Difference between revisions of "Signal Representation/Calculating with Complex Numbers"

From LNTwww
Line 79: Line 79:
  
 
   
 
   
== Representation by Amount and Phase==  
+
== Representation by Amplidute and Phase==  
 
<br>
 
<br>
A complex number&nbsp; $z$&nbsp; can be described not only by the real part&nbsp; $x$&nbsp; and the imaginary part&nbsp; $y$&nbsp; but also by its amount&nbsp; $|z|$&nbsp; and the phase&nbsp; $\phi$&nbsp;.  
+
A complex number&nbsp; $z$&nbsp; can be described not only by the real part&nbsp; $x$&nbsp; and the imaginary part&nbsp; $y$&nbsp; but also by its amplitude&nbsp; $|z|$&nbsp; and the phase&nbsp; $\phi$&nbsp;.  
  
 
[[File:P_ID1246__Sig_T_1_3_S3_neu.png|right|frame|Complex Conjugate of a number]]  
 
[[File:P_ID1246__Sig_T_1_3_S3_neu.png|right|frame|Complex Conjugate of a number]]  
Line 94: Line 94:
 
:$$z = |z| \cdot \cos (\phi) + {\rm j} \cdot |z| \cdot \sin (\phi) = |z| \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \phi}.$$
 
:$$z = |z| \cdot \cos (\phi) + {\rm j} \cdot |z| \cdot \sin (\phi) = |z| \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \phi}.$$
  
Hierbei  wurde der&nbsp; '''Satz von Euler'''&nbsp; verwendet, der unten bewiesen wird. &nbsp;Dieser besagt, dass die komplexe Größe&nbsp; $ {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \phi}$&nbsp; den Realteil&nbsp; $\cos(\phi)$&nbsp; und den Imaginärteil&nbsp; $\sin(\phi)$&nbsp; aufweist.
+
The&nbsp; '''Euler's theorem'''&nbsp; was used, which is proved below. &nbsp;This states that the complex quantity&nbsp; $ {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \phi}$&nbsp;exhibits the real part&nbsp; $\cos(\phi)$&nbsp; and the imaginary part&nbsp; $\sin(\phi)$&nbsp;.
  
Weiter erkennt man aus der  Grafik, dass für die&nbsp; '''Konjugiert-Komplexe'''&nbsp; von&nbsp; $z = x + {\rm j}\cdot y$&nbsp; gilt:&nbsp;
+
Further one recognizes from the diagram that for the&nbsp; '''complex conjugates'''&nbsp; of&nbsp; $z = x + {\rm j}\cdot y$&nbsp; applies:&nbsp
  
 
:$$z^{\star} = x - {\rm j} \cdot y = |z| \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}\phi}.$$
 
:$$z^{\star} = x - {\rm j} \cdot y = |z| \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}\phi}.$$
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Beweis des Eulerschen Satzes:}$&nbsp; Dieser basiert auf dem Vergleich von Potenzreihenentwicklungen.  
+
$\text{Proof of the Euler theorem:}$&nbsp; This is based on the comparison of power series developments.  
*Die Reihenentwicklung der Exponentialfunktion lautet:&nbsp;
+
*The series development of the exponential function is:&nbsp;
 
   
 
   
 
:$${\rm e}^{x} = 1 +  \frac{x}{1!}+  \frac{x^2}{2!}+  \frac{x^3}{3!}
 
:$${\rm e}^{x} = 1 +  \frac{x}{1!}+  \frac{x^2}{2!}+  \frac{x^3}{3!}
 
+  \frac{x^4}{4!} +\text{ ...} \hspace{0.15cm}.$$
 
+  \frac{x^4}{4!} +\text{ ...} \hspace{0.15cm}.$$
  
*Mit imaginärem Argument kann hierfür auch geschrieben werden:&nbsp;
+
*With an imaginary argument you can also write:&nbsp;
 
   
 
   
 
:$${\rm e}^{ {\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm}x} = 1 +  {\rm j} \cdot \frac{x}{1!}+ {\rm j}^2 \cdot \frac{x^2}{2!}+ {\rm j}^3 \cdot \frac{x^3}{3!}
 
:$${\rm e}^{ {\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm}x} = 1 +  {\rm j} \cdot \frac{x}{1!}+ {\rm j}^2 \cdot \frac{x^2}{2!}+ {\rm j}^3 \cdot \frac{x^3}{3!}
 
+ {\rm j}^4 \cdot \frac{x^4}{4!} + \text{ ...}  \hspace{0.15cm}.$$
 
+ {\rm j}^4 \cdot \frac{x^4}{4!} + \text{ ...}  \hspace{0.15cm}.$$
  
*Berücksichtigt man&nbsp; <math>{\rm j}^{2}=-1, \ \ {\rm j}^{3} = -{\rm j},\ \ {\rm j}^{4} = 1, \ \ {\rm j}^{5} = {\rm j},  \text{ ...} \hspace{0.15cm}</math>&nbsp; und fasst die reellen und die imaginären Terme zusammen, so erhält man
+
*Considering&nbsp; <math>{\rm j}^{2}=-1, \ \ {\rm j}^{3} = -{\rm j},\ \ {\rm j}^{4} = 1, \ \ {\rm j}^{5} = {\rm j},  \text{ ...} \hspace{0.15cm}</math>&nbsp; and combining the real and the imaginary terms, one obtains
  
 
:$${\rm e}^{ {\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm}x} = A(x) +  {\rm j}\cdot B(x).$$
 
:$${\rm e}^{ {\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm}x} = A(x) +  {\rm j}\cdot B(x).$$
  
* Für die beiden Reihen gilt dabei:
+
* The following applies to both series:
 
:$$A(x) = 1 - \frac{x^2}{2!}
 
:$$A(x) = 1 - \frac{x^2}{2!}
 
+  \frac{x^4}{4!} -  \frac{x^6}{6!}+
 
+  \frac{x^4}{4!} -  \frac{x^6}{6!}+
Line 126: Line 126:
 
\sin(x).$$
 
\sin(x).$$
 
   
 
   
*Daraus folgt direkt der&nbsp; '''Satz von Euler''':&nbsp;
+
*From this the&nbsp; '''Euler Theorem'''&nbsp; follows directly:
 
   
 
   
 
:$${\rm e}^{ {\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm}x} = \cos (x) +  {\rm j} \cdot \sin (x) \hspace{2cm}                                             
 
:$${\rm e}^{ {\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm}x} = \cos (x) +  {\rm j} \cdot \sin (x) \hspace{2cm}                                             
Line 132: Line 132:
  
  
==Rechenregeln für komplexe Zahlen==
+
==Calculation Laws for Complex Numbers==
 
<br>
 
<br>
Die Rechengesetze für zwei komplexe Zahlen
+
The laws of arithmetic for two complex numbers
 
   
 
   
 
:$$z_1 = x_1 + {\rm j} \cdot y_1 = |z_1| \cdot {\rm e}^{{\rm j}\hspace {0.05cm}\cdot
 
:$$z_1 = x_1 + {\rm j} \cdot y_1 = |z_1| \cdot {\rm e}^{{\rm j}\hspace {0.05cm}\cdot
Line 141: Line 141:
 
\hspace {0.05cm} \phi_2}$$
 
\hspace {0.05cm} \phi_2}$$
  
sind derart definiert, dass sich für den Sonderfall eines verschwindenden Imaginärteils die Rechenregeln der reellen Zahlen ergeben. Man spricht vom so genannten&nbsp; ''Permanenzprinzip''.
+
are defined in such a way, that for the special case of a vanishing imaginary part, the rules of calculation of real numbers are given. This is called the so called&nbsp; ''principle of permanence''.
  
Für die Grundrechenarten gelten folgende Regeln:&nbsp;
+
The following rules apply to the basic arithmetic operations:&nbsp;
*Die Summe zweier komplexer Zahlen&nbsp; (bzw. deren Differenz)&nbsp; wird gebildet, indem man ihre Real- und Imaginärteile addiert &nbsp;(bzw. subtrahiert):&nbsp;
+
*The sum of two complex numbers&nbsp; (resp. their difference)&nbsp; is made by adding their real and imaginary parts &nbsp;(resp. subtracting):&nbsp
  
 
::<math>z_3 = z_1 + z_2 = (x_1+x_2) + {\rm j}\cdot (y_1 + y_2),</math>  
 
::<math>z_3 = z_1 + z_2 = (x_1+x_2) + {\rm j}\cdot (y_1 + y_2),</math>  
Line 150: Line 150:
 
::<math>z_4 = z_1 - z_2 = (x_1-x_2) + {\rm j}\cdot (y_1 - y_2).</math>  
 
::<math>z_4 = z_1 - z_2 = (x_1-x_2) + {\rm j}\cdot (y_1 - y_2).</math>  
  
*Das Produkt zweier komplexer Zahlen kann in der Realteil- und Imaginärteildarstellung durch Ausmultiplizieren unter Berücksichtigung von&nbsp; <math>{\rm j}^{2}=-1</math>&nbsp; gebildet werden. Einfacher gestaltet sich die Multiplikation allerdings, wenn&nbsp; <math>z_1</math>&nbsp; und&nbsp; <math>z_2</math>&nbsp; mit Betrag und Phase geschrieben werden:&nbsp;
+
*The product of two complex numbers can be formed in the real part and imaginary part description by multiplication considering&nbsp; <math>{\rm j}^{2}=-1</math>&nbsp;. However, multiplication is simpler if&nbsp; <math>z_1</math>&nbsp; and&nbsp; <math>z_2</math>&nbsp; are written with absolute value and phase:&nbsp;
 
   
 
   
 
::<math>z_5 = z_1 \cdot z_2 = (x_1\cdot x_2 - y_1\cdot y_2) + {\rm j}\cdot (x_1\cdot y_2 + x_2\cdot y_1),</math>
 
::<math>z_5 = z_1 \cdot z_2 = (x_1\cdot x_2 - y_1\cdot y_2) + {\rm j}\cdot (x_1\cdot y_2 + x_2\cdot y_1),</math>
Line 162: Line 162:
 
  \Rightarrow \hspace{0.3cm} |z_5|  = |z_1|  \cdot |z_2| , \hspace{0.3cm}\phi_5 = \phi_1 + \phi_2 .</math>
 
  \Rightarrow \hspace{0.3cm} |z_5|  = |z_1|  \cdot |z_2| , \hspace{0.3cm}\phi_5 = \phi_1 + \phi_2 .</math>
 
   
 
   
*Die Division ist in der Exponentialschreibweise ebenfalls überschaubarer. Die beiden Beträge werden dividiert und die Phasen im Exponenten subtrahiert:&nbsp;
+
*The division is also more manageable in the exponential notation. The two amounts are divided and the phases are subtracted in the exponent:&nbsp;
  
 
::<math>z_6 =  \frac{z_1}{z_2} = |z_6| \cdot {\rm e}^{{\rm j} \hspace {0.05cm}\cdot
 
::<math>z_6 =  \frac{z_1}{z_2} = |z_6| \cdot {\rm e}^{{\rm j} \hspace {0.05cm}\cdot
Line 169: Line 169:
 
  \Rightarrow \hspace{0.3cm} |z_6| =  \frac{|z_1|}{|z_2|}, \hspace{0.3cm}\phi_6 = \phi_1 - \phi_2 .</math>
 
  \Rightarrow \hspace{0.3cm} |z_6| =  \frac{|z_1|}{|z_2|}, \hspace{0.3cm}\phi_6 = \phi_1 - \phi_2 .</math>
  
[[File:P_ID825_Sig_T_1_3_S4_neu.png|right|frame|Summe, Differenz, Produkt & Quotient komplexer Zahlen]]
+
[[File:P_ID825_Sig_T_1_3_S4_neu.png|right|frame|Sum, difference, product & quotient of complex numbers]]
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
 
$\text{Beispiel 2:}$&nbsp;
 
$\text{Beispiel 2:}$&nbsp;
In der Grafik sind als Punkte innerhalb der komplexen Ebene dargestellt:
+
In the graphic are shown as points within the complex plane:
  
*die komplexe Zahl&nbsp; <math>z=0.75 + {\rm j} = 1.25 \cdot {\rm e}^{\hspace{0.03cm}{\rm j}\hspace{0.03cm} \cdot \hspace{0.05cm}53.1^{\circ} }</math>,
+
*the complex number&nbsp; <math>z=0.75 + {\rm j} = 1.25 \cdot {\rm e}^{\hspace{0.03cm}{\rm j}\hspace{0.03cm} \cdot \hspace{0.05cm}53.1^{\circ} }</math>,
  
  
*deren Konjugiert-Komplexe&nbsp; <math>z^{\ast} = 0.75 - {\rm j} = 1.25 \cdot {\rm e}^{ - {\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}53.1^{\circ} }</math>,  
+
*its complex conjugate&nbsp; <math>z^{\ast} = 0.75 - {\rm j} = 1.25 \cdot {\rm e}^{ - {\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}53.1^{\circ} }</math>,  
  
  
*die Summe&nbsp; <math>s=z+z^{\ast}=1.5</math>&nbsp; (rein reell),  
+
*the sum&nbsp; <math>s=z+z^{\ast}=1.5</math>&nbsp; (purely real),  
  
 
   
 
   
*die Differenz&nbsp; <math>d=z-z^{\ast}=2 \cdot {\rm j}</math>&nbsp; (rein imaginär),
+
*the difference&nbsp; <math>d=z-z^{\ast}=2 \cdot {\rm j}</math>&nbsp; (purely imaginary),
  
  
*das Produkt&nbsp; <math>p=z \cdot z^{\ast} = 1.25^{2} \approx 1.5625</math>&nbsp; (ebenfalls rein reell),
+
*the product&nbsp; <math>p=z \cdot z^{\ast} = 1.25^{2} \approx 1.5625</math>&nbsp; (purely real),
  
  
*der Quotient&nbsp; <math>q= {z}/{z^{\ast} }={\rm e}^{\hspace{0.05cm} {\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}106.2^{\circ} }</math>&nbsp; mit Betrag&nbsp; $1$&nbsp; und dem doppelten Phasenwinkel von&nbsp; $z$.}}
+
*the division&nbsp; <math>q= {z}/{z^{\ast} }={\rm e}^{\hspace{0.05cm} {\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}106.2^{\circ} }</math>&nbsp;with amplitude &nbsp; $1$&nbsp; and the double phase angle of&nbsp; $z$.}}
  
  
Die Thematik dieses Kapitels wird ausführlich im Lernvideo&nbsp; [[Rechnen_mit_komplexen_Zahlen_(Lernvideo)|Rechnen mit komplexen Zahlen]]&nbsp; behandelt.
+
The topic of this chapter is covered in detail in the learning video&nbsp; [[Rechnen_mit_komplexen_Zahlen_(Lernvideo)|Rechnen mit komplexen Zahlen]]&nbsp;,which is in german language.
  
  
 
   
 
   
==Aufgaben zum Kapitel==
+
==Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:1.3 Rechnen mit komplexen Zahlen|Aufgabe 1.3: Rechnen mit komplexen Zahlen]]
+
[[Aufgaben:1.3 Rechnen mit komplexen Zahlen|Exercise 1.3: Calculating With Complex Numbers]]
  
[[Aufgaben:1.3Z_Nochmals komplexe Zahlen|Aufgabe 1.3Z: Nochmals komplexe Zahlen]]
+
[[Aufgaben:1.3Z_Nochmals komplexe Zahlen|Exercise 1.3Z: Complex Numbers Again]]
  
 
{{Display}}
 
{{Display}}

Revision as of 17:07, 18 September 2020


The Set of Real Numbers


In the following chapters of this book, complex quantities always play an important role. Although calculating with complex numbers is already treated and practiced in school mathematics, our experience has shown that even students of natural sciences and technical subjects have problems with it. Perhaps these difficulties are also related to the fact that "complex" is often used as a synonym for "complicated" in everyday life, while "real" stands for "reliable, honest and truthful" according to the Duden dictionary.

Therefore, the calculation rules for complex numbers are briefly summarized here at the end of this first basic chapter.

First there are some remarks about real quantities of numbers, for which in the strict mathematical sense the term "number field" would be more correct. These include:

$\text{Definitionen:}$ 

  • Natural Numbers  $\mathbb{N} = \{1, 2, 3, \text{...}\hspace{0.05cm} \}$.   Using these numbers, for  $n, \ k \in \mathbb{N}$  the arithmetic operations „addition”  $(m = n +k)$,  „multiplication”  $(m = n \cdot k)$  and „power formation”  $(m = n^k)$  are possible. The respective result of a calculation is again a natural number:   $m \in \mathbb{N}$.


  • Total Numbers  $\mathbb{Z} = \{\text{...}\hspace{0.05cm} , -3, -2, -1, \ 0, +1, +2, +3, \text{...}\hspace{0.05cm}\}$.   This set of numbers is an extension of the natural numbers  $\mathbb{N}$. The introduction of the set  $\mathbb{Z}$  was necessary to capture the result set of a subtraction  $(m = n -k)$  for example  $5 - 7 = - 2$.


  • Rational Numbers  $\mathbb{Q} = \{z/n\}$  with  $z \in \mathbb{Z}$  and  $n \in \mathbb{N}$.   With this set of numbers, also known as fractions, there is a defined result for each division. If you write a rational number in decimal notation, only zeros appear after a certain decimal place  $($Example:  $-2/5 = -0.400\text{...}\hspace{0.05cm})$  or periodicities  $($Example:  $2/7 = 0.285714285\text{...}\hspace{0.05cm})$. Since  $n = 1$  is allowed, the integers are a subset of the rational numbers:   $\mathbb{Z} \subset \mathbb{Q}$.


  • Irrational Numbers  $\mathbb{I} \neq {z/n}$  mit  $z \in \mathbb{Z}$, $n \in \mathbb{N}$.   Although there are infinite rational numbers, there are still infinite numbers which cannot be represented as a fraction. Examples are the number  $\pi = 3.141592654\text{...}\hspace{0.05cm}$  (where there are no periods even with more decimal places)  or the result of the equation   $a^{2}=2 \,\,\Rightarrow \;\;a=\pm \sqrt{2}=\pm1.414213562\text{...}\hspace{0.05cm}$. This result is also irrational, which has already been proved by  Euclid  in antiquity.
Real numbers on the number line


  • Real Numbers  $\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$ as the sum of all rational and irrational numbers.
These can be ordered according to their numerical values and can be drawn on the so called  number line  as shown in the adjacent graph.



Imaginary and Complex Numbers


With the introduction of the irrational numbers the solution of the equation  $a^2-2=0$  was possible, but not the solution of the equation  $a^2+1=0$.

The mathematician Leonhard Euler  solved this problem by extending the set of real numbers by the  imaginary numbers . He defined the  imaginary unit  as follows:

$${\rm j}=\sqrt{-1} \ \Rightarrow \ {\rm j}^{2}=-1.$$

It should be noted that Euler called this quantity  „$\rm i$”  and this is still common in mathematics today. In electrical engineering, on the other hand, the designation  „$\rm j$”  has become generally accepted since  „$\rm i$”  is already occupied by the time-dependent current.

$\text{Definition:}$  The  complex number  $z$  is generally the sum of a real number  $x$  and an imaginary number  ${\rm j} \cdot y$:

$$z=x+{\rm j}\cdot y.$$

$x$  and  $y$  are derived from the quantity  $\mathbb{R}$  from the real numbers. The set of all possible complex numbers is called the body  $\mathbb{C}$  of the complex numbers.


The number line of real numbers now becomes the complex plane, which is spanned by two number strings twisted by   $90^\circ$  for real– and imaginary part.

Numbers in the complex plane

$\text{Beispiel 1:}$  The complex number  $z_1 = 2 \cdot {\rm j}$  is one of two possible solutions of the equation  $z^2+4=0$. The other solution is  $z_2 = -2 \cdot {\rm j}$.

In contrast  $z_3 = 2 + {\rm j}$  and  $z_4 = 2 -{\rm j}$  give the two solutions to the following equation: 

$$(z-2- {\rm j})(z-2+ {\rm j}) = 0 \; \ \Rightarrow \;\ z^{2}-4 \cdot z+5=0.$$

  $z_4 = z_3^\ast$  is also called the  Complex Conjugate  of  $z_3$.

  • The sum  $z_3 + z_4$  is real: 
$$z_3 + z_4 = 2 \cdot {\rm Re}[z_3]=2 \cdot {\rm Re}[z_4].$$
  • The difference  $z_3 - z_4$  is purely imaginary: 
$$z_3 - z_4 = {\rm j} \cdot \big [2 \cdot {\rm Im}[z_3] \big ] ={\rm j} \cdot \big [-2 \cdot {\rm Im}[z_4] \big ].$$


Note:   In the literature, complex quantities are often marked by underlining. This is not used in the  $\rm LNTwww$–books.


Representation by Amplidute and Phase


A complex number  $z$  can be described not only by the real part  $x$  and the imaginary part  $y$  but also by its amplitude  $|z|$  and the phase  $\phi$ .

Complex Conjugate of a number

The following conversions apply:

$$\left | z \right | = \sqrt{x^{2}+y^{2}}, \hspace{0.6cm}\phi = \arctan ({y}/{x}),$$
$$x = |z| \cdot \cos(\phi), \hspace{0.6cm} y = |z| \cdot \sin(\phi ).$$

Thus the complex size  $z$  can also be displayed in the following form

$$z = |z| \cdot \cos (\phi) + {\rm j} \cdot |z| \cdot \sin (\phi) = |z| \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \phi}.$$

The  Euler's theorem  was used, which is proved below.  This states that the complex quantity  $ {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \phi}$ exhibits the real part  $\cos(\phi)$  and the imaginary part  $\sin(\phi)$ .

Further one recognizes from the diagram that for the  complex conjugates  of  $z = x + {\rm j}\cdot y$  applies:&nbsp

$$z^{\star} = x - {\rm j} \cdot y = |z| \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}\phi}.$$

$\text{Proof of the Euler theorem:}$  This is based on the comparison of power series developments.

  • The series development of the exponential function is: 
$${\rm e}^{x} = 1 + \frac{x}{1!}+ \frac{x^2}{2!}+ \frac{x^3}{3!} + \frac{x^4}{4!} +\text{ ...} \hspace{0.15cm}.$$
  • With an imaginary argument you can also write: 
$${\rm e}^{ {\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm}x} = 1 + {\rm j} \cdot \frac{x}{1!}+ {\rm j}^2 \cdot \frac{x^2}{2!}+ {\rm j}^3 \cdot \frac{x^3}{3!} + {\rm j}^4 \cdot \frac{x^4}{4!} + \text{ ...} \hspace{0.15cm}.$$
  • Considering  \({\rm j}^{2}=-1, \ \ {\rm j}^{3} = -{\rm j},\ \ {\rm j}^{4} = 1, \ \ {\rm j}^{5} = {\rm j}, \text{ ...} \hspace{0.15cm}\)  and combining the real and the imaginary terms, one obtains
$${\rm e}^{ {\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm}x} = A(x) + {\rm j}\cdot B(x).$$
  • The following applies to both series:
$$A(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}+ \text{ ...} \hspace{0.1cm}= \cos(x),\hspace{0.5cm} B(x) = \frac{x}{1!}- \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}+ \text{ ...}= \sin(x).$$
  • From this the  Euler Theorem  follows directly:
$${\rm e}^{ {\rm j}\hspace{0.03cm} \cdot \hspace{0.03cm}x} = \cos (x) + {\rm j} \cdot \sin (x) \hspace{2cm} \rm q.e.d.$$


Calculation Laws for Complex Numbers


The laws of arithmetic for two complex numbers

$$z_1 = x_1 + {\rm j} \cdot y_1 = |z_1| \cdot {\rm e}^{{\rm j}\hspace {0.05cm}\cdot \hspace {0.05cm} \phi_1}, \hspace{0.5cm} z_2 = x_2 + {\rm j} \cdot y_2 = |z_2| \cdot {\rm e}^{{\rm j} \hspace {0.05cm}\cdot \hspace {0.05cm} \phi_2}$$

are defined in such a way, that for the special case of a vanishing imaginary part, the rules of calculation of real numbers are given. This is called the so called  principle of permanence.

The following rules apply to the basic arithmetic operations: 

  • The sum of two complex numbers  (resp. their difference)  is made by adding their real and imaginary parts  (resp. subtracting):&nbsp
\[z_3 = z_1 + z_2 = (x_1+x_2) + {\rm j}\cdot (y_1 + y_2),\]
\[z_4 = z_1 - z_2 = (x_1-x_2) + {\rm j}\cdot (y_1 - y_2).\]
  • The product of two complex numbers can be formed in the real part and imaginary part description by multiplication considering  \({\rm j}^{2}=-1\) . However, multiplication is simpler if  \(z_1\)  and  \(z_2\)  are written with absolute value and phase: 
\[z_5 = z_1 \cdot z_2 = (x_1\cdot x_2 - y_1\cdot y_2) + {\rm j}\cdot (x_1\cdot y_2 + x_2\cdot y_1),\]
\[z_5 = |z_1| \cdot {\rm e}^{{\rm j} \hspace {0.05cm}\cdot \hspace {0.05cm} \phi_1} \cdot |z_2| \cdot {\rm e}^{{\rm j}\hspace {0.05cm}\cdot \hspace {0.05cm} \phi_2}= |z_5| \cdot {\rm e}^{{\rm j} \hspace {0.05cm}\cdot \hspace {0.05cm} \phi_5} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} |z_5| = |z_1| \cdot |z_2| , \hspace{0.3cm}\phi_5 = \phi_1 + \phi_2 .\]
  • The division is also more manageable in the exponential notation. The two amounts are divided and the phases are subtracted in the exponent: 
\[z_6 = \frac{z_1}{z_2} = |z_6| \cdot {\rm e}^{{\rm j} \hspace {0.05cm}\cdot \hspace {0.05cm} \phi_6} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} |z_6| = \frac{|z_1|}{|z_2|}, \hspace{0.3cm}\phi_6 = \phi_1 - \phi_2 .\]
Sum, difference, product & quotient of complex numbers

$\text{Beispiel 2:}$  In the graphic are shown as points within the complex plane:

  • the complex number  \(z=0.75 + {\rm j} = 1.25 \cdot {\rm e}^{\hspace{0.03cm}{\rm j}\hspace{0.03cm} \cdot \hspace{0.05cm}53.1^{\circ} }\),


  • its complex conjugate  \(z^{\ast} = 0.75 - {\rm j} = 1.25 \cdot {\rm e}^{ - {\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}53.1^{\circ} }\),


  • the sum  \(s=z+z^{\ast}=1.5\)  (purely real),


  • the difference  \(d=z-z^{\ast}=2 \cdot {\rm j}\)  (purely imaginary),


  • the product  \(p=z \cdot z^{\ast} = 1.25^{2} \approx 1.5625\)  (purely real),


  • the division  \(q= {z}/{z^{\ast} }={\rm e}^{\hspace{0.05cm} {\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}106.2^{\circ} }\) with amplitude   $1$  and the double phase angle of  $z$.


The topic of this chapter is covered in detail in the learning video  Rechnen mit komplexen Zahlen ,which is in german language.


Exercises for the chapter


Exercise 1.3: Calculating With Complex Numbers

Exercise 1.3Z: Complex Numbers Again