Difference between revisions of "Mobile Communications/Multi-Path Reception in Mobile Communications"

From LNTwww
 
(62 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Frequenzselektive Übertragungskanäle
+
|Untermenü=Frequency-Selective Transmission Channels  |Vorherige Seite=General Description of Time Variant Systems
|Vorherige Seite=Allgemeine Beschreibung zeitvarianter Systeme
+
|Nächste Seite=The GWSSUS Channel Model
|Nächste Seite=Das GWSSUS–Kanalmodell
 
 
}}
 
}}
  
== Zeitinvariante Beschreibung des Zweiwegekanals (1) ==
+
== Time-invariant description of the two-way channel==
 
<br>
 
<br>
Wir gehen von dem in der Grafik dargestellten Szenario aus. Dabei wird vorausgesetzt:
+
We assume the scenario shown in the graph.&nbsp; This assumes
*Sender und Empfänger sind ruhend. Dann ist sowohl die Kanal&ndash;Übertragungsfunktion als auch die Impulsantwort zeitunabhängig. Für alle Zeiten <i>t</i> gilt <i>H</i>(<i>f</i>, <i>t</i>) = <i>H</i>(<i>f</i>) und <i>h</i>(<i>&tau;</i>, <i>t</i>) = <i>h</i>(<i>&tau;</i>).<br>
+
[[File:EN_Mob_T_2_2_S1.png|right|frame|Time&ndash;invariant consideration of the two-way channel|class=fit]]
 +
*Transmitter and receiver are&nbsp; &raquo;'''at rest'''&laquo;:&nbsp; <br>Then both the channel transfer function and the impulse response are time&ndash;independent.&nbsp; For all times&nbsp; $t$&nbsp; applies&nbsp; $H(f, \hspace{0.05cm}t) = H(f)$&nbsp; and&nbsp; $h(\tau, \hspace{0.05cm}t) = h(\tau)$.<br>
  
*Ein Zweiwegekanal: Das Sendesignal <i>s</i>(<i>t</i>) erreicht den Empfänger auf direktem Pfad mit der Weglänge <i>d</i><sub>1</sub> und es gibt ein Echo aufgrund des reflektierenden Erdbodens (Distanz <i>d</i><sub>2</sub>).
+
*A&nbsp; &raquo;'''two-way channel'''&laquo;: &nbsp; <br>The transmitted signal&nbsp; $s(t)$&nbsp; reaches the receiver on a direct path with the path length&nbsp; $d_1$,&nbsp; and there is also an echo due to the reflective ground&nbsp; $($the total path length is&nbsp; $d_2)$.
  
:[[File:P ID2146 Mob T 2 2 S1 v1.png|Zeitinvariante Betrachtung des Zweiwegekanals|class=fit]]<br>
 
  
Somit gilt für das Empfangssignal:
+
Thus, the following applies to the received signal:
  
:<math>r(t) = r_1(t) + r_2(t) = k_1 \cdot s( t - \tau_1) + k_2 \cdot s( t - \tau_2)
+
::<math>r(t) = r_1(t) + r_2(t) = k_1 \cdot s( t - \tau_1) + k_2 \cdot s( t - \tau_2)
   \hspace{0.05cm},</math>
+
   \hspace{0.05cm}.</math>
 +
<br clear=all>
 +
The following statements should be noted:
 +
*Compared to the transmitted signal, the signal&nbsp; $r_1(t)$&nbsp; received via the direct path is attenuated by the factor&nbsp; $k_1$&nbsp; and delayed by &nbsp; $\tau_1$&nbsp;.
  
wobei die folgenden Aussagen zu beachten sind:
+
*The attenuation factor&nbsp; $k_1$&nbsp; is calculated with the&nbsp; [[Mobile_Communications/Distance dependent attenuation and shading#Common path loss model|$\text{path loss model}$]].&nbsp; The greater the transmission frequency&nbsp; $f_{\rm S}$,&nbsp; the distance&nbsp; $d_1$&nbsp; and the exponent&nbsp; $\gamma$&nbsp; are, the smaller is &nbsp; $k_1$&nbsp; and thus the greater is the loss.
*Das über den Direktpfad empfangene Signal <i>r</i><sub>1</sub>(<i>t</i>) ist gegenüber dem Sendesignal <i>s</i>(<i>t</i>) um den Faktor <i>k</i><sub>1</sub> gedämpft und um die Laufzeit <i>&tau;</i><sub>1</sub> verzögert.<br>
 
  
*Der Dämpfungsfaktor <i>k</i><sub>1</sub> wird mit dem [http://en.lntwww.de/Mobile_Kommunikation/Distanzabh%C3%A4ngige_D%C3%A4mpfung_und_Abschattung#Gebr.C3.A4uchliches_Pfadverlustmodell Pfadverlustmodell] berechnet. <i>k</i><sub>1</sub>  ist um so kleiner und der Verlust um so größer, je größer die Sendefrequenz <i>f</i><sub>S</sub>, die Distanz <i>d</i><sub>1</sub> und der Exponent <i>&gamma;</i> sind.<br>
+
*The delay&nbsp; $\tau_1 = d_1/c$&nbsp; increases proportionally with the path length&nbsp; $d_1$&nbsp;. &nbsp; For example, for the distance&nbsp; $d_1 = 3 \ \rm km$&nbsp; and the speed of light&nbsp; $c = 3 \cdot 10^8 \ \rm m/s$&nbsp; the delay will be&nbsp; $\tau_1 = 10 \ \rm &micro; s$.<br>
  
*Die Laufzeit <i>&tau;</i><sub>1</sub> = <i>d</i><sub>1</sub>/<i>c</i> nimmt proportional mit der Wegelänge <i>d</i><sub>1</sub> zu. Beispielsweise ergibt sich für die Distanz <i>d</i><sub>1</sub> = 3 km und der Lichtgeschwindigkeit <i>c</i> = 3 &middot; 10<sup>8</sup> m/s die Verzögerung <i>&tau;</i><sub>1</sub> = 10 &mu;s.<br>
+
*Because of the larger path length&nbsp; $(d_2 > d_1)$&nbsp; the second path has a greater attenuation &nbsp; &#8658; &nbsp; smaller pre-factor &nbsp; &#8658; &nbsp; $(|k_2| < |k_1|)$&nbsp; and accordingly also a greater delay &nbsp; $(\tau_2 > \tau_1)$.<br>
  
*Wegen der größeren Weglänge (<i>d</i><sub>2</sub> > <i>d</i><sub>1</sub>) weist der zweite Pfad  eine größere Dämpfung auf &nbsp;&#8658;&nbsp; |<i>k</i><sub>2</sub>| <  |<i>k</i><sub>1</sub>| und dementsprechend auch eine größere Laufzeit <i>&tau;</i><sub>2</sub> > <i>&tau;</i><sub>1</sub>.<br>
+
*In addition, it must be taken into account that the reflection from buildings or the ground leads to a phase rotation of&nbsp; $\pi \ (180^\circ)$.&nbsp; This causes the factor&nbsp; $k_2$&nbsp; to become negative.&nbsp; In the following, however, the negative sign of&nbsp; $k_2$&nbsp; is ignored.<br><br>
  
*Außerdem ist zu berücksichtigen, dass die Reflexion an Gebäuden oder dem Erdboden zu einer Phasendrehung um &pi; (180&deg;) führt. Damit wird der Faktor <i>k</i><sub>2</sub> negativ.<br><br>
+
<i>Note:</i> &nbsp; We refer here to the SWF applet&nbsp; [[Applets:Multipath propagation and frequency selectivity (Applet)|"Multipath propagation and frequency selectivity"]]&nbsp; '''(German language!)'''.
  
Die Beschreibung wird auf der nächsten Seite fortgesetzt. Das negative Vorzeichen von <i>k</i><sub>2</sub> wird dabei außer Acht gelassen.<br>
 
  
<b>Hinweis:</b> Die hier behandelte Thematik wird in folgendem Interaktionsmodul behandelt:<br>
+
== Simple time&ndash;invariant model of the two-way channel==
 +
<br>
 +
[[File:EN_Mob_T_2_2_S1b.png|right|frame|Simple model for the two-way channel]]
 +
For the frequency selectivity
 +
*the path loss&nbsp; $($marked by&nbsp; $k_1)$&nbsp; and
 +
*the basic term&nbsp; $\tau_1$&nbsp;
 +
 
 +
 
 +
are irrelevant. The only decisive factors here are path loss differences and runtime differences.
 +
 
 +
We will now describe the two-way channel with the new parameters&nbsp;
 +
:$$k_0 = |k_2 /k_1 |,\hspace{0.5cm} \tau_0 = \tau_2 - \tau_1.$$
 +
 
 +
This results in:
 +
::<math>r(t) = r_1(t) + k_0 \cdot r_1( t - \tau_0) \hspace{0.5cm}{\rm with} \hspace{0.5cm} r_1(t) = k_1 \cdot s( t - \tau_1)\hspace{0.05cm}.</math>
 +
 
 +
The figure illustrates the equation.&nbsp; With the simplifications&nbsp; $k_1 = 1$&nbsp; and&nbsp; $\tau_1 = 0$&nbsp; &nbsp; &#8658; &nbsp; $r_1(t) = s(t)$&nbsp; we obtain:
 +
 
 +
::<math>r(t) = s(t) + k_0 \cdot s( t - \tau_0) \hspace{0.05cm}.</math>
 +
 
 +
From this simplified model&nbsp; (without the gray-shaded block)&nbsp; important descriptive variables can be easily calculated:
 +
*If you use the&nbsp;  [[Signal_Representation/Fourier_Transform_Theorems#Shifting_Theorem| $\text{Shifting Theorem}$]]&nbsp; you get the transfer function
 +
 
 +
::<math>H(f) = {R(f)}/{S(f)} = 1 + k_0 \cdot {\rm e}^{  - {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi f \hspace{0.05cm} \cdot \hspace{0.05cm} \tau_0} \hspace{0.05cm}.</math>
 +
 
 +
*Through the&nbsp; [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_second_Fourier_integral|$\text{inverse Fourier transform}$]]&nbsp; one obtains the impulse response
 +
 
 +
::<math>h(\tau) =  1 + k_0 \cdot \delta(\tau - \tau_0) \hspace{0.05cm}.</math>
 +
 
 +
{{GraueBox|TEXT= 
 +
$\text{Example 1:}$&nbsp; We consider a two-way channel with delay &nbsp; $\tau_0 = 2 \ \ \rm &micro; s$&nbsp; and some attenuation factors&nbsp; $k_0$&nbsp; between&nbsp; $0$&nbsp; and&nbsp; $1$.<br>
 +
[[File:Mob_T_2_2_S1c_neu.png|right|frame|Absolute value of the transfer function of a two-way channel &nbsp; $(\tau_0 = 2 \ \rm &micro; s)$]]
 +
 
 +
The graph shows the transfer function in terms of its absolute value in the range&nbsp; $\pm 1 \ \rm MHz$.&nbsp; You can see from this representation:
 +
 
 +
*The transfer function&nbsp; $H(f)$&nbsp; and also its absolute value is periodic with&nbsp; $1/\tau_0 = 500 \ \rm kHz$.
 +
 +
*This frequency period here is also the&nbsp; [[Mobile_Communications/The GWSSUS channel model#Parameters of the GWSSUS model|$\text{coherence bandwidth}$]] .<br>
 +
 
 +
*The fluctuations around the mean value&nbsp; $\vert H(f) \vert = 1$&nbsp; are the stronger, the larger the&nbsp; (relative)&nbsp; contribution&nbsp; $k_0$&nbsp; of the second path is&nbsp; (i.e. the echo).}}<br>
 +
 
 +
== Coherence bandwidth as a function of ''M'' ==
 +
<br>
 +
We are now modifying the two-way model in such a way that we allow more than two paths, as is the case for mobile communications.
  
[[Auswirkungen von Mehrwegeempfang Please add link and do not upload flash videos.]]<br>
+
[[File:P ID2149 Mob T 2 2 S2a v1.png|right|frame|Frequency response at&nbsp; $M = 2$&nbsp; (blue) and&nbsp; $M = 3$&nbsp; (red) |class=fit]]
 +
In general, the multipath channel model is thus:
  
== Zeitinvariante Beschreibung des Zweiwegekanals (2) ==
+
:$$ r(t)= \sum_{m = 1}^{M}\hspace{0.15cm} k_m \cdot s( t - \tau_m)$$
 +
 +
:$$\Rightarrow \hspace{0.3cm} h(\tau) = \sum_{m = 1}^{M}\hspace{0.15cm} k_m \cdot \delta( \tau - \tau_m)
 +
\hspace{0.05cm}.$$
 +
 
 +
We now compare
 +
*the&nbsp; "two-way channel"&nbsp; $(M = 2)$&nbsp; with the parameters
 +
 
 +
::<math>\tau_1 = 1\,\,{\rm &micro; s}\hspace{0.05cm}, \hspace{0.2cm} k_1 = 0.8\hspace{0.05cm}, \hspace{0.2cm}
 +
\tau_2 = 3\,\,{\rm &micro; s}\hspace{0.05cm}, \hspace{0.2cm} k_2 = 0.6</math>
 +
 
 +
*and the following&nbsp; "three-way channel"&nbsp; $(M = 3)$:
 +
 
 +
:$$\tau_1 = 1\,\,{\rm &micro; s}\hspace{0.05cm}, \hspace{0.2cm} k_1 = 0.8\hspace{0.05cm}, \hspace{0.2cm}
 +
\tau_2 = 3\,\,{\rm &micro; s}\hspace{0.05cm}, \hspace{0.2cm} k_2 \approx 0.43\hspace{0.05cm}, \hspace{0.2cm} \tau_3 = 9\,\,{\rm &micro; s}\hspace{0.05cm}, \hspace{0.2cm} k_3 \approx 0.43
 +
\hspace{0.05cm}.$$
 +
 
 +
With the selected constants, both channels have the root mean square value&nbsp; ${\rm E}\big [k_m^2\big ] = 1$.
 +
 
 +
The graph shows the magnitude functions&nbsp; $ |H(f)|$&nbsp; of both channels and the corresponding impulse responses&nbsp; $h(\tau)$.&nbsp; One can see from these graphs:
 +
*In the blue channel&nbsp; $(M = 2)$&nbsp; the Dirac delta functions occur in a range of width&nbsp; $\Delta \tau_{\rm max} = 2 \ \rm &micro; s$. &nbsp;
 +
 +
*With the red channel&nbsp; $(M = 3)$&nbsp; this value is four times as large: &nbsp; $\Delta \tau_{\rm max} = 8 \ \rm &micro; s$.
 +
 
 +
*As a first approximation for&nbsp; [[Mobile_Communications/The GWSSUS channel model#Parameters of the GWSSUS model|$\text{coherence bandwidth}$]]&nbsp; $B_{\rm K}\hspace{0.01cm}'\approx 1/ \Delta \tau_{\rm max}$ is often used, which may differ from the correct value by a factor of&nbsp; $2$&nbsp; or more.&nbsp;
 +
 +
*This simple approximation, marked with an apostrophe, results for the blue channel to&nbsp; $B_{\rm K}\hspace{0.01cm}'= 500 \ \rm kHz$.
 +
 
 +
* For the red channel it is&nbsp; $B_{\rm K}\hspace{0.01cm}'= 125 \ \rm kHz$&nbsp; which is just one fourth of the blue channel's.<br>
 +
 
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{In general the following applies:} $
 +
#&nbsp; If the signal bandwidth&nbsp; $B_{\rm S} = 1/T_{\rm S}$&nbsp; is much smaller than the coherence bandwidth&nbsp; $B_{\rm K}$, then the channel can be considered as &raquo;<b>non-frequency selective</b>&laquo;&nbsp;&nbsp; &nbsp;<br>$(T_{\rm S}$&nbsp; denotes the symbol duration$)$.<br>
 +
#&nbsp; In other words: &nbsp; For a given&nbsp; $B_{\rm S}$&nbsp; the smaller the coherence bandwidth&nbsp; $B_{\rm K}$&nbsp; or the larger the maximum delay&nbsp; $\Delta \tau_{\rm max}$,&nbsp; the greater the frequency selectivity.
 +
#&nbsp; This also means: &nbsp; The frequency selectivity is often determined by the longest echo.
 +
#&nbsp; Many short echoes with a total energy&nbsp; $E$&nbsp; are less disturbing than one long echo of the same energy&nbsp; $E$.<br>}}
 +
 
 +
== Consideration of the time variance ==
 
<br>
 
<br>
Für die Frequenzselektivität haben Pfadverlust (gekennzeichnet durch <i>k</i><sub>1</sub>) und Grundlaufzeit <i>&tau;</i><sub>1</sub> keine Bedeutung. Entscheidend sind hier Pfaddverlustunterschiede und Laufzeitdifferenzen. Wir beschreiben nun den Zweiwegekanal mit den neuen Kenngrößen <i>k</i><sub>0</sub> = |<i>k</i><sub>2</sub>| / |<i>k</i><sub>1</sub>| und <i>&tau;</i><sub>0</sub> = <i>&tau;</i><sub>2</sub> &ndash; <i>&tau;</i><sub>1</sub> wie folgt:
+
Up to now the attenuation factors&nbsp; $k_m$&nbsp; were assumed to be constant.&nbsp; For mobile radio, however, this channel model is only correct if transmitter and receiver are static, which is merely a special case for this communication system.
  
[[File:P ID2147 Mob T 2 2 S1b v2.png|Ersatzmodell für den Zweiwegekanal|rechts|rahmenlos]]
+
For a moving user, these constant factors&nbsp; $k_m$&nbsp; must be replaced by the time-variant factors&nbsp; $z_m(t)$&nbsp; which are each based on random processes. You should note this:
 +
[[File:P ID3104 Mob T 2 2 S2b v1.png|right|frame|Mobile channel model considering time variance and echoes|class=fit]]
  
:<math>r(t) = r_1(t) + k_0 \cdot r_1( t - \tau_0) </math>
+
*The magnitudes of the complex weighting factors&nbsp; $z_m(t)$&nbsp; are Rayleigh distributed according to the section&nbsp; [[Mobile_Communications/Probability_Density_of_Rayleigh_Fading#Exemplary_signal_curves_with_Rayleigh_fading|"Exemplary signal curves with Rayleigh fading"]]&nbsp; or &ndash; with line-of-sight connection &ndash; Rice distributed, as described in&nbsp; [[Mobile_Communications/Non-Frequency_Selective_Fading_With_Direct_Component#Example_of_signal_behaviour_with_Rice_fading|"Exemplary signal curves with Rice fading"]]&nbsp;.<br>
  
<math> \hspace{0.5cm}{\rm mit} \hspace{0.5cm} r_1(t) = k_1 \cdot s( t - \tau_1)\hspace{0.05cm}.</math>
+
*The bindings within the process&nbsp; $z_m(t)$&nbsp; are related to the mobility properties&nbsp; (speed, direction, etc.)&nbsp; to the&nbsp; [[Mobile_Communications/Statistical_Bindings_within_the_Rayleigh_Process#ACF_and_PSD_with_Rayleigh.E2.80.93Fading|$\text{Jakes Spectrum}$]]&nbsp;.<br><br>
  
Die Grafik veranschaulicht die Gleichung.<br>
+
The figure shows the generally valid model for the mobile communications channel.&nbsp; "Generally valid" but only with reservations, as explained at the end of&nbsp; $\text{Example 2}$.
Mit der Vereinfachung <i>k</i><sub>1</sub> = 1, <i>&tau;</i><sub>1</sub> = 0 &nbsp;&#8658;&nbsp; <i>r</i><sub>1</sub>(<i>t</i>) = <i>s</i>(<i>t</i>) erhält man:
 
  
:<math>r(t) = s(t) + k_0 \cdot s( t - \tau_0) \hspace{0.05cm}.</math>
+
For an understanding of the figure we refer to the chapter&nbsp; [[Mobile_Communications/Probability density of Rayleigh fading#A very general description of the mobile communication channel|"General description of the mobile communications channel"]]. Please note:  
 +
*The&nbsp; $M$&nbsp; main paths are characterized by large propagation time differences.
 +
*The time-variant complex coefficients&nbsp; $z_m(t)$&nbsp; result from the sum of many secondary paths whose delay times are all approximately the same&nbsp; $\tau_m$&nbsp;.
 +
<br clear = all>
 +
{{GraueBox|TEXT= 
 +
$\text{Example 2:}$&nbsp; Studies have shown that in mobile communications no more than four or five main pathways are effective at the same time.
  
Aus diesem vereinfachten Modell (ohne den grau hinterlegten Block in der Grafik) lassen sich wichtige Beschreibungsgrößen einfach berechnen:
+
[[File:P ID2151 Mob T 2 2 S3b v1.png|right|frame|Two-dimensional impulse response with&nbsp; $M = 3$&nbsp; paths|class=fit]]
*Wendet man den [http://en.lntwww.de/Signaldarstellung/Gesetzm%C3%A4%C3%9Figkeiten_der_Fouriertransformation#Verschiebungssatz Verschiebungssatz] an, so kommt man zur Übertragungsfunktion
 
  
::<math>H(f) = {R(f)}/{S(f)} = 1 + k_0 \cdot {\rm exp} [ - {\rm j} \cdot 2 \pi f \cdot \tau_0] \hspace{0.05cm}.</math>
+
The represented 2D&ndash;impulse response&nbsp; $h(\tau,\hspace{0.1cm} t)$&nbsp; applies to&nbsp; $M = 3$&nbsp; main paths with time-variant behavior, where the received power decreases with increasing delay in the statistical average.&nbsp; For this graph the above sketched channel model is used as a basis.  
  
*Durch [http://en.lntwww.de/Signaldarstellung/Fouriertransformation_und_-r%C3%BCcktransformation#Das_zweite_Fourierintegral Fourierrücktransformation] erhält man dann die Impulsantwort
+
Two different views are shown:
 +
*The left image shows&nbsp; $h(\tau,\hspace{0.1cm} t)$&nbsp; as a function of the delay time&nbsp; $\tau$&nbsp; at a fixed time&nbsp; $t$.
 +
*The viewing direction in the right image is rotated by&nbsp; $90^\circ$&nbsp;.&nbsp; By using the color coding, the representation should be understandable.<br>
 +
<br clear=all>
 +
This graphic also shows the weak point of our mobile communications channel model: &nbsp; Although the coefficients&nbsp; $z_m(t)$&nbsp; are variable, the delay times&nbsp; $\tau_m$&nbsp; are fixed. &nbsp; This does not correspond to reality, if the mobile station is moving and the connection takes place in a changing environment.&nbsp; &nbsp; $\tau_m(t)$&nbsp; should be considered.}}<br>
  
::<math>h(\tau) =  1 + k_0 \cdot \delta(\tau - \tau_0) \hspace{0.05cm}.</math>
 
  
{{Beispiel}}''':''' Wir betrachten einen Zweiwegekanal mit der konstanten Verzögerungszeit <i>&tau;</i><sub>0</sub> = 2 &mu;s und verschiedene Dämpfungsfaktoren <i>k</i><sub>0</sub> zwischen  0 und 1.<br>
+
{{BlaueBox|TEXT= 
 +
$\text{Conclusion:}$&nbsp;
 +
It is helpful to make a slight modification to the above model:
 +
[[File:P ID2153 Mob T 2 2 S2d v2.png|right|frame|General model of the mobile channel|class=fit]]
  
[[File:P ID2148 Mob T 2 2 S1c v1.png|Betrag der Übertragungsfunktion eines Zweiwegekanals (<i>τ</i><sub>0</sub> = 10 μs)]]<br>
+
*One chooses the number&nbsp; $M'$&nbsp; of (possible) main paths much larger than necessary and sets&nbsp; $\tau_m = m \cdot \Delta \tau$.  
 +
*The incremental&nbsp; (minimum resolvable)&nbsp; delay&nbsp; $\Delta \tau = T_{\rm S}$&nbsp; results from the sampling rate and thus from the bandwidth&nbsp; $B_{\rm S} = 1/T_{\rm S}$&nbsp; of the signal&nbsp; $s(t)$.<br>
 +
*The maximum delay time&nbsp; $\tau_\text{max} = M' \cdot \Delta \tau$&nbsp; of this model is equal to the inverse of the coherence bandwidth&nbsp; $B_{\rm K}$.&nbsp; The number of paths considered is thus&nbsp; $M' = B_{\rm S}/B_{\rm K}$.
  
Die Grafik zeigt den Betrag der Übertragungsfunktion im Bereich zwischen &plusmn;1000 kHz. Man erkennt aus dieser Darstellung:
 
*Die Übertragungsfunktion <i>H</i>(<i>f</i>) und auch deren Betrag ist periodisch mit 1/<i>&tau;</i><sub>0</sub> = 500 kHz. Diese Frequenzperiode ist hier gleichzeitig die sogenannte <i>Kohärenzbandbreite</i>.<br>
 
  
*Die Schwankungen um den Mittelwert |<i>H</i>(<i>f</i>)| = 1 sind um so stärker, je größer der (relative) Beitrag <i>k</i><sub>0</sub> des Nebenpfades (also das Echo) ist.{{end}}<br>
+
Here, too, usually no more than&nbsp; $M = 5$&nbsp; main paths simultaneously provide a relevant contribution to the impulse response.
 +
*The advantage over the first model is that for the delays now all values&nbsp; $\tau_m \le \tau_\text{max}$&nbsp; are possible, with a temporal resolution of&nbsp; $\Delta \tau$&nbsp;.
 +
*At the end of next chapter&nbsp; [[Mobile_Communications/The GWSSUS channel model#Simulation according to the GWSSUS model|"The GWSSUS channel model"]]&nbsp; we will come back to this general model again.<br>}}
  
== Kohärenzbandbreite in Abhängigkeit von M ==
+
==Exercises for the chapter==
 
<br>
 
<br>
Wir modifizieren nun das Zweiwegemodell dahingehend, dass wir mehr als zwei Pfade zulassen, wie es auch für den Mobilfunk zutrifft. Allgemein lautet somit das Mehrwege&ndash;Kanalmodell:
+
[[Aufgaben: Exercise 2.2: Simple Two-Path Channel Model]]
 +
 
 +
[[Aufgaben:Exercise 2.2Z: Real Two-Path Channel]]
 +
 
 +
[[Aufgaben:Exercise 2.3: Yet Another Multi-Path Channel]]
 +
 
 +
[[Aufgaben:Exercise 2.4: 2D Transfer Function]]
 +
 
  
:<math>r(t) = \sum_{m = 1}^{M}\hspace{0.15cm} k_m \cdot s( t - \tau_m)
 
\hspace{0.3cm}\Rightarrow \hspace{0.3cm} h(\tau) = \sum_{m = 1}^{M}\hspace{0.15cm} k_m \cdot \delta( \tau - \tau_m)
 
\hspace{0.05cm}.</math>
 
  
Wir vergleichen nun den <i>Zweiwegekanal</i> (<i>M</i> = 2) mit den Parametern
 
  
:<math>\tau_1 = 1\,\,{\rm \mu s}\hspace{0.05cm}, \hspace{0.2cm} k_1 = 0.8\hspace{0.05cm}, \hspace{0.2cm}
 
\tau_2 = 3\,\,{\rm \mu s}\hspace{0.05cm}, \hspace{0.2cm} k_2 = 0.6</math>
 
  
und den folgenden <i>Dreiwegekanal</i> (<i>M</i> = 3):
 
  
:<math>\tau_1 = 1\,\,{\rm \mu s}\hspace{0.05cm}, \hspace{0.2cm} k_1 = 0.8\hspace{0.05cm}, \hspace{0.2cm}
 
\tau_2 = 3\,\,{\rm \mu s}\hspace{0.05cm}, \hspace{0.2cm} k_2 \approx 0.43\hspace{0.05cm}, \hspace{0.2cm}
 
\tau_3 = 9\,\,{\rm \mu s}\hspace{0.05cm}, \hspace{0.2cm} k_3 \approx 0.43
 
\hspace{0.05cm}.</math>
 
  
Bei den gewählten Konstanten weisen beide Kanäle den quadratischen Mittelwert E[<i>k<sub>m</sub></i><sup>2</sup>] = 1 auf.<br>
 
  
[[File:P ID2149 Mob T 2 2 S2a v1.png||<i>H</i>(<i>f</i>)| bei <i>M</i> = 2 (blau) und <i>M</i> = 3 (rot) |class=fit]]<br>
 
  
Die Grafik zeigt die Betragsfunktionen |<i>H</i>(<i>f</i>)| beider Kanäle und die zugehörigen Impulsantworten <i>h</i>(<i>&tau;</i>). Man erkennt aus diesen Darstellungen:
 
*Beim blauen Kanal (<i>M</i> = 2) treten die Diracfunktionen in einem Bereich der Breite &Delta;<i>&tau;</i><sub>max</sub> = 2 &mu;s auf. Beim roten Kanal (<i>M</i> = 3) ist dieser Wert viermal so groß: &Delta;<i>&tau;</i><sub>max</sub> = 8 &mu;s.<br>
 
  
*Als erste Näherung für die noch zu definierende Kohärenzbandbreite <i>B</i><sub>K</sub> verwendet man oft 1/&Delta;<i>&tau;</i><sub>max</sub>, die allerdings vom richtigen Wert um den Faktor 2 und mehr abweichen kann.<br>
 
  
*Die durch das Hochkomma bezeichnete einfache Näherung ergibt sich beim blauen Kanal zu <i>B</i><sub>K</sub>' = 500 kHz, beim roten Kanal ist diese mit <i>B</i><sub>K</sub>' = 125 kHz um den Faktor 4 kleiner.<br>
 
  
*Allgemein gilt: Ist die Signalbandbreite <i>B</i><sub>S</sub> = 1/<i>T</i><sub>S</sub> sehr viel kleiner als <i>B</i><sub>K</sub>, so kann der Kanal für dieses System als <i>nichtfrequenzselektiv</i> betrachtet werden (<i>T</i><sub>S</sub>: Symboldauer).<br>
 
  
*Anders ausgedrückt: Bei gegebenem <i>B</i><sub>S</sub> spielt die Frequenzselektivität eine um so größere Rolle, je kleiner die Kohärenzbandbreite <i>B</i><sub>K</sub> bzw. je größer die maximale Verzögerung (&Delta;<i>&tau;</i><sub>max</sub>) ist.<br>
 
  
*Das bedeutet auch: Die Frequenzselektivität wird oft durch das längste Echo bestimmt. Viele kurze Echos mit der Gesamtenergie <i>E</i> sind weniger störend als ein langes Echo gleicher Energie <i>E</i>.<br>
 
  
 
{{Display}}
 
{{Display}}

Latest revision as of 15:44, 29 January 2023

Time-invariant description of the two-way channel


We assume the scenario shown in the graph.  This assumes

Time–invariant consideration of the two-way channel
  • Transmitter and receiver are  »at rest«: 
    Then both the channel transfer function and the impulse response are time–independent.  For all times  $t$  applies  $H(f, \hspace{0.05cm}t) = H(f)$  and  $h(\tau, \hspace{0.05cm}t) = h(\tau)$.
  • A  »two-way channel«:  
    The transmitted signal  $s(t)$  reaches the receiver on a direct path with the path length  $d_1$,  and there is also an echo due to the reflective ground  $($the total path length is  $d_2)$.


Thus, the following applies to the received signal:

\[r(t) = r_1(t) + r_2(t) = k_1 \cdot s( t - \tau_1) + k_2 \cdot s( t - \tau_2) \hspace{0.05cm}.\]


The following statements should be noted:

  • Compared to the transmitted signal, the signal  $r_1(t)$  received via the direct path is attenuated by the factor  $k_1$  and delayed by   $\tau_1$ .
  • The attenuation factor  $k_1$  is calculated with the  $\text{path loss model}$.  The greater the transmission frequency  $f_{\rm S}$,  the distance  $d_1$  and the exponent  $\gamma$  are, the smaller is   $k_1$  and thus the greater is the loss.
  • The delay  $\tau_1 = d_1/c$  increases proportionally with the path length  $d_1$ .   For example, for the distance  $d_1 = 3 \ \rm km$  and the speed of light  $c = 3 \cdot 10^8 \ \rm m/s$  the delay will be  $\tau_1 = 10 \ \rm µ s$.
  • Because of the larger path length  $(d_2 > d_1)$  the second path has a greater attenuation   ⇒   smaller pre-factor   ⇒   $(|k_2| < |k_1|)$  and accordingly also a greater delay   $(\tau_2 > \tau_1)$.
  • In addition, it must be taken into account that the reflection from buildings or the ground leads to a phase rotation of  $\pi \ (180^\circ)$.  This causes the factor  $k_2$  to become negative.  In the following, however, the negative sign of  $k_2$  is ignored.

Note:   We refer here to the SWF applet  "Multipath propagation and frequency selectivity"  (German language!).


Simple time–invariant model of the two-way channel


Simple model for the two-way channel

For the frequency selectivity

  • the path loss  $($marked by  $k_1)$  and
  • the basic term  $\tau_1$ 


are irrelevant. The only decisive factors here are path loss differences and runtime differences.

We will now describe the two-way channel with the new parameters 

$$k_0 = |k_2 /k_1 |,\hspace{0.5cm} \tau_0 = \tau_2 - \tau_1.$$

This results in:

\[r(t) = r_1(t) + k_0 \cdot r_1( t - \tau_0) \hspace{0.5cm}{\rm with} \hspace{0.5cm} r_1(t) = k_1 \cdot s( t - \tau_1)\hspace{0.05cm}.\]

The figure illustrates the equation.  With the simplifications  $k_1 = 1$  and  $\tau_1 = 0$    ⇒   $r_1(t) = s(t)$  we obtain:

\[r(t) = s(t) + k_0 \cdot s( t - \tau_0) \hspace{0.05cm}.\]

From this simplified model  (without the gray-shaded block)  important descriptive variables can be easily calculated:

\[H(f) = {R(f)}/{S(f)} = 1 + k_0 \cdot {\rm e}^{ - {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi f \hspace{0.05cm} \cdot \hspace{0.05cm} \tau_0} \hspace{0.05cm}.\]
\[h(\tau) = 1 + k_0 \cdot \delta(\tau - \tau_0) \hspace{0.05cm}.\]

$\text{Example 1:}$  We consider a two-way channel with delay   $\tau_0 = 2 \ \ \rm µ s$  and some attenuation factors  $k_0$  between  $0$  and  $1$.

Absolute value of the transfer function of a two-way channel   $(\tau_0 = 2 \ \rm µ s)$

The graph shows the transfer function in terms of its absolute value in the range  $\pm 1 \ \rm MHz$.  You can see from this representation:

  • The transfer function  $H(f)$  and also its absolute value is periodic with  $1/\tau_0 = 500 \ \rm kHz$.
  • The fluctuations around the mean value  $\vert H(f) \vert = 1$  are the stronger, the larger the  (relative)  contribution  $k_0$  of the second path is  (i.e. the echo).


Coherence bandwidth as a function of M


We are now modifying the two-way model in such a way that we allow more than two paths, as is the case for mobile communications.

Frequency response at  $M = 2$  (blue) and  $M = 3$  (red)

In general, the multipath channel model is thus:

$$ r(t)= \sum_{m = 1}^{M}\hspace{0.15cm} k_m \cdot s( t - \tau_m)$$
$$\Rightarrow \hspace{0.3cm} h(\tau) = \sum_{m = 1}^{M}\hspace{0.15cm} k_m \cdot \delta( \tau - \tau_m) \hspace{0.05cm}.$$

We now compare

  • the  "two-way channel"  $(M = 2)$  with the parameters
\[\tau_1 = 1\,\,{\rm µ s}\hspace{0.05cm}, \hspace{0.2cm} k_1 = 0.8\hspace{0.05cm}, \hspace{0.2cm} \tau_2 = 3\,\,{\rm µ s}\hspace{0.05cm}, \hspace{0.2cm} k_2 = 0.6\]
  • and the following  "three-way channel"  $(M = 3)$:
$$\tau_1 = 1\,\,{\rm µ s}\hspace{0.05cm}, \hspace{0.2cm} k_1 = 0.8\hspace{0.05cm}, \hspace{0.2cm} \tau_2 = 3\,\,{\rm µ s}\hspace{0.05cm}, \hspace{0.2cm} k_2 \approx 0.43\hspace{0.05cm}, \hspace{0.2cm} \tau_3 = 9\,\,{\rm µ s}\hspace{0.05cm}, \hspace{0.2cm} k_3 \approx 0.43 \hspace{0.05cm}.$$

With the selected constants, both channels have the root mean square value  ${\rm E}\big [k_m^2\big ] = 1$.

The graph shows the magnitude functions  $ |H(f)|$  of both channels and the corresponding impulse responses  $h(\tau)$.  One can see from these graphs:

  • In the blue channel  $(M = 2)$  the Dirac delta functions occur in a range of width  $\Delta \tau_{\rm max} = 2 \ \rm µ s$.  
  • With the red channel  $(M = 3)$  this value is four times as large:   $\Delta \tau_{\rm max} = 8 \ \rm µ s$.
  • As a first approximation for  $\text{coherence bandwidth}$  $B_{\rm K}\hspace{0.01cm}'\approx 1/ \Delta \tau_{\rm max}$ is often used, which may differ from the correct value by a factor of  $2$  or more. 
  • This simple approximation, marked with an apostrophe, results for the blue channel to  $B_{\rm K}\hspace{0.01cm}'= 500 \ \rm kHz$.
  • For the red channel it is  $B_{\rm K}\hspace{0.01cm}'= 125 \ \rm kHz$  which is just one fourth of the blue channel's.


$\text{In general the following applies:} $

  1.   If the signal bandwidth  $B_{\rm S} = 1/T_{\rm S}$  is much smaller than the coherence bandwidth  $B_{\rm K}$, then the channel can be considered as »non-frequency selective«    
    $(T_{\rm S}$  denotes the symbol duration$)$.
  2.   In other words:   For a given  $B_{\rm S}$  the smaller the coherence bandwidth  $B_{\rm K}$  or the larger the maximum delay  $\Delta \tau_{\rm max}$,  the greater the frequency selectivity.
  3.   This also means:   The frequency selectivity is often determined by the longest echo.
  4.   Many short echoes with a total energy  $E$  are less disturbing than one long echo of the same energy  $E$.

Consideration of the time variance


Up to now the attenuation factors  $k_m$  were assumed to be constant.  For mobile radio, however, this channel model is only correct if transmitter and receiver are static, which is merely a special case for this communication system.

For a moving user, these constant factors  $k_m$  must be replaced by the time-variant factors  $z_m(t)$  which are each based on random processes. You should note this:

Mobile channel model considering time variance and echoes
  • The bindings within the process  $z_m(t)$  are related to the mobility properties  (speed, direction, etc.)  to the  $\text{Jakes Spectrum}$ .

The figure shows the generally valid model for the mobile communications channel.  "Generally valid" but only with reservations, as explained at the end of  $\text{Example 2}$.

For an understanding of the figure we refer to the chapter  "General description of the mobile communications channel". Please note:

  • The  $M$  main paths are characterized by large propagation time differences.
  • The time-variant complex coefficients  $z_m(t)$  result from the sum of many secondary paths whose delay times are all approximately the same  $\tau_m$ .


$\text{Example 2:}$  Studies have shown that in mobile communications no more than four or five main pathways are effective at the same time.

Two-dimensional impulse response with  $M = 3$  paths

The represented 2D–impulse response  $h(\tau,\hspace{0.1cm} t)$  applies to  $M = 3$  main paths with time-variant behavior, where the received power decreases with increasing delay in the statistical average.  For this graph the above sketched channel model is used as a basis.

Two different views are shown:

  • The left image shows  $h(\tau,\hspace{0.1cm} t)$  as a function of the delay time  $\tau$  at a fixed time  $t$.
  • The viewing direction in the right image is rotated by  $90^\circ$ .  By using the color coding, the representation should be understandable.


This graphic also shows the weak point of our mobile communications channel model:   Although the coefficients  $z_m(t)$  are variable, the delay times  $\tau_m$  are fixed.   This does not correspond to reality, if the mobile station is moving and the connection takes place in a changing environment.    $\tau_m(t)$  should be considered.



$\text{Conclusion:}$  It is helpful to make a slight modification to the above model:

General model of the mobile channel
  • One chooses the number  $M'$  of (possible) main paths much larger than necessary and sets  $\tau_m = m \cdot \Delta \tau$.
  • The incremental  (minimum resolvable)  delay  $\Delta \tau = T_{\rm S}$  results from the sampling rate and thus from the bandwidth  $B_{\rm S} = 1/T_{\rm S}$  of the signal  $s(t)$.
  • The maximum delay time  $\tau_\text{max} = M' \cdot \Delta \tau$  of this model is equal to the inverse of the coherence bandwidth  $B_{\rm K}$.  The number of paths considered is thus  $M' = B_{\rm S}/B_{\rm K}$.


Here, too, usually no more than  $M = 5$  main paths simultaneously provide a relevant contribution to the impulse response.

  • The advantage over the first model is that for the delays now all values  $\tau_m \le \tau_\text{max}$  are possible, with a temporal resolution of  $\Delta \tau$ .
  • At the end of next chapter  "The GWSSUS channel model"  we will come back to this general model again.

Exercises for the chapter


Exercise 2.2: Simple Two-Path Channel Model

Exercise 2.2Z: Real Two-Path Channel

Exercise 2.3: Yet Another Multi-Path Channel

Exercise 2.4: 2D Transfer Function