Difference between revisions of "Examples of Communication Systems/Further Developments of UMTS"

From LNTwww
 
(29 intermediate revisions by 7 users not shown)
Line 1: Line 1:
 
{{LastPage}}  
 
{{LastPage}}  
 
{{Header
 
{{Header
|Untermenü=UMTS – Universal Mobile Telecommunications System
+
|Untermenü=UMTS – Universal Mobile Telecommunications System  
|Vorherige Seite=Nachrichtentechnische Aspekte von UMTS
+
|Vorherige Seite=Telecommunications Aspects of UMTS
 
|Nächste Seite=
 
|Nächste Seite=
 
}}
 
}}
Line 8: Line 8:
  
 
==High–Speed Downlink Packet Access==   
 
==High–Speed Downlink Packet Access==   
 +
<br>
 +
In order to meet the increasing demand for higher data rates in mobile communications and to ensure ever better quality of service, the UMTS Release 99 standard has been further developed in five phases up to the present day&nbsp; $(2011)$.&nbsp; The diagram shows the individual development phases in chronological order.
  
Um dem ständig steigenden Bedarf an höheren Datenraten im Mobilfunk gerecht zu werden und um eine immer bessere Dienstgüte zu gewährleisten, wurde der Standard UMTS–Release 99 bis heute (2008) in fünf Phasen weiterentwickelt. In der Grafik sind die einzelnen Entwicklungsphasen zeitlich dargestellt.
+
The most important further developments were
 +
[[File:EN_Bei_T_4_4_S1_v2.png|right|frame|Further development of UMTS between 2000 and 2011<br><br>]]
 +
[[File:EN_Bei_T_4_4_S1.png|right|frame|Characteristics of HSDPA]]
  
Die wichtigsten Weiterentwicklungen waren
+
*the UMTS Release 5 with&nbsp; &raquo;'''HSDPA'''&laquo;&nbsp; and
*das UMTS Release 5 mit '''HSDPA''' und
 
*das UMTS Release 6 mit '''HSUPA'''.
 
  
Für diese beiden Standards standen vor allem die Steigerung der zur Verfügung gestellten Datenraten für Downlink und Uplink sowie eine größere Bandbreiteneffizienz und Zellenkapazität im Vordergrund. Zusammen ergeben HSDPA und HSUPA den '''HSPA–Standard'''.
+
*the UMTS Release 6 with&nbsp; &raquo;'''HSUPA'''&laquo;.
*Im Jahre 2002 wurde ''High–Speed Downlink Packet Access'' – abgekürzt '''HSDPA''' – im Rahmen von UMTS Release 5 spezifiziert und 2006 eingeführt, um Datenrate und Durchsatz gegenüber dem ursprünglichen UMTS–Standard zu steigern sowie die Antwortzeiten bei paketvermittelten Übertragungen zu verkürzen.
 
*In HSPDA betragen die zur Verfügung gestellten Datenraten zwischen 500 kbit/s und 3.6 Mbit/s – theoretisch sogar bis 14.4 Mbit/s. Im Vergleich zur Datenrate von UMTS R’99 (144 kbit/s bis 2 Mbit/s) stellen diese Werte eine Verdoppelung bis Vervierfachung dar.
 
  
Folgende technische Verfahren tragen zur Steigerung der Leistungsfähigkeit von HSDPA gegenüber UMTS bei. Im Schaubild sind die Features zusammengestellt:
+
 
*Einführung eines zusätzlichen gemeinsam genutzten Kanals: '''HS–PDSCH''',
+
For these two standards, the main focus was on increasing the data rates provided for downlink and uplink as well as greater bandwidth efficiency and cell capacity.
*Verwendung des '''Hybrid–ARQ–Verfahrens''',
+
 
*Minimierung der '''Verzögerungszeiten''',
+
Together,&nbsp; HSDPA and HSUPA make up the&nbsp; &raquo;'''HSPA standard'''&laquo;.
*Einführung eines '''Node B Schedulings''',
+
*In 2002,&nbsp; "High-Speed Downlink Packet Access"&nbsp; &ndash; abbreviated&nbsp; $\rm HSDPA$&nbsp; &ndash; was specified with UMTS Release 5 and introduced in 2006 to increase data rate and throughput compared to the original UMTS standard as well as to reduce response times for packet-switched transmission.
*Verwendung von '''adaptiver''' Modulation, Codierung und Übertragungsrate.
+
 
 +
*In HSPDA, the data rates provided are between&nbsp; $\text{500 kbit/s}$&nbsp; and&nbsp; $\text{3.6 Mbit/s}$&nbsp; &ndash; theoretically even up to&nbsp; $\text{14.4 Mbit/s}$.
 +
 
 +
*Compared to the data rate of UMTS R'99&nbsp; $\text{(14.4 kbit/s}$&nbsp; to&nbsp; $\text{2 Mbit/s)}$&nbsp; these values represent a doubling to quadrupling.
 +
 
 +
 
 +
The following technical procedures contribute to the increase in performance of HSDPA compared to UMTS. The diagram compiles these features:
 +
#Introduction of an additional shared channel:&nbsp; &raquo;'''HS-PDSCH'''&laquo;,
 +
#use of the&nbsp; &raquo;'''Hybrid ARQ'''&laquo;&nbsp; method,
 +
#'''delay'''&nbsp; minimization,
 +
#introduction of&nbsp; &raquo;'''Node B scheduling'''&laquo;,
 +
#use of&nbsp; '''adaptive'''&nbsp; modulation,&nbsp; coding and transmission rate.
  
 
 
 
 
==Zusätzliche Kanäle in HSDPA==   
+
==Additional channels in HSDPA==   
 +
<br>
 +
[[File:EN_Bei_T_4_4_S3neu.png|right|frame|Transport channels,&nbsp; logical channels,&nbsp; and physical channels in HSDPA]]
 +
The&nbsp; "High-Speed Downlink Physical High Speed Channel"&nbsp; &ndash; abbreviated&nbsp; '''HS-PDCH'''&nbsp; &ndash; is a high-speed transport channel used for the transmission of subscriber data.&nbsp; It combines the characteristics of a shared and a dedicated channel:
 +
 
 +
*In the downlink,&nbsp; one or more channels can be used by multiple subscribers simultaneously.&nbsp; This allows simultaneous transmission of the same data to different subscribers as well as a significant increase in transmission speed by bundling several channels of this type.
 +
 
 +
*In any HS-PDCH,&nbsp; the spreading factor&nbsp; $J = 16$.&nbsp; This means that theoretically up to fifteen such channels can be used simultaneously in one cell.&nbsp; In practice,&nbsp; however,&nbsp; only between five and ten channels are ever used,&nbsp; since the remaining channels are required for the operation of other services.
 +
 
 +
 
 +
Resource allocation for the&nbsp; "High-Speed Shared Data Channel"&nbsp; $($'''HS-DSCH'''$)$&nbsp; is done via so-called&nbsp; "High-Speed Shared Control Channels"&nbsp; $($'''HS-SCCH'''$)$.&nbsp; A receiver must therefore be able to receive and decode up to four such channels simultaneously.&nbsp; In addition to the channels presented above
 +
 
 +
#The&nbsp; "Dedicated Physical Control Channel"&nbsp; $($'''DPCCH'''$)$&nbsp; is used for the transmission of control data in the uplink.
 +
# The&nbsp; "Dedicated Control Channel"&nbsp; $($'''DCCH'''$)$&nbsp; is used for the localization procedure in downlink and uplink.
 +
#The&nbsp; "Dedicated Traffic Channel"&nbsp; $($'''DTCH'''$)$&nbsp; is responsible for the transmission of Internet Protocol payload data in the uplink direction.
 +
 
 +
 
 +
==HARQ procedure and Node B scheduling  ==
 +
<br>
 +
Another feature of HSDPA is the reduction of packet round-trip delay&nbsp; $\rm (RTD)$&nbsp; and the use of&nbsp; "HARQ":
 +
*The&nbsp; &raquo;'''round-trip delay'''&raquo;&nbsp; has been reduced by HSDPA to&nbsp; $\text{70 ms}$&nbsp; $($compared&nbsp; $\text{160 ... 200 ms}$&nbsp; with UMTS R'99$)$, which is of great importance for some applications,&nbsp; e.g. web browsing.&nbsp; This reduction was achieved by decreasing the transport block length to about&nbsp; $2$&nbsp; milliseconds&nbsp; $($previously&nbsp; $\text{10 ms}$&nbsp; or&nbsp; $\text{20 ms)}$.
 +
 
 +
*In each Node B,&nbsp; a&nbsp; &raquo;'''HARQ'''&laquo;&nbsp; $($"Hybrid Automatic Repeat Request"$)$&nbsp; has been implemented to minimize transmission delays.&nbsp; This mechanism prevents significant delays from occurring due to retransmission of erroneous blocks.&nbsp; This is because such delays can be interpreted by TCP protocol as blocking,&nbsp; which then leads to further delays.
 +
 
 +
*Using the HARQ mechanism and with transport block lengths of&nbsp; $\text{2 ms}$&nbsp; the transmission delays in HSPDA are less than&nbsp; $\text{10 ms}$.&nbsp; This is a crucial improvement over UMTS,&nbsp; where error detection&nbsp; $($associated with retransmission$)$&nbsp; takes approximately&nbsp; $\text{90 ms}$.
 +
 
 +
*In the HARQ procedure,&nbsp; the detection of&nbsp; "error"&nbsp; or&nbsp; "no error"&nbsp; is acknowledged for each individual transport frame.&nbsp; <br>This procedure is referred to as&nbsp; "Stop and Wait"&nbsp; $\rm (SAW)$.
 +
 
 +
 
 +
{{GraueBox|TEXT=
 +
$\text{Example 1:}$&nbsp; 
 +
The graph shows the achievable data rate as a function of the quotient&nbsp; $E_{\rm B}/N_0$&nbsp; $($in dB$)$.
 +
[[File:EN_Bei_T_4_4_S4.png|right|frame|Increasing the data rate by HARQ]]
  
  
Der ''High–Speed Downlink Physical High Speed Channel'' – Kurzbezeichnung '''HS–PDCH''' – ist ein Hochgeschwindigkeits–Transportkanal, der für die Übertragung von Teilnehmerdaten verwendet wird. Er vereinigt die Eigenschaften eines gemeinsam genutzten und eines dedizierten Kanals:
 
*Im Downlink können ein oder mehrere Kanäle von mehreren Teilnehmern gleichzeitig verwendet werden. Dies ermöglicht die simultane Übertragung gleicher Daten an unterschiedliche Teilnehmer sowie eine signifikante Erhöhung der Übertragungsgeschwindigkeit durch Bündelung mehrerer Kanäle dieser Art.
 
*In einem jeden HS–PDCH beträgt der Spreizfaktor $J$ = 16. Dies bedeutet, dass in einer Zelle theoretisch bis zu 15 solcher Kanäle gleichzeitig verwendet werden können. In der Praxis werden jedoch stets nur zwischen 5 und 10 Kanäle genutzt, da die restlichen Kanäle für den Betrieb anderer Dienste benötigt werden.
 
  
Die Ressourcenzuteilung für den ''High–Speed Shared Data Channel'' ('''HS–DSCH''') erfolgt über so genannte ''High–Speed Shared Control Channels'' ('''HS–SCCH'''). Ein Empfänger muss daher in der Lage sein, bis zu vier solcher Kanäle gleichzeitig zu empfangen und zu decodieren.
 
  
Zusätzlich zu den oben vorgestellten Kanälen wird ein ''Dedicated Physical Control Channel'' ('''DPCCH''') für die Übertragung von Kontrolldaten im Uplink und ein ''Dedicated Control Channel'' ('''DCCH''') für die Lokalisierungsprozedur im Down– und Uplink genutzt. Für die Übertragung von IP–Nutzdaten in der Aufwärtsrichtung ist jeweils ein ''Dedicated Traffic Channel'' ('''DTCH''') verantwortlich.
 
  
  
==HARQ–Verfahren und Node B Scheduling  ==
 
  
Ein weiteres Merkmal von HSDPA ist die Reduzierung der Paketumlaufzeit (englisch: ''Round–Trip Delay'', RTD) und die Verwendung des HARQ–Verfahrens:
+
*You can see decisive improvements by the HARQ mechanism,&nbsp; especially for small&nbsp; $E_{\rm B}/N_0$&nbsp;  values.
*Die '''Paketumlaufzeit''' wurde durch HSDPA auf 70 ms gesenkt (gegenüber 160 ... 200 ms bei UMTS R’99), was für einige Anwendungen (zum Beispiel Web–Browsing) von großer Bedeutung ist. Diese Reduzierung wurde durch Verringern der Transportblocklänge auf ca. 2 Millisekunden erreicht (vorher hatte diese 10 ms bzw. 20 ms betragen).
 
*In jedem Node B wurde ein '''Hybrid Automatic Repeat Request''' (HARQ) implementiert, um die Übertragungsverzögerungen zu minimieren. Dieser Mechanismus verhindert, dass es durch das erneute Übertragen von fehlerhaften Blöcken zu signifikanten Verzögerungen kommt. Solche Verzögerungen können nämlich vom TCP–Protokoll als Blockierungen interpretiert werden, was dann zu weiteren Verzögerungen führt.
 
  
Unter Verwendung des HARQ–Mechanismus und mit Transportblocklängen von 2 ms betragen die Übertragungsverzögerungen in HSPDA weniger als 10 ms. Dies stellt eine entscheidende Verbesserung im Vergleich zu UMTS dar, bei dem eine Fehlerdetektion (verbunden mit einer erneuten Übertragung) ca. 90 ms in Anspruch nimmt.
 
  
Beim HARQ–Verfahren wird bei jedem einzelnen Transportrahmen die Detektion eines bzw. keines Fehlers (englisch: ''Acknowledgement'', ACK/NACK) quittiert. Dieses Verfahren wird als '''Stop and Wait''' (SAW) bezeichnet.
+
 +
*In contrast,&nbsp; HARQ does not further increase the data rate if&nbsp; $10 \cdot \lg \E_{\rm B}/N_0 > 2 \ \rm dB$.}}
 +
<br clear=all>
 +
{{GraueBox|TEXT=
 +
$\text{Example 2:}$&nbsp;
 +
This graphic is intended to illustrate&nbsp; how the HARQ process works.&nbsp; The following steps are to be distinguished:
 +
[[File:EN_Bei_T_4_4_S4b_v2.png|right|frame|On the HARQ procedure]]
 +
*Before transmission,&nbsp; the base station informs the receiver of an upcoming transmission using the&nbsp; '''HS-SCCH'''&nbsp; channel,&nbsp; where the&nbsp; '''HS-SCCH''' frame has three time slots.
  
Die Grafik zeigt die erreichbare Datenrate in Abhängigkeit des Quotienten $E_B/N_0$ (in dB). Man erkennt entscheidende Verbesserungen durch den HARQ–Mechanismus, insbesondere bei kleinen Werten von $E_B/N_0$. Dagegen wird mit HARQ die Datenrate nicht weiter vergrößert, wenn 10 · lg $E_B/N_0$ > 2 dB ist.
+
*Control data arrives at the receiver and is evaluated immediately after the arrival of the first&nbsp; '''SCCH''' time slot.
 +
 +
*Data transmission on the&nbsp; '''HS-PDSCH'''&nbsp; starts as soon as the user has received the first two time slots of the control data block.
  
 +
*Within&nbsp; $\text{5 ms}$&nbsp; of receiving a frame of data,&nbsp; the receiver must have decoded the entire frame and checked for errors.
  
Die Grafik soll die '''Funktionsweise des HARQ–Verfahrens''' verdeutlichen. Es sind dabei folgende Schritte zu unterscheiden:
+
*If the transmission is error-free,&nbsp;
*Vor dem Senden informiert die Basisstation den Empfänger mit Hilfe des Kanals HS–SCCH über eine bevorstehende Übertragung, wobei ein HS–SCCH–Rahmen über drei Zeitschlitze verfügt.
+
:*a positive acknowledgement&nbsp; $($'''ACK'''$)$&nbsp; is sent upstream,&nbsp;
*Die Kontrolldaten kommen beim Empfänger an und werden unmittelbar nach Ankunft des ersten SCCH–Zeitschlitzes ausgewertet. Die Datenübertragung auf dem HS–PDSCH startet, sobald der Teilnehmer die ersten zwei Zeitschlitze des Kontrolldatenblocks erhalten hat.
+
:*otherwise a&nbsp; "non acknowledgement"&nbsp; $($'''NACK'''$)$&nbsp; is sent.}}
*Innerhalb von fünf Millisekunden nach Erhalt eines Datenrahmens muss der Empfänger den gesamten Rahmen decodiert und auf Fehler überprüft haben.
 
*Im Falle einer fehlerfreien Übertragung wird eine positive Quittierung (ACK) in Aufwärtsrichtung versendet, ansonsten wird dem Node B ein ''Non Acknowledgement'' (NACK) geschickt.
 
  
Da der HARQ einen neuen Rahmen erst versendet, wenn die Quittierung der bereits übertragenen Rahmen vorliegt, muss der Empfänger in der Lage sein, bis zu acht HARQs zu verwalten. Dies garantiert die richtige Reihenfolge und dadurch die richtige Verarbeitung der Daten in den höheren Ebenen.
 
  
Zusätzlich zum HARQ–Verfahren wurde in dem ''UMTS Release 5'' ein '''Node B Scheduling''' eingeführt, um auf Veränderungen der Übertragungsbedingungen einzelner Teilnehmer (zum Beispiel durch Fading) schnell reagieren zu können. Mit Hilfe dieses Schedulings wird entschieden, welche Rahmen welchem Übertragungskanal zugewiesen werden.
+
Since the HARQ does not send a new frame until the acknowledgement of the already transmitted frames is received,&nbsp; the receiver must be able to manage up to eight HARQs. This guarantees the correct sequence and thereby the correct processing of the data in the higher levels.
  
Bei dem Scheduling werden Prioritäten vergeben und ein Rahmen wird erst gesendet, wenn er über die höchste Priorität verfügt, was gleichbedeutend damit ist, dass er mit der größten Wahrscheinlichkeit richtig empfangen wird. Durch dieses Scheduling wird die zur Verfügung gestellte Bandbreite besser ausgenutzt und die Zellenkapazität signifikant gesteigert.
+
{{BlaueBox|TEXT=
 +
$\text{It is also worth mentioning:}$&nbsp;  In addition to HARQ,&nbsp; in&nbsp; UMTS Release 5&nbsp; a&nbsp; &raquo;'''Node B Scheduling'''&laquo;&nbsp; was introduced to be able to react quickly to changes in the transmission conditions of individual nodes&nbsp; $($for example,&nbsp; due to fading$)$.
 +
#This scheduling is used to decide which frames are assigned to which transmission channel.
 +
#Priorities are assigned during scheduling.&nbsp; A frame is only sent when it has the highest priority,&nbsp; which means that it is most likely to be received correctly.  
 +
#This scheduling makes better use of the available bandwidth and significantly increases cell capacity.}}
 
 
 
 
  
==Adaptive Modulation, Codierung und Übertragungsrate==   
+
==Adaptive modulation, adaptive coding and adaptive transmission rate==   
 +
<br>
 +
In HSDPA,&nbsp; the signals are&nbsp; "adaptively modulated".&nbsp; This means:
 +
[[File:EN_Bei_T_4_4_S5.png|right|frame|Adaptive modulation and coding in HSDPA]]
 +
*Under good transmission conditions,&nbsp; a higher-level modulation  is used:&nbsp; $\text{16-QAM}$&nbsp; or&nbsp; $\text{64-QAM}$.
 +
 
 +
*In poorer conditions,&nbsp; it is switched to&nbsp; "Quaternary Phase Shift Keying"&nbsp; $\text{QPSK}$&nbsp; or&nbsp; $\text{4-QAM}$.
  
In HSDPA werden die Signale ''adaptiv moduliert''. Das bedeutet:
 
*Unter guten Übertragungsbedingungen wird 16–QAM bzw. 64–QAM verwendet.
 
*Bei schlechteren Bedingungen wird auf QPSK umgeschaltet.
 
  
Zusätzlich zur Modulation kann die Codierung sowie die Anzahl der von einem Teilnehmer gleichzeitig verwendeten HS–DSCH–Kanäle je nach Kanalqualität ziemlich flexibel und schnell (alle 2 ms) verändert werden. Trotz der gleichzeitigen Verwendung von adaptiver Modulation und adaptiver Codierung wird die Leistung stets konstant gehalten.
+
In addition to modulation,&nbsp; the coding as well as the number of&nbsp; '''HS-DSCH'''&nbsp; channels used simultaneously by a subscriber can be flexibly and quickly &nbsp;$($all&nbsp; $\text{2 ms)}$&nbsp; changed depending on the channel quality.&nbsp; Despite the simultaneous use of adaptive modulation and adaptive coding,&nbsp; the power is always kept constant.
  
Die Leistungsregelung läuft in HSDPA unterschiedlich zu UMTS R’99 ab:
+
&rArr; &nbsp; Power control runs differently in&nbsp; "HSDPA"&nbsp; than in&nbsp; "UMTS R'99":
*Die Sendeleistung wird stets an die Signalqualität angepasst, während die Bandbreite möglichst konstant gehalten werden sollte.
+
*The transmit power is always adapted to the signal quality, while the bandwidth should be kept as constant as possible.
*Nur falls die Leistung nicht mehr erhöht werden kann, wird der Spreizfaktor vergrößert und damit die Datenrate herunter gesetzt.
+
*Only if the power can no longer be increased, the spreading factor is increased and thus the data rate is lowered.
  
Die maximal erreichbare Datenrate hängt vorwiegend von der ''Leistungsfähigkeit des Empfängers'' sowie vom ''Transportformat und den Ressourcenkombinationen'' (TFRC) ab.
 
  
In der Tabelle sind verschiedene Parameterkombinationen für Modulation und Coderate angegeben und die daraus resultierenden Bitraten zu ersehen. Nicht berücksichtigt ist der Overhead.
+
&rArr; &nbsp; The maximum achievable data rate depends mainly on the&nbsp; receiver performance&nbsp; and on the&nbsp; "transport format and resource combinations"&nbsp; $\rm (TFRC)$.
  
+
In the table,&nbsp;  various parameter combinations for modulation and code rate are given and the resulting bit rates can be seen.&nbsp; Not considered in this table is the&nbsp; "overhead".
 +
<br clear=all>
 
==High–Speed Uplink Packet Access==   
 
==High–Speed Uplink Packet Access==   
 +
<br>
 +
Since&nbsp; "UMTS R'99",&nbsp; the specifications for the uplink have not been further developed,&nbsp; although bidirectional symmetrical applications have become increasingly important and ever greater demands have been placed on transmission speeds.&nbsp; Until the introduction of&nbsp; "Release 6",&nbsp; data rates were between &nbsp; $\text{64 kbit/s}$ &nbsp; and &nbsp; $\text{128 kbit/s}$,&nbsp; and up to &nbsp; $\text{384 kbit/s}$ &nbsp; under ideal conditions.
 +
 +
With&nbsp; "UMTS Release 6",&nbsp; "High-Speed Uplink Packet Access"&nbsp; $\rm (HSUPA)$&nbsp; was defined in 2004 and introduced in 2007.&nbsp;
 +
 +
This significantly increased the data rates on the uplink:
 +
*These are theoretically up to&nbsp; $\text{5.8 Mbit/s}$.
 +
 +
*In practice &ndash; taking into account simultaneous transmission for multiple users and receiver capacity &ndash; transmission rates of up to&nbsp; $\approx\text{800 kbit/s}$&nbsp; are still achieved.
 +
 +
[[File:P_ID3116__Bei_T_4_4_S6_v1.png|right|frame|Chart of HSUPA]]
 +
  
Seit UMTS R’99 wurden die Spezifikationen für den Uplink nicht mehr weiterentwickelt, obwohl die bidirektionalen symmetrischen Anwendungen immer mehr an Bedeutung gewonnen haben und immer größere Anforderungen an die Übertragungsgeschwindigkeiten gestellt wurden. Die Datenraten betrugen bis zur Einführung von Release 6 zwischen 64 und 128 kbit/s, bei idealen Bedingungen bis zu 384 kbit/s.
+
The essential improvement by HSUPA is due to the introduction of an additional uplink channel,&nbsp; the&nbsp; "Enhanced Dedicated Channel"&nbsp; $($'''E-DCH'''$)$.&nbsp; This minimizes,&nbsp; among other things in the dedicated uplink channels,&nbsp; the impact of applications with highly varying and sometimes very intensive data volumes&nbsp; $($"Bursty Traffic"$)$.
  
Mit dem UMTS Release 6 wurde 2004 '''High-Speed Uplink Packet Access''' (HSUPA) definiert und 2007 eingeführt. Dadurch wurden die Datenraten auf der Aufwärtsstrecke erheblich gesteigert. Diese betragen theoretisch bis zu 5.8 Mbit/s. In der Praxis werden – unter Berücksichtigung der gleichzeitigen Übertragung für mehrere Nutzer und der Empfängerkapazität – immerhin Übertragungsraten bis ca. 800 kbit/s erreicht.
+
However,&nbsp; although the&nbsp; '''E-DCH'''&nbsp; is a dedicated transport channel,&nbsp; it does not guarantee the subscriber a fixed bandwidth in the uplink direction,&nbsp; as is the case with&nbsp; "UMTS R'99".&nbsp; This flexible and efficient allocation of bandwidth depending on channel conditions allows a substantial increase in cell capacity.
  
Die wesentliche Verbesserung durch HSUPA ist auf die Einführung eines zusätzlichen Aufwärtskanals zurückzuführen, dem so genannten ''Enhanced Dedicated Channel'' ('''E-DCH'''). Dieser minimiert unter anderem in den dedizierten Uplink–Kanälen den Einfluss von Anwendungen mit stark unterschiedlichen und teilweise sehr intensiven Datenaufkommen (englisch: ''Bursty Traffic'').
+
In addition to the new transport channel&nbsp; '''E-DCH''',&nbsp; the following procedures were additional introduced in the uplink&nbsp; $($'''HSUPA'''$)$&nbsp; analogous to the downlink&nbsp; $($'''HSDPA'''$)$:
 +
*"Node B Scheduling",
  
Obwohl der E–DCH ein dedizierter Transportkanal ist, garantiert er dem Teilnehmer allerdings keine feste Bandbreite in Aufwärtsrichtung, wie es bei UMTS R’99 der Fall ist. Diese flexible und effiziente Zuteilung der Bandbreite in Abhängigkeit der Kanalbedingungen erlaubt eine wesentliche Steigerung der Zellenkapazität.
+
*"Hybrid Automatic Repeat Request"&nbsp; $\rm (HARQ)$.
  
Neben dem neuen Transportkanal (E–DCH) wurden auch im Uplink (HSUPA) analog zum Downlink (HSDPA) zusätzlich folgende Verfahren eingeführt:
 
*''Node B Scheduling'',
 
*''Hybrid Automatic Repeat Request'' (HARQ).
 
  
Die Verwendung von HSUPA im Uplink ist nur dann sinnvoll, wenn es mit HSDPA im Downlink kombiniert wird. Ihr Zusammenwirken steigert die Leistungsfähigkeit des Gesamtsystems signifikant.
+
The use of HSUPA in the uplink only makes sense if it is combined with HSDPA in the downlink.&nbsp; Their interaction significantly increases the performance of the overall system.
  
 
 
 
 
==UTRAN Long Time Evolution== 
+
==UTRAN Long Term Evolution== 
 +
<br>
 +
"Long Term Evolution"&nbsp; $\rm (LTE)$&nbsp; represents a fourth-generation mobile communications system designed and standardized by the&nbsp; [http://www.3gpp.org/ $\rm 3gpp$]&nbsp; in parallel with the various further development phases of UMTS,&nbsp; in order to meet the ever-increasing demands on future mobile communications systems.&nbsp; This system is also referred to as&nbsp; "High Speed OFDM Packet Access"&nbsp; $\rm (HSOPA)$.&nbsp; The chart summarizes the development of mobile communications systems from the perspective of 2011.
 +
 
 +
LTE was developed as a forward-looking alternative to third-generation mobile communications systems.&nbsp; The basic LTE features of were defined in 2004,&nbsp; but concrete requirements were not drawn up until 2006.&nbsp; The first systems began operating in 2011.
 +
 
 +
[[File:EN_Bei_T_4_4_S7.png|right|frame|From&nbsp; '''UMTS'''&nbsp; to&nbsp; '''LTE''' &nbsp;  <u>Attention please:</u> <br> &nbsp; The data given here is from&nbsp; $2011$,&nbsp; shortly after the LTE launch. <br> &nbsp; You can find the currently valid LTE features on the Internet. ]]
 +
 
 +
Some features of UTRAN-LTE are listed below in bullet points without comment:
 +
#The frequency ranges allocated for GSM and UMTS&nbsp; continue to be used.&nbsp; An extension into the range around&nbsp; $\text{2600 MHz}$&nbsp; is planned.
 +
#Between&nbsp; $200$&nbsp; and&nbsp; $400$&nbsp; active subscribers can be served simultaneously,&nbsp; which means an increase in &nbsp;''cell capacity''&nbsp; compared to UMTS by a factor of&nbsp;$2$&nbsp; to&nbsp;$3$.
 +
#The range is&nbsp; $\text{5 km}$&nbsp; $($optimal quality$)$ up to&nbsp; $\text{100 km}$&nbsp; $($reduced quality$)$.&nbsp; Maximum data rates are given as&nbsp; $\text{100 Mbit/s}$&nbsp; in the downlink and&nbsp; $\text{50 Mbit/s}$&nbsp; in the uplink.
 +
#The delay times are reduced to less than&nbsp; $\text{5 ms}$&nbsp; for larger bandwidth allocations and to&nbsp; $\text{10 ms}$&nbsp; for smaller bandwidth allocations.
 +
#Bandwidths can be flexibly allocated over a very wide range with&nbsp; $\text{1.25 MHz}$,&nbsp; $\text{2.5 MHz}$,&nbsp; $\text{5 MHz}$,&nbsp; $\text{10 MHz}$,&nbsp; $\text{15 MHz}$&nbsp; and&nbsp; $\text{20 MHz}$&nbsp; .
 +
#The multiple access techniques used are&nbsp; "Orthogonal Frequency Division Multiple Access"&nbsp; $\rm (OFDMA)$&nbsp; in the downlink and&nbsp; "Single Carrier Frequency Division Multiple Multiplexing"&nbsp; $\text{(SC-FDMA)}$&nbsp; in the uplink.
 +
#Despite these innovations,&nbsp; there is compatibility with the mobile communications systems of previous generations and a seamless transition to them is possible.
 +
 
 +
 
 +
A detailed description of LTE can be found in the fourth main chapter of the book&nbsp; "[[Mobile Communications]]". However, this was also written in 2011, shortly after its introduction.
 +
 
  
'''Long Term Evolution''' (LTE) stellt ein Mobilfunksystem der vierten Generation dar, das von der 3gpp parallel zu den unterschiedlichen Weiterentwicklungsphasen von UMTS entworfen und standardisiert wurde, um den stetig wachsenden Anforderungen an zukünftige Mobilfunksysteme gerecht zu werden. Dieses System wird auch als ''High Speed OFDM Packet Access'' (HSOPA) bezeichnet.
 
  
LTE stellt eine zukunftsweisende Alternative zu den aktuellen Mobilfunksystemen der dritten Generation dar. Die Grundzüge von LTE wurden 2004 definiert, konkrete Anforderungen wurden aber erst 2006 erstellt. Erste Systeme begannen 2011 mit dem Betrieb.
 
  
Nachfolgend sind einige Merkmale von UTRAN–LTE stichpunktartig und kommentarlos aufgelistet:
 
*Die für GSM und UMTS zugewiesenen ''Frequenzbereiche'' sollen weiterhin verwendet werden, allerdings ist eine Erweiterung in den Bereich um 2600 MHz geplant.
 
*Es sollen zwischen 200 und 400 aktive Teilnehmer gleichzeitig versorgt werden können, was eine Steigerung der ''Zellenkapazität'' gegenüber UMTS um den Faktor 2 bis 3 bedeutet.
 
*Die Reichweite soll von 5 km (bei optimaler Güte) bis zu 100 km (mit reduzierter Qualität) reichen. Die ''maximalen Datenraten'' sind 100 Mbit/s im Downlink und 50 Mbit/s im Uplink.
 
*Die ''Verzögerungszeiten'' sollen auf weniger als 5 ms bei größeren Bandbreitenzuweisungen und auf 10 ms bei kleineren Bandbreitenzuweisungen herabgesetzt werden.
 
*Die Bandbreiten sollen mit 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz, 15 MHz und 20 MHz in einem sehr weiten Bereich flexibel zugewiesen werden können.
 
*Vielfachzugriffsverfahren sind Orthogonal Frequency Division Multiple Access (OFDMA) im Downlink und ''Single Carrier Frequency Division Multiple Muplexing'' (SC–FDMA) im Uplink.
 
*Trotz dieser vielfachen Neuerungen soll es Kompatibilität zu den Mobilfunksystemen vorheriger Generationen geben und ein nahtloser Übergang zu diesen möglich sein.
 
  
Das Schaubild fasst die Entwicklung der Mobilfunksysteme aus der Sicht des Jahres 2011 zusammen.
 
  
 
   
 
   
== Aufgabe zu Kapitel 4.4==
+
== Exercises for the chapter==  
 
+
<br>
 +
[[Aufgaben:Exercise_4.8:_HSDPA_and_HSUPA|Exercise 4.8: HSDPA and HSUPA]]
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 19:21, 25 March 2023


High–Speed Downlink Packet Access


In order to meet the increasing demand for higher data rates in mobile communications and to ensure ever better quality of service, the UMTS Release 99 standard has been further developed in five phases up to the present day  $(2011)$.  The diagram shows the individual development phases in chronological order.

The most important further developments were

Further development of UMTS between 2000 and 2011

Characteristics of HSDPA
  • the UMTS Release 5 with  »HSDPA«  and
  • the UMTS Release 6 with  »HSUPA«.


For these two standards, the main focus was on increasing the data rates provided for downlink and uplink as well as greater bandwidth efficiency and cell capacity.

Together,  HSDPA and HSUPA make up the  »HSPA standard«.

  • In 2002,  "High-Speed Downlink Packet Access"  – abbreviated  $\rm HSDPA$  – was specified with UMTS Release 5 and introduced in 2006 to increase data rate and throughput compared to the original UMTS standard as well as to reduce response times for packet-switched transmission.
  • In HSPDA, the data rates provided are between  $\text{500 kbit/s}$  and  $\text{3.6 Mbit/s}$  – theoretically even up to  $\text{14.4 Mbit/s}$.
  • Compared to the data rate of UMTS R'99  $\text{(14.4 kbit/s}$  to  $\text{2 Mbit/s)}$  these values represent a doubling to quadrupling.


The following technical procedures contribute to the increase in performance of HSDPA compared to UMTS. The diagram compiles these features:

  1. Introduction of an additional shared channel:  »HS-PDSCH«,
  2. use of the  »Hybrid ARQ«  method,
  3. delay  minimization,
  4. introduction of  »Node B scheduling«,
  5. use of  adaptive  modulation,  coding and transmission rate.


Additional channels in HSDPA


Transport channels,  logical channels,  and physical channels in HSDPA

The  "High-Speed Downlink Physical High Speed Channel"  – abbreviated  HS-PDCH  – is a high-speed transport channel used for the transmission of subscriber data.  It combines the characteristics of a shared and a dedicated channel:

  • In the downlink,  one or more channels can be used by multiple subscribers simultaneously.  This allows simultaneous transmission of the same data to different subscribers as well as a significant increase in transmission speed by bundling several channels of this type.
  • In any HS-PDCH,  the spreading factor  $J = 16$.  This means that theoretically up to fifteen such channels can be used simultaneously in one cell.  In practice,  however,  only between five and ten channels are ever used,  since the remaining channels are required for the operation of other services.


Resource allocation for the  "High-Speed Shared Data Channel"  $($HS-DSCH$)$  is done via so-called  "High-Speed Shared Control Channels"  $($HS-SCCH$)$.  A receiver must therefore be able to receive and decode up to four such channels simultaneously.  In addition to the channels presented above

  1. The  "Dedicated Physical Control Channel"  $($DPCCH$)$  is used for the transmission of control data in the uplink.
  2. The  "Dedicated Control Channel"  $($DCCH$)$  is used for the localization procedure in downlink and uplink.
  3. The  "Dedicated Traffic Channel"  $($DTCH$)$  is responsible for the transmission of Internet Protocol payload data in the uplink direction.


HARQ procedure and Node B scheduling


Another feature of HSDPA is the reduction of packet round-trip delay  $\rm (RTD)$  and the use of  "HARQ":

  • The  »round-trip delay»  has been reduced by HSDPA to  $\text{70 ms}$  $($compared  $\text{160 ... 200 ms}$  with UMTS R'99$)$, which is of great importance for some applications,  e.g. web browsing.  This reduction was achieved by decreasing the transport block length to about  $2$  milliseconds  $($previously  $\text{10 ms}$  or  $\text{20 ms)}$.
  • In each Node B,  a  »HARQ«  $($"Hybrid Automatic Repeat Request"$)$  has been implemented to minimize transmission delays.  This mechanism prevents significant delays from occurring due to retransmission of erroneous blocks.  This is because such delays can be interpreted by TCP protocol as blocking,  which then leads to further delays.
  • Using the HARQ mechanism and with transport block lengths of  $\text{2 ms}$  the transmission delays in HSPDA are less than  $\text{10 ms}$.  This is a crucial improvement over UMTS,  where error detection  $($associated with retransmission$)$  takes approximately  $\text{90 ms}$.
  • In the HARQ procedure,  the detection of  "error"  or  "no error"  is acknowledged for each individual transport frame. 
    This procedure is referred to as  "Stop and Wait"  $\rm (SAW)$.


$\text{Example 1:}$  The graph shows the achievable data rate as a function of the quotient  $E_{\rm B}/N_0$  $($in dB$)$.

Increasing the data rate by HARQ




  • You can see decisive improvements by the HARQ mechanism,  especially for small  $E_{\rm B}/N_0$  values.


  • In contrast,  HARQ does not further increase the data rate if  $10 \cdot \lg \E_{\rm B}/N_0 > 2 \ \rm dB$.


$\text{Example 2:}$  This graphic is intended to illustrate  how the HARQ process works.  The following steps are to be distinguished:

On the HARQ procedure
  • Before transmission,  the base station informs the receiver of an upcoming transmission using the  HS-SCCH  channel,  where the  HS-SCCH frame has three time slots.
  • Control data arrives at the receiver and is evaluated immediately after the arrival of the first  SCCH time slot.
  • Data transmission on the  HS-PDSCH  starts as soon as the user has received the first two time slots of the control data block.
  • Within  $\text{5 ms}$  of receiving a frame of data,  the receiver must have decoded the entire frame and checked for errors.
  • If the transmission is error-free, 
  • a positive acknowledgement  $($ACK$)$  is sent upstream, 
  • otherwise a  "non acknowledgement"  $($NACK$)$  is sent.


Since the HARQ does not send a new frame until the acknowledgement of the already transmitted frames is received,  the receiver must be able to manage up to eight HARQs. This guarantees the correct sequence and thereby the correct processing of the data in the higher levels.

$\text{It is also worth mentioning:}$  In addition to HARQ,  in  UMTS Release 5  a  »Node B Scheduling«  was introduced to be able to react quickly to changes in the transmission conditions of individual nodes  $($for example,  due to fading$)$.

  1. This scheduling is used to decide which frames are assigned to which transmission channel.
  2. Priorities are assigned during scheduling.  A frame is only sent when it has the highest priority,  which means that it is most likely to be received correctly.
  3. This scheduling makes better use of the available bandwidth and significantly increases cell capacity.


Adaptive modulation, adaptive coding and adaptive transmission rate


In HSDPA,  the signals are  "adaptively modulated".  This means:

Adaptive modulation and coding in HSDPA
  • Under good transmission conditions,  a higher-level modulation is used:  $\text{16-QAM}$  or  $\text{64-QAM}$.
  • In poorer conditions,  it is switched to  "Quaternary Phase Shift Keying"  $\text{QPSK}$  or  $\text{4-QAM}$.


In addition to modulation,  the coding as well as the number of  HS-DSCH  channels used simultaneously by a subscriber can be flexibly and quickly  $($all  $\text{2 ms)}$  changed depending on the channel quality.  Despite the simultaneous use of adaptive modulation and adaptive coding,  the power is always kept constant.

⇒   Power control runs differently in  "HSDPA"  than in  "UMTS R'99":

  • The transmit power is always adapted to the signal quality, while the bandwidth should be kept as constant as possible.
  • Only if the power can no longer be increased, the spreading factor is increased and thus the data rate is lowered.


⇒   The maximum achievable data rate depends mainly on the  receiver performance  and on the  "transport format and resource combinations"  $\rm (TFRC)$.

In the table,  various parameter combinations for modulation and code rate are given and the resulting bit rates can be seen.  Not considered in this table is the  "overhead".

High–Speed Uplink Packet Access


Since  "UMTS R'99",  the specifications for the uplink have not been further developed,  although bidirectional symmetrical applications have become increasingly important and ever greater demands have been placed on transmission speeds.  Until the introduction of  "Release 6",  data rates were between   $\text{64 kbit/s}$   and   $\text{128 kbit/s}$,  and up to   $\text{384 kbit/s}$   under ideal conditions.

With  "UMTS Release 6",  "High-Speed Uplink Packet Access"  $\rm (HSUPA)$  was defined in 2004 and introduced in 2007. 

This significantly increased the data rates on the uplink:

  • These are theoretically up to  $\text{5.8 Mbit/s}$.
  • In practice – taking into account simultaneous transmission for multiple users and receiver capacity – transmission rates of up to  $\approx\text{800 kbit/s}$  are still achieved.
Chart of HSUPA


The essential improvement by HSUPA is due to the introduction of an additional uplink channel,  the  "Enhanced Dedicated Channel"  $($E-DCH$)$.  This minimizes,  among other things in the dedicated uplink channels,  the impact of applications with highly varying and sometimes very intensive data volumes  $($"Bursty Traffic"$)$.

However,  although the  E-DCH  is a dedicated transport channel,  it does not guarantee the subscriber a fixed bandwidth in the uplink direction,  as is the case with  "UMTS R'99".  This flexible and efficient allocation of bandwidth depending on channel conditions allows a substantial increase in cell capacity.

In addition to the new transport channel  E-DCH,  the following procedures were additional introduced in the uplink  $($HSUPA$)$  analogous to the downlink  $($HSDPA$)$:

  • "Node B Scheduling",
  • "Hybrid Automatic Repeat Request"  $\rm (HARQ)$.


The use of HSUPA in the uplink only makes sense if it is combined with HSDPA in the downlink.  Their interaction significantly increases the performance of the overall system.


UTRAN Long Term Evolution


"Long Term Evolution"  $\rm (LTE)$  represents a fourth-generation mobile communications system designed and standardized by the  $\rm 3gpp$  in parallel with the various further development phases of UMTS,  in order to meet the ever-increasing demands on future mobile communications systems.  This system is also referred to as  "High Speed OFDM Packet Access"  $\rm (HSOPA)$.  The chart summarizes the development of mobile communications systems from the perspective of 2011.

LTE was developed as a forward-looking alternative to third-generation mobile communications systems.  The basic LTE features of were defined in 2004,  but concrete requirements were not drawn up until 2006.  The first systems began operating in 2011.

From  UMTS  to  LTE   Attention please:
  The data given here is from  $2011$,  shortly after the LTE launch.
  You can find the currently valid LTE features on the Internet.

Some features of UTRAN-LTE are listed below in bullet points without comment:

  1. The frequency ranges allocated for GSM and UMTS  continue to be used.  An extension into the range around  $\text{2600 MHz}$  is planned.
  2. Between  $200$  and  $400$  active subscribers can be served simultaneously,  which means an increase in  cell capacity  compared to UMTS by a factor of $2$  to $3$.
  3. The range is  $\text{5 km}$  $($optimal quality$)$ up to  $\text{100 km}$  $($reduced quality$)$.  Maximum data rates are given as  $\text{100 Mbit/s}$  in the downlink and  $\text{50 Mbit/s}$  in the uplink.
  4. The delay times are reduced to less than  $\text{5 ms}$  for larger bandwidth allocations and to  $\text{10 ms}$  for smaller bandwidth allocations.
  5. Bandwidths can be flexibly allocated over a very wide range with  $\text{1.25 MHz}$,  $\text{2.5 MHz}$,  $\text{5 MHz}$,  $\text{10 MHz}$,  $\text{15 MHz}$  and  $\text{20 MHz}$  .
  6. The multiple access techniques used are  "Orthogonal Frequency Division Multiple Access"  $\rm (OFDMA)$  in the downlink and  "Single Carrier Frequency Division Multiple Multiplexing"  $\text{(SC-FDMA)}$  in the uplink.
  7. Despite these innovations,  there is compatibility with the mobile communications systems of previous generations and a seamless transition to them is possible.


A detailed description of LTE can be found in the fourth main chapter of the book  "Mobile Communications". However, this was also written in 2011, shortly after its introduction.




Exercises for the chapter


Exercise 4.8: HSDPA and HSUPA