0.05cm}.$$
 +
*The time-limited signal&nbsp; $w(t)$&nbsp; is obtained from&nbsp; ${\rm P}\{w(t)\}$&nbsp;  by multiplication with a rectangle of amplitude&nbsp; $1$&nbsp; and duration&nbsp; $T_{\rm P}$.
 +
*Its spectrum&nbsp; $W(f)$&nbsp; is thus obtained from the convolution of the above spectral function with the function&nbsp; $T_{\rm P} · {\rm si}(π \cdot f \cdot T_{\rm P}) = 1/f_{\rm A} · {\rm si}(π \cdot f/f_{\rm A})$:
 +
:$$w(t)
 +
\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,
 +
W(f) = \frac{0.5}{f_{\rm A}}\cdot {\rm si}( \frac{\pi f}{f_{\rm
 +
A}})+ \frac{0.25}{f_{\rm A}}\cdot {\rm si}(\pi \cdot
 +
\frac{f-f_{\rm A}}{f_{\rm A}})+ \frac{0.25}{f_{\rm A}}\cdot {\rm
 +
si}(\pi \cdot \frac{f+f_{\rm A}}{f_{\rm A}})\hspace{0.05cm}.$$
 +
*This spectral function is even and also real for all frequencies&nbsp; $f$&nbsp;. The spectral value at frequency&nbsp; $f = 0$&nbsp; gives the window area:
 +
:$$W(f=0) =
 +
\frac{0.5}{f_{\rm A}}=
 +
\int_{-\infty}^{+\infty}w(t)\hspace{0.05cm}{\rm
 +
d}t\hspace{0.05cm}.$$
  
'''2.'''  Wegen $T_{\rm 0} = 8 \ \text{ms}$ setzt sich das Hanning–Spektrum $W(f)$ aus drei Diracfunktionen bei positiven Frequenzen und drei dazu achsensymmetrischen Diracs bei negativen Frequenzen zusammen. Für die positiven Frequenzen lautet die Spektralfunktion:
 
 
$$W(f) =0.5\cdot {\rm \delta}(f) + 0.25\cdot {\rm \delta}(f-f_{\rm A})+ 0.25\cdot {\rm \delta}(f+f_{\rm A})\hspace{0.05cm}.$$
 
  
Das Ausgangsspektrum ergibt sich aus der Faltung zwischen $X(f)$ und $W(f)$. Bei positiven Frequenzen ergeben sich nun vier Diracs mit folgenden Gewichten:
 
 
$$\begin{align*} G(f = 0.875\,{\rm kHz}) & = 1\, {\rm V}\cdot 0.25 = 0.250\, {\rm
 
V}, \\
 
G(f = f_1 = 1.000\,{\rm kHz}) & = 1\, {\rm V}\cdot 0.5 + 0.5\, {\rm V}\cdot 0.25 \hspace{0.15 cm}\underline{ = 0.625\, {\rm
 
V}}, \\
 
G(f = f_2 = 1.125\,{\rm kHz}) & = 1\, {\rm V}\cdot 0.25 + 0.5\, {\rm V}\cdot 0.5  \hspace{0.15 cm}\underline{= 0.500\, {\rm
 
V}}, \\
 
G(f = 1.250\,{\rm kHz}) & = 0.5\, {\rm V}\cdot 0.25 = 0.125\, {\rm
 
V}
 
\hspace{0.05cm}.\end{align*}$$
 
  
Die folgende Grafik zeigt die Abschwächung der Ränder durch die Gewichtungsfunktion $w(t)$ des Hanning–Fensters.
+
'''(3)'''&nbsp; From the result of sub-task&nbsp; '''(2)'''&nbsp; it also follows:
 +
:$$W(f = ±f_{\rm A}) = W(0)/2\hspace{0.15cm}\underline{ = 0.25} \cdot 1/{f_{\rm A}}.$$
 +
*Due to the monotonic course in the range&nbsp; $|f| < f_{\rm A}$&nbsp;, the magnitude function&nbsp; $|W(f)|$&nbsp; has dropped to half of the maximum for the first time exactly at&nbsp; $± f_{\rm A}$&nbsp;.
 +
*Thus,&nbsp; $B_{\rm 6\hspace{0.05cm}dB}\hspace{-0.05cm}/\hspace{-0.05cm}f_{\rm A} \;\underline{=2}$.
 +
 
 +
 
  
[[File:P_ID1169__Sig_A_5_4b.png|Beispielsignal 2 zur Spektralanalyse]]
+
'''(4)'''&nbsp; The largest spectral magnitude outside the main lobe occurs at&nbsp; $f = ±2.5 f_{\rm A}$.&nbsp; With the result of subtask&nbsp; '''(2)'''&nbsp; holds:
 +
:$$W(f = 2.5 \cdot f_{\rm A}) = \frac{0.5}{f_{\rm A}}\cdot {\rm si}(2.5 \pi )
 +
+\frac{0.25}{f_{\rm A}}\cdot {\rm si}(1.5 \pi )+\frac{0.25}{f_{\rm A}}\cdot {\rm si}(3.5 \pi )=  \frac{0.25}{\pi \cdot f_{\rm A}}\left[ \frac{2}{2.5}-\frac{1}{1.5}-\frac{1}{3.5}\right] \approx -\frac{0.0121}{ f_{\rm A}}\hspace{0.05cm}.$$
 +
*This gives the minimum distance between the main lobe and the side lobes:
 +
:$$D_{\text{min (main lobe / side lobes) } } = 20 \cdot {\rm lg}\hspace{0.15cm}
 +
\frac{|W(0)|}{|W(2.5 \cdot f_{\rm A})|} = 20 \cdot {\rm lg}\hspace{0.15cm}
 +
\frac{0.5}{0.0121}\hspace{0.15 cm}\underline{\approx 32.3\,\,{\rm dB}}\hspace{0.05cm}.$$
  
'''3.''' Das Rechteck–Fenster liefert dann ein sehr stark verfälschtes Ergebnis, wenn die Fensterbreite $T_{\rm P}$ (wie hier) nicht an die Frequenz des Cosinussignals angepasst ist. In diesem Fall ist das Hanning–Fenster besser geeignet. Daraus folgt: Richtig ist der <u>zweite Lösungsvorschlag</u>.
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Aufgaben zu Signaldarstellung|^5. Zeit- und frequenzdisktrete Signaldarstellung^]]
+
[[Category:Signal Representation: Exercises|^5.4 Spectrum Analysis^]]

Latest revision as of 05:18, 18 September 2022

Characterisation of the Hanning window

In this task, important properties of the frequently used Hanning window are to be derived.  The continuous-time representation in the interval from  $-T_{\rm P}/2$  to  $+T_{\rm P}/2$  is here as follows:

$$w(t)= {\rm cos}^2(\pi \cdot {t}/{T_{\rm P}})= 0.5\cdot \big(1 + {\rm cos}(2\pi \cdot {t}/{T_{\rm P}}) \big ) \hspace{0.05cm}.$$

Outside the symmetric time domain of duration  $T_{\rm P}$:    $w(t) \equiv 0$.

The upper graph shows the discrete-time representation  $w(\nu) = w({\nu} \cdot T_{\rm A})$, where  $T_{\rm A}$  is smaller than   $T_{\rm P}$ by a factor  $N = 32$.  The definition range of the discrete time variable  $ν$  extends from  $-16$  to  $+15$.

In the lower graph, the Fourier transform  $W(f)$  of the continuous-time window function  $w(t)$  is shown logarithmically.  The abscissa is normalised to  $f_{\rm A} = 1/T_{\rm P}$.  One can see:

  • The equidistant values  $W({\mu} \cdot f_{\rm A})$  are zero except for  $μ = 0$  and  $μ = ±1$.
  • The main lobe thus extends to the frequency range  $|f| ≤ 2 · f_{\rm A}$.
  • $W(f)$  is largest in magnitude outside the main lobe for  $f = ±2.5 · f_{\rm A}$.
  • Thus, the minimum distance between the main and the side lobes applies here:
$$D_{\text{min (main lobe / side lobes) } } = 20 \cdot {\rm lg}\hspace{0.15cm} \frac{|W(0)|}{|W(2.5 \cdot f_{\rm A})|} \hspace{0.15cm}{\rm (in}\hspace{0.1cm}{\rm dB)}\hspace{0.05cm}.$$





Hints:

  • This task belongs to the chapter  Spectral Analysis.
  • Note that the frequency resolution $f_{\rm A}$  is equal to the reciprocal of the adjustable parameter  $T_{\rm P}$.
  • In this exercise we use the  ${\rm si}$–function:   ${\rm si}(x) = \sin(x)/x$.



Questions

1

Give the discrete-time coefficients  $w(ν)$  of the Hanning window analytically.  What are the numerical values for  $ν = 0$,  $ν = 1$  and  $ν = -\hspace{0.05cm}8$?

$w(ν = 0) \hspace{0.37cm} = \ $

$w(ν = 1) \hspace{0.37cm} = \ $

$w(ν = -8) \hspace{0.03cm} = \ $

2

Calculate the spectral function  $W(f)$  in general.  Which of the following statements are correct?

$W(f)$  yields complex results for special frequency values.
$W(f)$  is even with respect to  $f$ , i.e.  $W(-f) = W(+f)$.
The spectral value  $W(f = 0)=0.5/f_{\rm A}$  and thus real.

3

What are  $W(f = ±f_{\rm A})$  and the  $\text{6dB}$  bandwidth normalised to   $f_{\rm A}$?

$W(±f_{\rm A}) \hspace{0.15cm} = \ $

$\ \cdot \ 1/f_{\rm A}$
$B_{\rm 6\hspace{0.05cm}dB}\hspace{-0.05cm}/\hspace{-0.05cm}f_{\rm A} \hspace{0.2cm} = \ $

4

What is the minimum distance between the main lobe and the side lobes.

$D_{\text{min (main lobe / side lobes) } } \ = \ $

$\ \rm dB$


Solution

(1)  After trigonometric transformation, the result for the continuous-time window function is:

$$w(t) = {\rm cos}^2(\pi \cdot {t}/{T_{\rm P}}) = 0.5+ 0.5\cdot {\rm cos}(2\pi \cdot {t}/{T_{\rm P}})\hspace{0.05cm}.$$
  • After time discretisation with  $ν = t/T_{\rm A}$  and  $T_{\rm P}/T_{\rm A} = N = 32$, one obtains for the discrete-time window:
$$w(\nu) = w(\nu \cdot T_{\rm A}) = 0.5+ 0.5\cdot {\rm cos}(2\pi \cdot {\nu}/{N})\hspace{0.8cm} \Rightarrow \hspace{0.3cm}w(\nu = 0) \hspace{0.15 cm}\underline{= 1},$$
$$w(\nu = 1) = 0.5+ 0.5\cdot {\rm cos}( \frac{\pi}{16})\hspace{0.15 cm}\underline{ = 0.99}, $$
$$w(\nu = -8)=0.5+ 0.5\cdot {\rm cos}( \frac{-\pi}{2}) \hspace{0.15 cm}\underline{= 0.5}\hspace{0.05cm}.$$


(2)  The correct solutions are 2 and 3::

  • The periodic continuation of  $w(t)$  corresponding to the period  $T_{\rm P}$  yields a (periodic) signal with a DC and a cosine component.
  • From this follows with   $f_{\rm A} = 1/T_{\rm P}$:
$${\rm P}\{w(t)\} = 0.5+0.5\cdot {\rm cos}(2\pi \cdot f_{\rm A} \cdot t) \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm}0.5\cdot {\rm \delta}(f) + 0.25\cdot {\rm \delta}(f \pm f_{\rm A}))\hspace{0.05cm}.$$
  • The time-limited signal  $w(t)$  is obtained from  ${\rm P}\{w(t)\}$  by multiplication with a rectangle of amplitude  $1$  and duration  $T_{\rm P}$.
  • Its spectrum  $W(f)$  is thus obtained from the convolution of the above spectral function with the function  $T_{\rm P} · {\rm si}(π \cdot f \cdot T_{\rm P}) = 1/f_{\rm A} · {\rm si}(π \cdot f/f_{\rm A})$:
$$w(t) \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, W(f) = \frac{0.5}{f_{\rm A}}\cdot {\rm si}( \frac{\pi f}{f_{\rm A}})+ \frac{0.25}{f_{\rm A}}\cdot {\rm si}(\pi \cdot \frac{f-f_{\rm A}}{f_{\rm A}})+ \frac{0.25}{f_{\rm A}}\cdot {\rm si}(\pi \cdot \frac{f+f_{\rm A}}{f_{\rm A}})\hspace{0.05cm}.$$
  • This spectral function is even and also real for all frequencies  $f$ . The spectral value at frequency  $f = 0$  gives the window area:
$$W(f=0) = \frac{0.5}{f_{\rm A}}= \int_{-\infty}^{+\infty}w(t)\hspace{0.05cm}{\rm d}t\hspace{0.05cm}.$$


(3)  From the result of sub-task  (2)  it also follows:

$$W(f = ±f_{\rm A}) = W(0)/2\hspace{0.15cm}\underline{ = 0.25} \cdot 1/{f_{\rm A}}.$$
  • Due to the monotonic course in the range  $|f| < f_{\rm A}$ , the magnitude function  $|W(f)|$  has dropped to half of the maximum for the first time exactly at  $± f_{\rm A}$ .
  • Thus,  $B_{\rm 6\hspace{0.05cm}dB}\hspace{-0.05cm}/\hspace{-0.05cm}f_{\rm A} \;\underline{=2}$.


(4)  The largest spectral magnitude outside the main lobe occurs at  $f = ±2.5 f_{\rm A}$.  With the result of subtask  (2)  holds:

$$W(f = 2.5 \cdot f_{\rm A}) = \frac{0.5}{f_{\rm A}}\cdot {\rm si}(2.5 \pi ) +\frac{0.25}{f_{\rm A}}\cdot {\rm si}(1.5 \pi )+\frac{0.25}{f_{\rm A}}\cdot {\rm si}(3.5 \pi )= \frac{0.25}{\pi \cdot f_{\rm A}}\left[ \frac{2}{2.5}-\frac{1}{1.5}-\frac{1}{3.5}\right] \approx -\frac{0.0121}{ f_{\rm A}}\hspace{0.05cm}.$$
  • This gives the minimum distance between the main lobe and the side lobes:
$$D_{\text{min (main lobe / side lobes) } } = 20 \cdot {\rm lg}\hspace{0.15cm} \frac{|W(0)|}{|W(2.5 \cdot f_{\rm A})|} = 20 \cdot {\rm lg}\hspace{0.15cm} \frac{0.5}{0.0121}\hspace{0.15 cm}\underline{\approx 32.3\,\,{\rm dB}}\hspace{0.05cm}.$$