Difference between revisions of "Modulation Methods/Quality Criteria"

From LNTwww
Line 70: Line 70:
  
 
Das Fehlersignal $ε(t)$ – und damit auch das Sinken–SNR $ρ_υ$ – berücksichtigt alle Unzulänglichkeiten des betrachteten Nachrichtenübertragungssystems (Verzerrungen, externe Störungen, Rauschen, usw.). Im Folgenden werden wir aus Darstellungsgründen die unterschiedlichen Effekte getrennt betrachten.  
 
Das Fehlersignal $ε(t)$ – und damit auch das Sinken–SNR $ρ_υ$ – berücksichtigt alle Unzulänglichkeiten des betrachteten Nachrichtenübertragungssystems (Verzerrungen, externe Störungen, Rauschen, usw.). Im Folgenden werden wir aus Darstellungsgründen die unterschiedlichen Effekte getrennt betrachten.  
 +
 +
==Untersuchungen im Hinblick auf Signalverzerrungen==
 +
Alle in den folgenden Kapiteln beschriebenen Modulationsverfahren führen bei nichtidealen Bedingungen zu Verzerrungen, das heißt zu einem Sinkensignal $υ(t) ≠ α · q(t – τ)$, das sich nicht nur durch eine Dämpfung und eine Laufzeit von $q(t)$ unterscheidet. Für die Untersuchung und Beschreibung dieser Signalverfälschungen gehen wir stets von folgenden Voraussetzungen aus (siehe Grafik):
 +
*Das additive Störsignal $n(t)$ am Kanalausgang (Demodulatoreingang) sei vernachlässigbar klein und wird nicht berücksichtigt.
 +
*Alle Komponenten von Modulator und Demodulator seien linear, ebenso wie der Kanal, der somit durch seinen Frequenzgang $H_K(f)$ vollständig beschrieben wird.
 +
::[[File:P_ID944__Mod_T_1_2_S3_neu.png | Vereinfachtes Modell eines Übertragungssystems]]
 +
 +
 +
Je nach Art und Realisierung von Modulator und Demodulator treten folgende Signalverfälschungen auf:
 +
*Lineare Verzerrungen, entsprechend der Beschreibung in Kapitel 2.3 des Buches „Lineare zeitinvariante Systeme”. Diese werden weiter in Dämpfungs– und Phasenverzerrungen unterteilt. Lineare Verzerrungen können im Allgemeinen durch einen Entzerrer kompensiert werden, was allerdings bei Vorhandensein einer stochastischen Störung $n(t)$ stets zu einer höheren Störleistung und damit zu einem geringeren Sinken–SNR führt.
 +
*Nichtlineare Verzerrungen, die im Kapitel 2.2 des Buches „Lineare zeitinvariante Systeme” ausführlich behandelt werden. Diese sind irreversibel und damit eine stärkere Beeinträchtigung als lineare Verzerrungen. Zur quantitativen Erfassung solcher Verzerrungen eignet sich beispielsweise der Klirrfaktor $K$, der mit dem Sinken–SNR in folgendem Zusammenhang steht:
 +
$$\rho_{v} = {1}/{K^2}  \hspace{0.05cm}.$$
 +
:Die Angabe des Klirrfaktors setzt jedoch eine harmonische Schwingung als Quellensignal voraus.
 +
 +
 +
Anzumerken ist, dass die Verzerrungen bezüglich $q(t)$ und $υ(t)$ stets dann von nichtlinearer Art sind, wenn der Kanal nichtlineare Komponenten beinhaltet und damit bereits nichtlineare Verzerrungen bezüglich der Signale $s(t)$ und $r(t)$ gegeben sind. Ebenso führen Nichtlinearitäten bei Modulator und Demodulator stets zu nichtlinearen Verzerrungen.
 +
 +
 +
Wir verweisen hier auf drei grundlegende Lernvideos aus dem Buch „LZI–Systeme”:
 +
 +
Eigenschaften des Übertragungskanals  (Dauer 5:50)
 +
 +
Einige Anmerkungen zur Übertragungsfunktion  (Dauer 9:08)
 +
 +
Lineare und nichtlineare Verzerrungen  (3 Teile, Gesamtdauer 16:25)
 +
 +
 +
 +
  
  
 
{{Display}}
 
{{Display}}

Revision as of 13:47, 10 June 2016

Ideales und verzerrungsfreies System

In allen nachfolgenden Kapiteln wird stets von folgendem Modell ausgegangen:


Blockschaltbild zur Beschreibung von Modulation und Demodulation


Die Aufgabe eines jeden Nachrichtenübertragungssystems besteht darin, an der räumlich entfernten Sinke ein Signal $υ(t)$ zur Verfügung zu stellen, das sich möglichst wenig vom Quellensignal $q(t)$ unterscheidet. Bei $υ(t) = q(t)$ würde man von einem idealen System sprechen.

In der Praxis werden sich die Signale $q(t)$ und $υ(t)$ stets unterscheiden, wofür es folgende Gründe gibt:

  • Nichtideale Realisierung von Modulator und Demodulator,
  • lineare Dämpfungs– und Phasenverzerrungen sowie Nichtlinearitäten,
  • externe Störungen und stochastische Rauschprozesse,
  • frequenzunabhängige Dämpfung und Laufzeit.


Ist nur die letztgenannte Einschränkung wirksam, so liegt ein verzerrungs– und rauschfreies System vor, und es gilt: $$v(t) = \alpha \cdot q(t- \tau).$$

Durch den Dämpfungsfaktor $α$ ist das Sinkensignal $υ(t)$ gegenüber dem Quellensignal $q(t)$ nur „leiser”. Auch eine Laufzeit $τ$ ist oft tolerabel, zumindest bei einer unidirektionalen Übertragung. Dagegen wird bei einer bidirektionalen Kommunikation – zum Beispiel einem Telefonat – schon eine Laufzeit von 300 Millisekunden als sehr störend empfunden.

Signal–zu–Stör–Leistungsverhältnis (1)

Im allgemeinen Fall wird sich das Sinkensignal $υ(t)$ auch gegenüber $α · q(t – τ)$ unterscheiden, und es gilt für das Fehlersignal: $$\varepsilon (t) = v(t) - \alpha \cdot q(t- \tau) = \varepsilon_{\rm V} (t) + \varepsilon_{\rm St} (t).$$

Dieses setzt sich aus zwei Anteilen zusammen:

  • den linearen und nichtlinearen Verzerrungen $ε_{\rm V}(t)$, die durch Modulator, Kanal und Demodulator hervorgerufen werden können und deterministisches Verhalten zeigen,
  • der stochastischen Komponente $ε_{\rm St}(t)$, die von der HF–Störung $n(t)$ am Demodulatoreingang herrührt. Im Gegensatz zu $n(t)$ handelt es sich bei $ε_{\rm St}(t)$ um eine niederfrequente Störung.


Als Maß für die Qualität des Nachrichtensystems wird das Signal–zu–Stör–Leistungsverhältnis $ρ_υ$ an der Sinke als Quotient der Leistungen (Varianzen) von Nutzanteil $υ(t) – ε(t)$ und Störanteil $ε(t)$ definiert: $$P_{v -\varepsilon} = \overline{[v(t)-\varepsilon(t)]^2} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int\limits_{0}^{ T_{\rm M}} {[v(t)-\varepsilon(t)]^2 }\hspace{0.1cm}{\rm d}t,$$ $$P_{\varepsilon} = \overline{\varepsilon^2(t)} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int\limits_{0}^{ T_{\rm M}} {\varepsilon^2(t) }\hspace{0.1cm}{\rm d}t$$ $$\Rightarrow \hspace{0.5cm}\rho_{v} = \frac{ P_{v -\varepsilon}}{P_{\varepsilon}} \hspace{0.05cm}.$$

Für die Leistung des Nutzanteils erhält man unabhängig von der Laufzeit $τ$: $$P_{v -\varepsilon} = \overline{[v(t)-\varepsilon(t)]^2} = \overline{\alpha^2 \cdot q^2(t - \tau)}= \alpha^2 \cdot P_{q}.$$ Hierbei bezeichnet $P_q$ die Leistung des Quellensignals $q(t)$: $$P_{q} = \lim_{T_{\rm M} \rightarrow \infty}\hspace{0.1cm}\frac{1}{T_{\rm M}} \cdot \int\limits_{0}^{ T_{\rm M}} {q^2(t) }\hspace{0.1cm}{\rm d}t .$$ Damit erhält man: $$\rho_{v} = \frac{\alpha^2 \cdot P_{q}}{P_{\varepsilon}} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.15cm}\rho_{v} = 10 \cdot {\rm lg} \hspace{0.15cm} \frac{\alpha^2 \cdot P_{q}}{P_{\varepsilon}} \hspace{0.05cm}.$$ Im Folgenden bezeichnen wir $ρ_υ$ kurz als das Sinken–SNR (Signal–to–Noise–Ratio) und 10 · lg $ρ_υ$ als den Sinken–Störabstand, der bei Verwendung des Zehner–Logarithmus (lg) in dB angegeben wird.

Signal–zu–Stör–Leistungsverhältnis (2)

Nachfolgend sehen Sie einen beispielhaften Ausschnitt des (blauen) Quellensignals $q(t)$ und des (roten) Sinkensignals $υ(t)$, die sich deutlich voneinander unterscheiden.


Beispiel für ein Fehlersignal


Die mittlere Grafik macht jedoch deutlich, dass der wesentliche Unterschied zwischen $q(t)$ und $υ(t)$ auf den Dämpfungsfaktor $α =$ 0.7 und die Laufzeit $τ =$ 0.1 Millisekunden zurückzuführen ist.

Die untere Skizze zeigt das verbleibende Fehlersignal $ε(t) = υ(t) – α · q(t – τ)$ nach Korrektur von Dämpfung und Laufzeit. Der quadratische Mittelwert (Varianz) dieses Signals ist die Störleistung $P_ε$.

Zur Berechnung des Sinken–SNR $ρ_υ$ muss $P_ε$ in Bezug zur Nutzleistung $α^2 · P_q$ gesetzt werden. Diese ergibt sich als die Varianz des in der mittleren Grafik hellblau eingezeichneten Signals $α · q(t – τ)$. Mit den für diese Grafik vorausgesetzten Kenngrößen $$\alpha = 0.7\hspace{0.3cm}\Rightarrow\hspace{0.3cm}\alpha^2 \approx 0.5, \hspace{0.2cm} P_{q} = 8\,{\rm V^2}, \hspace{0.2cm}{P_{\varepsilon}} = 0.04\,{\rm V^2}$$ ergibt sich das Sinken–SNR $ρ_υ$ ≈ 100 bzw. der Sinken–Störabstand 10 · lg $ρ_υ$ ≈ 20 dB.


Das Fehlersignal $ε(t)$ – und damit auch das Sinken–SNR $ρ_υ$ – berücksichtigt alle Unzulänglichkeiten des betrachteten Nachrichtenübertragungssystems (Verzerrungen, externe Störungen, Rauschen, usw.). Im Folgenden werden wir aus Darstellungsgründen die unterschiedlichen Effekte getrennt betrachten.

Untersuchungen im Hinblick auf Signalverzerrungen

Alle in den folgenden Kapiteln beschriebenen Modulationsverfahren führen bei nichtidealen Bedingungen zu Verzerrungen, das heißt zu einem Sinkensignal $υ(t) ≠ α · q(t – τ)$, das sich nicht nur durch eine Dämpfung und eine Laufzeit von $q(t)$ unterscheidet. Für die Untersuchung und Beschreibung dieser Signalverfälschungen gehen wir stets von folgenden Voraussetzungen aus (siehe Grafik):

  • Das additive Störsignal $n(t)$ am Kanalausgang (Demodulatoreingang) sei vernachlässigbar klein und wird nicht berücksichtigt.
  • Alle Komponenten von Modulator und Demodulator seien linear, ebenso wie der Kanal, der somit durch seinen Frequenzgang $H_K(f)$ vollständig beschrieben wird.
Vereinfachtes Modell eines Übertragungssystems


Je nach Art und Realisierung von Modulator und Demodulator treten folgende Signalverfälschungen auf:

  • Lineare Verzerrungen, entsprechend der Beschreibung in Kapitel 2.3 des Buches „Lineare zeitinvariante Systeme”. Diese werden weiter in Dämpfungs– und Phasenverzerrungen unterteilt. Lineare Verzerrungen können im Allgemeinen durch einen Entzerrer kompensiert werden, was allerdings bei Vorhandensein einer stochastischen Störung $n(t)$ stets zu einer höheren Störleistung und damit zu einem geringeren Sinken–SNR führt.
  • Nichtlineare Verzerrungen, die im Kapitel 2.2 des Buches „Lineare zeitinvariante Systeme” ausführlich behandelt werden. Diese sind irreversibel und damit eine stärkere Beeinträchtigung als lineare Verzerrungen. Zur quantitativen Erfassung solcher Verzerrungen eignet sich beispielsweise der Klirrfaktor $K$, der mit dem Sinken–SNR in folgendem Zusammenhang steht:

$$\rho_{v} = {1}/{K^2} \hspace{0.05cm}.$$

Die Angabe des Klirrfaktors setzt jedoch eine harmonische Schwingung als Quellensignal voraus.


Anzumerken ist, dass die Verzerrungen bezüglich $q(t)$ und $υ(t)$ stets dann von nichtlinearer Art sind, wenn der Kanal nichtlineare Komponenten beinhaltet und damit bereits nichtlineare Verzerrungen bezüglich der Signale $s(t)$ und $r(t)$ gegeben sind. Ebenso führen Nichtlinearitäten bei Modulator und Demodulator stets zu nichtlinearen Verzerrungen.


Wir verweisen hier auf drei grundlegende Lernvideos aus dem Buch „LZI–Systeme”:

Eigenschaften des Übertragungskanals (Dauer 5:50)

Einige Anmerkungen zur Übertragungsfunktion (Dauer 9:08)

Lineare und nichtlineare Verzerrungen (3 Teile, Gesamtdauer 16:25)