Difference between revisions of "Exercise 2.5Z: Range and Bit Rate with ADSL"

From LNTwww
(Die Seite wurde neu angelegt: „{{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/Verfahren zur Senkung der Bitfehlerrate bei DSL }} Datei:P_ID1187__Bei_A_3_1.png|right|frame|GSM…“)
 
 
(23 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/Verfahren zur Senkung der Bitfehlerrate bei DSL
+
{{quiz-Header|Buchseite=Examples_of_Communication_Systems/Methods_to_Reduce_the_Bit_Error_Rate_in_DSL
  
  
 
}}
 
}}
  
[[File:P_ID1187__Bei_A_3_1.png|right|frame|GSM: Base Station Subsystem]]
+
[[File:EN_Bei_Z_2_5.png|right|frame|"Range vs. bit rate" diagram]]
  
Die Netzinfrastruktur beim 2G&ndash;Mobilfunkstandard <i>Global System for Mobile Communications</i> &ndash; kurz GSM &ndash; beinhaltet folgende Teilsysteme
+
The development of xDSL technology began in 1995 with the first standard for $\rm ADSL$&nbsp; (''Asymmetric Digital Subscriber Line''). From 2006, the faster&nbsp; $\rm VDSL$&nbsp; (''Very High Data Rate Digital Subscriber Line'') also came into use in Germany.
* Base Station Subsystem (<b>BSS</b>),
 
* Switching & Management Subsystem (<b>SMSS</b>),
 
* Operation & Maintenance Subsystem (<b>OMSS</b>).
 
  
 +
The graph shows five system variants in a diagram in which the achievable cable length&nbsp; $l_{\rm max}$&nbsp; is plotted as a function of the total bit rate&nbsp; $R_{\rm ges}$&nbsp;:
 +
*  $\boldsymbol{\rm A}\text{:} \hspace{0.3cm} \text{    Bitraten} \  0.2 \ {\rm Mbit/s} + 2 \ {\rm Mbit/s}; \hspace{0.2cm} \text{      cable length  } l_{\rm max} \approx 3.5 \ {\rm km},$
 +
*  $\boldsymbol{\rm B}\text{:} \hspace{0.3cm} \text{    Bitraten} \  0.2 \ {\rm Mbit/s} + 6 \ {\rm Mbit/s}; \hspace{0.2cm} \text{      cable length  } l_{\rm max} \approx 2 \ {\rm km},$
 +
*  $\boldsymbol{\rm C}\text{:} \hspace{0.3cm} \text{    Bitraten} \  2 \ {\rm Mbit/s} + 13 \ {\rm Mbit/s}; \hspace{0.3cm} \text{      cable length  }  l_{\rm max} \approx 1 \ {\rm km},$
 +
*  $\boldsymbol{\rm D}\text{:} \hspace{0.3cm} \text{    Bitraten} \  2 \ {\rm Mbit/s} + 26 \ {\rm Mbit/s}; \hspace{0.3cm} \text{      cable length  }  \ l_{\rm max} \approx 0.8 \ {\rm km},$
 +
*  $\boldsymbol{\rm E}\text{:} \hspace{0.3cm}\text{    Bitraten} \  2 \ {\rm Mbit/s} + 51 \ {\rm Mbit/s};  \hspace{0.35cm} \text{      cable length  } l_{\rm max} \approx 0.4 \ {\rm km}.$
  
Das BSS ist im Wesentlichen für das GSM&ndash;Funknetz verantwortlich (siehe Grafik), während SMSS das Vermittlungsnetz darstellt und OMSS für den Betrieb und die Wartung zuständig ist.
+
To this graphic is to be noted further:
 +
*All data applies to a balanced copper pair with&nbsp; $\text{0.4 mm}$&nbsp; diameter.
 +
*One of the bit rates given here is for upstream, the other is for downstream.
 +
*The total bitrate is the sum of the two portions.
 +
*Which bit rate refers to the upstream and which to the downstream is asked in the subtask '''(1)'''.
 +
*The colored differentiation of the drawn points refers to the subdivision into ADSL and VDSL. This is referred to in the subtask '''(2)'''.
 +
*The curve drawn in blue shows a rule of thumb that approximates the relationship between range and total bit rate:
 +
:$$l_{\rm max}\,{\rm \big [in}\,\,{\rm km \big]} = \frac {20}{4 + R_{\rm ges}\,{\rm \big[in}\,\,{\rm Mbit/s\big]}} \hspace{0.05cm}.$$
 +
*Dashed are deviations from this by&nbsp; $\pm 25\%$.
  
  
  
 +
One often characterizes a wireline transmission system by the cable attenuation at half the bit rate (note the "a" in the attenuation):
 +
:$${\rm a}_{\rm \star} = {\rm a}_{\rm K}(f = {R_{\rm B}}/{2}) = \alpha_{\rm K}(f = {R_{\rm B}}/{2}) \cdot l\hspace{0.05cm}.$$
  
===Fragebogen===
+
The attenuation coefficient (noted as "alpha") is given for a $\text{0.4 mm}$ balanced copper pair as follows:
 +
:$$\alpha_{\rm K}(f ) = \left [ 5.1 + 14.3 \cdot \left ({f}/({\rm 1\,MHz})\right )^{0.59} \right ] {\rm dB}/{\rm km} \hspace{0.05cm}.$$
 +
 
 +
For the downlink of variant&nbsp; $\boldsymbol{\rm A}$&nbsp; with&nbsp; $R_{\rm B} = 2 \ \rm Mbit/s$&nbsp; thus results with&nbsp; $l = l_{\rm max} = 3.5 \ \rm km$:
 +
:$$\alpha_{\rm K}(f = {\rm 1\,MHz}) = \left [ 5.1 + 14.3 \right ] {\rm dB}/{\rm km} = 19.4\,{\rm dB}/{\rm km}\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} {\rm a}_{\rm \star} = 19.4\,{\rm dB}/{\rm km} \cdot 3.5\,{\rm km} = 67.9\,{\rm dB}\hspace{0.05cm}.$$
 +
 
 +
The values for the other system variants are to be determined in subtask '''(4)'''.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
Hint:
 +
 
 +
*This exercise belongs to the chapter&nbsp; [[Examples_of_Communication_Systems/Methods_to_Reduce_the_Bit_Error_Rate_in_DSL|"Methods to Reduce the Bit Error Rate in DSL"]].
 +
 +
 
 +
 
 +
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice
+
{For example, consider the system variant&nbsp; $\boldsymbol{\rm C}$. Which applies?
|type="[]"}
+
|type="()"}
+ correct
+
- The upstream bit rate is&nbsp; $13 \ \rm Mbit/s$.
- false
+
+ The downstream bit rate is&nbsp; $13 \rm Mbit/s$.
 +
 
  
{Input-Box Frage
+
{Which of the drawn variants are ADSL or VDSL systems?
 +
|type="()"}
 +
- The red dots indicate VDSL systems.
 +
+ The green dots indicate VDSL systems.
 +
 
 +
 
 +
{What range would result from the given rule of thumb for&nbsp; $R_{\rm ges} = 1 \ \rm Gbit/s$.
 +
|type="{}"}
 +
$l_{\rm max} \ = \ ${ 20 3% } $ \ \rm m$.
 +
 
 +
{Calculate the characteristic cable attenuations for the variant
 
|type="{}"}
 
|type="{}"}
$xyz \ = \ ${ 5.4 3% } $ab$
+
$\boldsymbol{\rm B}\text{:} \hspace{0.4cm}  {\rm a}_{\ast} \ = \ ${ 64.9 3% } $ \ \rm dB$
 +
$\boldsymbol{\rm C}\text{:} \hspace{0.4cm} {\rm a}_{\ast} \ = \ ${ 48.2 3% } $ \ \rm dB$
 +
$\boldsymbol{\rm D}\text{:} \hspace{0.4cm} {\rm a}_{\ast} \ = \ ${ 56 3% } $ \ \rm dB$
 +
$\boldsymbol{\rm E}\text{:} \hspace{0.4cm} {\rm a}_{\ast} \ = \ ${ 40.7 3% } $ \ \rm dB$
 +
 
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
'''(1)'''&nbsp; Correct is <u>the second proposed solution</u>:
'''(2)'''&nbsp;  
+
*In all xDSL variants, the downstream is operated at a higher bit rate than the upstream.
'''(3)'''&nbsp;  
+
*This principle results from user behavior. One fetches much more data to the computer (downstream) than in the reverse direction.
'''(4)'''&nbsp;  
+
 
'''(5)'''&nbsp;
+
 
 +
 
 +
'''(2)'''&nbsp; Correct is <u>the second proposed solution</u>:
 +
*VDSL offers higher data rates.
 +
*High data rate, however, is only possible with relatively short line lengths.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; The range of such a Gbit/s system over two-wire line would be about $20/1000
 +
\ {\rm km} \underline{= 20 \ \rm meters}$.
 +
*Consider this subtask rather academic.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Here the following characteristic cable attenuations result. For
 +
 
 +
*variant $\boldsymbol{\rm B} \ (R_{\rm B}/2 = 3 {\rm \ Mbit/s}, \ l_{\rm max} = 2 {\rm \ km})\text{:}$
 +
:$${\rm a}_{\rm \star} = \left [ 5.1 + 14.3 \cdot 3^{0.59} \right ] \cdot 2\,{\rm dB}\hspace{0.15cm}\underline{ \approx 64.9\,{\rm dB}}\hspace{0.05cm},$$
 +
*variant $\boldsymbol{\rm C} \ (R_{\rm B}/2 = 6.5 {\rm \ Mbit/s}, \ l_{\rm max} = 1 {\rm \ km})\text{:}$
 +
:$${\rm a}_{\rm \star} = \left [ 5.1 + 14.3 \cdot 6.5^{0.59} \right ] \cdot 1\,{\rm dB} \hspace{0.15cm}\underline{\approx 48.2\,{\rm dB}}\hspace{0.05cm},$$
 +
*variant $\boldsymbol{\rm D} \ (R_{\rm B}/2 = 13 {\rm \ Mbit/s}, \ l_{\rm max} = 0.8 {\rm \ km})\text{:}$
 +
:$${\rm a}_{\rm \star} = \left [ 5.1 + 14.3 \cdot 13^{0.59} \right ] \cdot 0.8\,{\rm dB}\hspace{0.15cm}\underline{ \approx 56\,{\rm dB}}\hspace{0.05cm},$$
 +
*variant $\boldsymbol{\rm E} \ (R_{\rm B}/2 = 25.5 {\rm \ Mbit/s}, \ l_{\rm max} = 0.4 {\rm \ km})\text{:}$
 +
:$${\rm a}_{\rm \star} = \left [ 5.1 + 14.3 \cdot 25.5^{0.59} \right ] \cdot 0.4\,{\rm dB}\hspace{0.15cm}\underline{ \approx 40.7\,{\rm dB}}\hspace{0.05cm}.$$
 +
 
 +
Further, it should be noted:
 +
*The characteristic cable attenuation ${\rm a}_{\ast}$ of ADSL systems is in the range $65 \ \rm dB$ ... $68 \ \rm dB$.
 +
*The VDSL variants provide characteristic cable attenuations between $40 \ \rm dB$ and $56 \ \rm dB$.
 +
*It should be noted, however, that this system parameter ${\rm a}_{\ast}$, which is important in conventional binary baseband transmission, does not reflect the conditions in ''OFDM'' or ''Discrete Multitone Transmission'' sufficiently well.
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
[[Category:Aufgaben zu Beispiele von Nachrichtensystemen|^2.4 Verfahren zur Senkung der Bitfehlerrate bei DSL
+
[[Category:Examples of Communication Systems: Exercises|^2.4 BER Lowering at DSL
  
  
 
^]]
 
^]]

Latest revision as of 19:34, 25 March 2023

"Range vs. bit rate" diagram

The development of xDSL technology began in 1995 with the first standard for $\rm ADSL$  (Asymmetric Digital Subscriber Line). From 2006, the faster  $\rm VDSL$  (Very High Data Rate Digital Subscriber Line) also came into use in Germany.

The graph shows five system variants in a diagram in which the achievable cable length  $l_{\rm max}$  is plotted as a function of the total bit rate  $R_{\rm ges}$ :

  • $\boldsymbol{\rm A}\text{:} \hspace{0.3cm} \text{ Bitraten} \ 0.2 \ {\rm Mbit/s} + 2 \ {\rm Mbit/s}; \hspace{0.2cm} \text{ cable length } l_{\rm max} \approx 3.5 \ {\rm km},$
  • $\boldsymbol{\rm B}\text{:} \hspace{0.3cm} \text{ Bitraten} \ 0.2 \ {\rm Mbit/s} + 6 \ {\rm Mbit/s}; \hspace{0.2cm} \text{ cable length } l_{\rm max} \approx 2 \ {\rm km},$
  • $\boldsymbol{\rm C}\text{:} \hspace{0.3cm} \text{ Bitraten} \ 2 \ {\rm Mbit/s} + 13 \ {\rm Mbit/s}; \hspace{0.3cm} \text{ cable length } l_{\rm max} \approx 1 \ {\rm km},$
  • $\boldsymbol{\rm D}\text{:} \hspace{0.3cm} \text{ Bitraten} \ 2 \ {\rm Mbit/s} + 26 \ {\rm Mbit/s}; \hspace{0.3cm} \text{ cable length } \ l_{\rm max} \approx 0.8 \ {\rm km},$
  • $\boldsymbol{\rm E}\text{:} \hspace{0.3cm}\text{ Bitraten} \ 2 \ {\rm Mbit/s} + 51 \ {\rm Mbit/s}; \hspace{0.35cm} \text{ cable length } l_{\rm max} \approx 0.4 \ {\rm km}.$

To this graphic is to be noted further:

  • All data applies to a balanced copper pair with  $\text{0.4 mm}$  diameter.
  • One of the bit rates given here is for upstream, the other is for downstream.
  • The total bitrate is the sum of the two portions.
  • Which bit rate refers to the upstream and which to the downstream is asked in the subtask (1).
  • The colored differentiation of the drawn points refers to the subdivision into ADSL and VDSL. This is referred to in the subtask (2).
  • The curve drawn in blue shows a rule of thumb that approximates the relationship between range and total bit rate:
$$l_{\rm max}\,{\rm \big [in}\,\,{\rm km \big]} = \frac {20}{4 + R_{\rm ges}\,{\rm \big[in}\,\,{\rm Mbit/s\big]}} \hspace{0.05cm}.$$
  • Dashed are deviations from this by  $\pm 25\%$.


One often characterizes a wireline transmission system by the cable attenuation at half the bit rate (note the "a" in the attenuation):

$${\rm a}_{\rm \star} = {\rm a}_{\rm K}(f = {R_{\rm B}}/{2}) = \alpha_{\rm K}(f = {R_{\rm B}}/{2}) \cdot l\hspace{0.05cm}.$$

The attenuation coefficient (noted as "alpha") is given for a $\text{0.4 mm}$ balanced copper pair as follows:

$$\alpha_{\rm K}(f ) = \left [ 5.1 + 14.3 \cdot \left ({f}/({\rm 1\,MHz})\right )^{0.59} \right ] {\rm dB}/{\rm km} \hspace{0.05cm}.$$

For the downlink of variant  $\boldsymbol{\rm A}$  with  $R_{\rm B} = 2 \ \rm Mbit/s$  thus results with  $l = l_{\rm max} = 3.5 \ \rm km$:

$$\alpha_{\rm K}(f = {\rm 1\,MHz}) = \left [ 5.1 + 14.3 \right ] {\rm dB}/{\rm km} = 19.4\,{\rm dB}/{\rm km}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm a}_{\rm \star} = 19.4\,{\rm dB}/{\rm km} \cdot 3.5\,{\rm km} = 67.9\,{\rm dB}\hspace{0.05cm}.$$

The values for the other system variants are to be determined in subtask (4).





Hint:



Questions

1

For example, consider the system variant  $\boldsymbol{\rm C}$. Which applies?

The upstream bit rate is  $13 \ \rm Mbit/s$.
The downstream bit rate is  $13 \rm Mbit/s$.

2

Which of the drawn variants are ADSL or VDSL systems?

The red dots indicate VDSL systems.
The green dots indicate VDSL systems.

3

What range would result from the given rule of thumb for  $R_{\rm ges} = 1 \ \rm Gbit/s$.

$l_{\rm max} \ = \ $

$ \ \rm m$.

4

Calculate the characteristic cable attenuations for the variant

$\boldsymbol{\rm B}\text{:} \hspace{0.4cm} {\rm a}_{\ast} \ = \ $

$ \ \rm dB$
$\boldsymbol{\rm C}\text{:} \hspace{0.4cm} {\rm a}_{\ast} \ = \ $

$ \ \rm dB$
$\boldsymbol{\rm D}\text{:} \hspace{0.4cm} {\rm a}_{\ast} \ = \ $

$ \ \rm dB$
$\boldsymbol{\rm E}\text{:} \hspace{0.4cm} {\rm a}_{\ast} \ = \ $

$ \ \rm dB$


Solution

(1)  Correct is the second proposed solution:

  • In all xDSL variants, the downstream is operated at a higher bit rate than the upstream.
  • This principle results from user behavior. One fetches much more data to the computer (downstream) than in the reverse direction.


(2)  Correct is the second proposed solution:

  • VDSL offers higher data rates.
  • High data rate, however, is only possible with relatively short line lengths.


(3)  The range of such a Gbit/s system over two-wire line would be about $20/1000 \ {\rm km} \underline{= 20 \ \rm meters}$.

  • Consider this subtask rather academic.


(4)  Here the following characteristic cable attenuations result. For

  • variant $\boldsymbol{\rm B} \ (R_{\rm B}/2 = 3 {\rm \ Mbit/s}, \ l_{\rm max} = 2 {\rm \ km})\text{:}$
$${\rm a}_{\rm \star} = \left [ 5.1 + 14.3 \cdot 3^{0.59} \right ] \cdot 2\,{\rm dB}\hspace{0.15cm}\underline{ \approx 64.9\,{\rm dB}}\hspace{0.05cm},$$
  • variant $\boldsymbol{\rm C} \ (R_{\rm B}/2 = 6.5 {\rm \ Mbit/s}, \ l_{\rm max} = 1 {\rm \ km})\text{:}$
$${\rm a}_{\rm \star} = \left [ 5.1 + 14.3 \cdot 6.5^{0.59} \right ] \cdot 1\,{\rm dB} \hspace{0.15cm}\underline{\approx 48.2\,{\rm dB}}\hspace{0.05cm},$$
  • variant $\boldsymbol{\rm D} \ (R_{\rm B}/2 = 13 {\rm \ Mbit/s}, \ l_{\rm max} = 0.8 {\rm \ km})\text{:}$
$${\rm a}_{\rm \star} = \left [ 5.1 + 14.3 \cdot 13^{0.59} \right ] \cdot 0.8\,{\rm dB}\hspace{0.15cm}\underline{ \approx 56\,{\rm dB}}\hspace{0.05cm},$$
  • variant $\boldsymbol{\rm E} \ (R_{\rm B}/2 = 25.5 {\rm \ Mbit/s}, \ l_{\rm max} = 0.4 {\rm \ km})\text{:}$
$${\rm a}_{\rm \star} = \left [ 5.1 + 14.3 \cdot 25.5^{0.59} \right ] \cdot 0.4\,{\rm dB}\hspace{0.15cm}\underline{ \approx 40.7\,{\rm dB}}\hspace{0.05cm}.$$

Further, it should be noted:

  • The characteristic cable attenuation ${\rm a}_{\ast}$ of ADSL systems is in the range $65 \ \rm dB$ ... $68 \ \rm dB$.
  • The VDSL variants provide characteristic cable attenuations between $40 \ \rm dB$ and $56 \ \rm dB$.
  • It should be noted, however, that this system parameter ${\rm a}_{\ast}$, which is important in conventional binary baseband transmission, does not reflect the conditions in OFDM or Discrete Multitone Transmission sufficiently well.