Difference between revisions of "Signal Representation/Differences and Similarities of Low-Pass and Band-Pass Signals"

From LNTwww
Line 40: Line 40:
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Example 1:   Zur Klassifizierung von Signalen hinsichtlich „Tiefpass” und „Bandpass”}$
+
$\text{Example 1 : To classify signals with respect to „low pass” and „bandpass”}$
  
'''(a)'''     ''Sprache''  und ''Musik''  sind Tiefpass–Signale mit einer Bandbreite von  $\text{20 kHz}$  (bei sehr guter Qualität). Da eine Funkübertragung aber erst ab ca.  $\text{100 kHz}$  möglich ist, erfolgt bei Analogsystemen  vor der Übertragung eine Umsetzung auf Trägerfrequenzen zwischen
+
'''(a)'''     ''speech''  and ''music''  are low-pass signals with a bandwidth of  $\text{20 kHz}$  (at very good quality). Since a radio transmission is only possible from approx.  $\text{100 kHz}$ , a conversion to carrier frequencies between
*$\text{0.525 ... 1.61 MHz}$  $($Mittelwellenrundfunk, Amplitudenmodulation, Kanalabstand  $\text{9 kHz})$,
+
*$\text{0.525 ... 1.61 MHz}$  $($Medium wave broadcasting, amplitude modulation, channel spacing  $\text{9 kHz})$,
*$\text{87.5 ... 108 MHz}$  $($Rundfunk auf UKW, Frequenzmodulation, Kanalabstand  $\text{300 kHz})$.
+
*$\text{87.5 ... 108 MHz}$  $($Radio on FM, frequency modulation, channel spacing  $\text{300 kHz})$
 +
is needed.
  
  
'''(b)'''     ''TV-Bildsignale''  weisen eine größere Bandbreite auf, zum Beispiel  $\text{5 MHz}$ . Auch hier erfolgt vor der Ton– und Bildübertragung eine Frequenzbandverschiebung durch Trägerfrequenzen zwischen
+
'''(b)'''     ''TV image signals''  have a larger bandwidth, for example  $\text{5 MHz}$ . Here, as well, a frequency band shift occurs before the sound and image transmission due to carrier frequencies between
*$\text{41 ... 68 / 174 ... 230 MHz}$  (Fernsehen, VHF-Band, Kanalabstand  $\text{7 MHz})$,
+
*$\text{41 ... 68 / 174 ... 230 MHz}$  (television, VHF band, channel spacing  $\text{7 MHz})$,
*$\text{470 ... 850 MHz}$  $($Fernsehen, UHF-Band, Kanalabstand  $\text{8 MHz})$.
+
*$\text{470 ... 850 MHz}$  $($television, UHF band, channel spacing  $\text{8 MHz})$.
  
 +
'''(c)'''    With ''GSM mobile radio''  the carrier frequencies in the D-band are  $\text{900 MHz}$  and in the D-band   $\text{1800 MHz}$. 
  
'''(c)'''    Beim ''GSM-Mobilfunk''  liegen die Trägerfrequenzen im D-Band bei  $\text{900  MHz}$  und im D-Band bei  $\text{1800  MHz}$.  
+
'''(d)'''     With ''optical transmission''  the electrical signals are converted into light, i.e. to frequencies between ca.  $\text{200 THz}$  and  $\text{350 THz}$  $($correspondingly  $\text{1.55 µm ... 0.85 µm}$  Wavelength).}}
  
'''(d)'''     Bei ''optischer Übertragung''  werden die elektrischen Signale in Licht gewandelt, also auf Frequenzen zwischen ca.  $\text{200  THz}$  und  $\text{350  THz}$  $($entsprechend  $\text{1.55 µm ... 0.85 µm}$   Wellenlänge).}}
 
  
 
+
==Properties of BP-Signals==
==Eigenschaften von BP-Signalen==
 
 
<br>
 
<br>
Auf dieser Seite werden – ohne Anspruch auf Vollständigkeit – einige Eigenschaften von Bandpass–Signalen zusammengestellt und den Tiefpass–Signalen vergleichend gegenübergestellt. Dabei gehen wir von den Spektralfunktionen&nbsp; $X_{\rm TP}(f)$&nbsp; und&nbsp; $X_{\rm BP}(f)$&nbsp; gemäß der folgenden Skizze aus.
+
On this page - without claiming to be complete - some characteristics of bandpass signals are compiled and compared to lowpass signals. We start from the spectral functions&nbsp; $X_{\rm TP}(f)$&nbsp; and&nbsp; $X_{\rm BP}(f)$&nbsp; according to the following sketch.
  
[[File:P_ID679__Sig_T_4_1_S2a_neu.png|center|frame|Tiefpass- und Bandpass-Spektrum]]
+
[[File:P_ID679__Sig_T_4_1_S2a_neu.png|center|frame|Low Pass- and Bandpass Spectrum]]
  
Zu der Grafik ist anzumerken:
+
Regarding the graphic is to be remarked:
*Die Dreiecksform der dargestellten Spektren ist schematisch zu verstehen und soll nur das belegte Frequenzband kennzeichnen. Daraus sollte also nicht geschlossen werden, dass alle Frequenzen innerhalb des Bandes tatsächlich belegt sind und dass alle Spektralfunktionen linear mit der Frequenz&nbsp; $f$&nbsp; zunehmen.
+
*The triangular shape of the displayed spectra is to be understood schematically and is only to mark the occupied frequency band. So it should not be concluded that all frequencies within the band are actually occupied and that all spectral functions increase linearly with frequency&nbsp; $f$&nbsp;.
*Die zugehörigen Zeitfunktionen&nbsp; $x_{\rm TP}(t)$&nbsp; und&nbsp; $x_{\rm BP}(t)$&nbsp; seien vorerst reell. Das bedeutet, dass nach dem&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Zuordnungssatz|Zuordnungssatz]]&nbsp; die Spektralfunktionen&nbsp; $X_{\rm TP}(f)$&nbsp; und&nbsp; $X_{\rm BP}(f)$&nbsp; – bezogen auf die Frequenz&nbsp; $f = 0$&nbsp; – jeweils einen geraden Realteil und einen ungeraden Imaginärteil besitzen.
+
*The corresponding time functions&nbsp; $x_{\rm TP}(t)$&nbsp; and&nbsp; $x_{\rm BP}(t)$&nbsp; are real for the time being. This means that according to the&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Zuordnungssatz|Mapping Theorem]]&nbsp;&nbsp; the spectral functions&nbsp; $X_{\rm TP}(f)$&nbsp; and&nbsp; $X_{\rm BP}(f)$&nbsp; - related to the frequency&nbsp; $f = 0$&nbsp; - each have an even real part and an odd imaginary part.
*Als Bandbreite&nbsp; $B_{\rm TP}$&nbsp; bzw.&nbsp; $B_{\rm BP}$&nbsp; bezeichnen wir für Tiefpass und Bandpass gleichermaßen das belegte Frequenzband bei den positiven Frequenzen (in der Grafik: &nbsp; durchgezogene Kurvenverläufe).
+
*As bandwidth&nbsp; $B_{\rm TP}$&nbsp; or.&nbsp; $B_{\rm BP}$&nbsp; for both low pass and bandpass we refer to the occupied frequency band at the positive frequencies (in the graphic: &nbsp; continuous curves).
 +
*As bandwidth&nbsp; $B_{\rm TP}$&nbsp; or.&nbsp; $B_{\rm BP}$&nbsp; for lowpass and bandpass we equally denote the occupied frequency band at the positive frequencies (in the graphic: &nbsp; continuous curves).
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp; Es folgt ein Beispiel mit diskreten Spektrallinien. Die linke Grafik zeigt das Spektrum&nbsp; $Q(f)$&nbsp; des Nachrichtensignals
+
$\text{Example 2:}$&nbsp; An example with discrete spectral lines follows. The left graph shows the spectrum&nbsp; $Q(f)$&nbsp; of the message signal
 
   
 
   
 
:$$q(t) = 3\hspace{0.05cm}{\rm V} + 4\hspace{0.05cm}{\rm V} \cdot \cos (2 \pi \cdot 3\hspace{0.05cm}{\rm kHz} \cdot t) + 2\hspace{0.05cm}{\rm V} \cdot \sin (2 \pi \cdot 4\hspace{0.05cm}{\rm kHz} \cdot t). $$
 
:$$q(t) = 3\hspace{0.05cm}{\rm V} + 4\hspace{0.05cm}{\rm V} \cdot \cos (2 \pi \cdot 3\hspace{0.05cm}{\rm kHz} \cdot t) + 2\hspace{0.05cm}{\rm V} \cdot \sin (2 \pi \cdot 4\hspace{0.05cm}{\rm kHz} \cdot t). $$
  
Die diskreten Spektrallinien des Realteils  &nbsp; ⇒ &nbsp; ${\rm Re}\big[Q(f)\big]$&nbsp; sind blau dargestellt und diejenigen des Imaginärteils  &nbsp; ⇒ &nbsp; ${\rm Im}\big[Q(f)\big]$&nbsp; rot.
+
The discrete spectral lines of the real part &nbsp; ⇒ &nbsp; ${\rm Re}\big[Q(f)\big]$&nbsp; are shown in blue and those of the imaginary part &nbsp; ⇒ &nbsp; ${\rm Im}\big[Q(f)\big]$&nbsp; in red.
 +
 
 +
[[File:P_ID698__Sig_T_4_1_S2b_neu.png|center|frame|Example of a Low Pass- and Bandpass-Spectrum]]
  
[[File:P_ID698__Sig_T_4_1_S2b_neu.png|center|frame|Beispiel von Tiefpass- und Bandpass-Spektrum]]
+
On the right is the spectrum&nbsp; $S(f)$&nbsp; after single sideband amplitude modulation (ESB-AM) with the carrier frequency&nbsp; $f_{\rm T} = 100 \,\text{kHz}$. A description of this transmission system can be found in chapter&nbsp; [[Modulation_Methods/Hüllkurvendemodulation|Envelope Demodulation]]&nbsp; of the book „Modulation Methods”.
 +
*According to this description,&nbsp; $q(t)$&nbsp; is uniquely a low-pass signal and&nbsp; $s(t)$&nbsp; is a band-pass signal. The bandwidths are&nbsp; $B_{\rm TP} = B_{\rm BP} = 4 \,\text{kHz}$.
 +
*If the DC component&nbsp; $(3 \,\text{V})$&nbsp; would be missing in the source signal, then&nbsp; $q(t)$&nbsp; would still be described as low-pass filter-like.
 +
*Without knowledge of the task, one could interpret&nbsp; $q(t)$&nbsp; but then also as a bandpass signal with the bandwidth&nbsp; $B_{\rm BP} = 1 \,\text{kHz}$&nbsp;.
  
Rechts dargestellt ist das Spektrum&nbsp; $S(f)$&nbsp; nach Einseitenband–Amplitudenmodulation (ESB–AM) mit der Trägerfrequenz&nbsp; $f_{\rm T} = 100 \,\text{kHz}$. Eine Beschreibung dieses Übertragungssystems finden Sie im Kapitel&nbsp; [[Modulation_Methods/Hüllkurvendemodulation|Hüllkurvendemodulation]]&nbsp; des Buches „Modulationsverfahren”.
 
*Nach dieser Beschreibung ist&nbsp; $q(t)$&nbsp; eindeutig ein Tiefpass–Signal und&nbsp; $s(t)$&nbsp; ein Bandpass–Signal. Die Bandbreiten sind jeweils&nbsp; $B_{\rm TP} = B_{\rm BP} = 4 \,\text{kHz}$.
 
*Die Signale&nbsp; $q(t)$&nbsp; und&nbsp; $s(t)$&nbsp; sind zudem reell, da sowohl&nbsp; $Q(f)$&nbsp; als auch&nbsp; $S(f)$&nbsp; einen geraden Real- und einen ungeraden Imaginärteil aufweisen.
 
*Würde beim Quellensignal der Gleichanteil&nbsp; $(3 \,\text{V})$&nbsp; fehlen, so würde man sinnvollerweise&nbsp; $q(t)$&nbsp; noch immer als tiefpassartig bezeichnen.
 
*Ohne Kenntnis der Aufgabenstellung könnte man&nbsp; $q(t)$&nbsp; dann aber auch als Bandpass–Signal mit der Bandbreite&nbsp; $B_{\rm BP} = 1 \,\text{kHz}$&nbsp; auffassen.
 
  
  
Dieses Beispiel zeigt, dass es kein eindeutiges mathematisches Unterscheidungsmerkmal zwischen Tiefpass– und Bandpass–Signalen gibt.}}
 
  
 +
This example shows that there is no clear mathematical distinction between low pass and band pass signals.}}
  
==Beschreibung eines BP-Signals mittels TP-Signalen==
+
==Description of a BP-Signal with TP-Signals==
 
<br>
 
<br>
Wir betrachten zwei Tiefpass–Spektren&nbsp; $X_1(f)$&nbsp; und&nbsp; $X_2(f)$&nbsp; mit den Bandbreiten&nbsp; $B_1$&nbsp; und&nbsp; $B_2$&nbsp; entsprechend der linken Grafik.  
+
We consider two low pass spectra&nbsp; $X_1(f)$&nbsp; and&nbsp; $X_2(f)$&nbsp; with the bandwidths&nbsp; $B_1$&nbsp; and&nbsp; $B_2$&nbsp; corresponding to the left graph.  
  
 
[[File:P_ID684__Sig_T_4_1_S3a.png|center|Erzeugung eines Bandpass-Spektrums aus Tiefpass-Spektren]]
 
[[File:P_ID684__Sig_T_4_1_S3a.png|center|Erzeugung eines Bandpass-Spektrums aus Tiefpass-Spektren]]
  
Aus dieser Darstellung ist zu erkennen:
+
You can see from this diagram:
*Sind&nbsp; $X_1(f)$&nbsp; und&nbsp; $X_2(f)$&nbsp; bis zu einer Frequenz&nbsp; $f_{12}$&nbsp; identisch, so beschreibt die Differenz ein Bandpass-Spektrum mit Bandbreite&nbsp; $B_{\rm BP} = B_1 - f_{12}$. Entsprechend der rechten Grafik gilt dann:
+
*If &nbsp; $X_1(f)$&nbsp; and&nbsp; $X_2(f)$&nbsp; up to a frequency&nbsp; $f_{12}$&nbsp; are identical, the difference describes a bandpass spectrum with bandwidth&nbsp; $B_{\rm BP} = B_1 - f_{12}$. According to the graphic on the right, the following then applies
 
:$$X_{\rm BP}(f) = X_1(f) -X_2(f).$$
 
:$$X_{\rm BP}(f) = X_1(f) -X_2(f).$$
*Aufgrund der Linearität der Fouriertransformation gilt für die zum Bandpass-Spektrum&nbsp; $X_{\rm BP}(f)$&nbsp; zugehörige Zeitfunktion:
+
*Due to the linearity of the Fourier transform, the time function associated with the bandpass spectrum&nbsp; $X_{\rm BP}(f)$&nbsp; is valid
 
:$$x_{\rm BP}(t) = x_1(t) - x_2(t).$$
 
:$$x_{\rm BP}(t) = x_1(t) - x_2(t).$$
*Aus der Fouriertransformation folgt allgemein, dass das Integral über die Zeitfunktion gleich dem Spektralwert bei&nbsp; $f = 0$&nbsp; ist. Bei jedem Bandpass–Signal ist demzufolge dieses Integral stets Null:
+
*It generally follows from the Fourier transformation that the integral over the time function is equal to the spectral value at&nbsp; $f = 0$&nbsp;. Consequently, this integral is always zero for every bandpass signal:
 
:$$\int_{- \infty}^{+\infty}x_{\rm BP}(t)\hspace{0.1cm}{\rm
 
:$$\int_{- \infty}^{+\infty}x_{\rm BP}(t)\hspace{0.1cm}{\rm
 
d}t = X_{\rm BP}(f \hspace{-0.1cm}= \hspace{-0.1cm} 0) =0.$$
 
d}t = X_{\rm BP}(f \hspace{-0.1cm}= \hspace{-0.1cm} 0) =0.$$
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 3:}$&nbsp;
+
$\text{Example 3:}$&nbsp;
Die roten Kurven in den beiden Grafiken zeigen das Bandpass-Spektrum&nbsp; $X_{\rm BP}(f)$&nbsp; und die zugehörige Zeitfunktion
+
The red curves in the two graphs show the bandpass spectrum&nbsp; $X_{\rm BP}(f)$&nbsp; and the corresponding time function
 
   
 
   
 
:$$x_{\rm BP}(t) = 10\hspace{0.05cm}{\rm
 
:$$x_{\rm BP}(t) = 10\hspace{0.05cm}{\rm
Line 113: Line 114:
 
\hspace{0.05cm}{\rm kHz} \cdot t).$$
 
\hspace{0.05cm}{\rm kHz} \cdot t).$$
  
[[File:EN_Sig_T_4_1_S3a.png|center|frame|Tiefpass&ndash; und Bandpass&ndash;Spektrum und zugehörige Signale]]
+
[[File:EN_Sig_T_4_1_S3a.png|center|frame|Low Pass&ndash; and Bandpass&ndash;Spectrum and Their Signals]]
  
Ebenfalls dargestellt sind die zwei Tiefpass–Spektren und –Signale. Man erkennt aus diesen Bildern:
+
Also shown are the two low-pass spectra and signals. You can see from these pictures:
*Die blau-gepunktete Kurve in der linken Grafik stellt das trapezförmige Spektrum&nbsp; $X_1(f)$&nbsp; dar, wobei die äquivalente Bandbreite&nbsp; $\Delta f_1= 10 \,\text{kHz}$&nbsp; beträgt und der Rolloff-Faktor&nbsp; $r_1 = 0.2$&nbsp; ist.
+
*The blue-dotted curve in the left graph represents the trapezoidal spectrum&nbsp; $X_1(f)$&nbsp; where the equivalent bandwidth&nbsp; $\Delta f_1= 10 \,\text{kHz}$&nbsp; and the rolloff factor&nbsp; $r_1 = 0.2$&nbsp; is
*Die blau-gepunktete Kurve in der rechten Grafik zeigt das dazugehörige Tiefpass&ndash;Signal&nbsp; $x_1(t)$. Der Signalwert bei&nbsp; $t = 0$&nbsp; entspricht der blauen Trapezfläche des Spektrums&nbsp; $X_1(f)$:  
+
*The blue-dotted curve in the right graphic shows the corresponding low pass&ndash;signal&nbsp; $x_1(t)$. The signal value at&nbsp; $t = 0$&nbsp; corresponds to the blue trapezoidal area of the spectrum&nbsp; $X_1(f)$:  
 
:$$x_1(t = 0) = 10 \,\text{V}.$$
 
:$$x_1(t = 0) = 10 \,\text{V}.$$
*Die grüne Kurve gilt für das Rechteckspektrum&nbsp; $X_2(f)$&nbsp; mit der äquivalenten Bandbreite&nbsp; $\Delta f_2= 2 \,\text{kHz}$. Das dazugehörige Zeitsignal&nbsp; $x_2(t)$&nbsp; verläuft&nbsp; $\sin(x)/x$–förmig und es gilt:  
+
*The green curve applies to the rectangular spectrum&nbsp; $X_2(f)$&nbsp; with the equivalent bandwidth&nbsp; $\Delta f_2= 2 \,\text{kHz}$. The corresponding time signal&nbsp; $x_2(t)$&nbsp; runs&nbsp; $\sin(x)/x$-shaped and is valid:  
 
:$$x_2(t = 0) = 2 \,\text{V}.$$
 
:$$x_2(t = 0) = 2 \,\text{V}.$$
Die rote Kurve für das bandpassartige Signal ergibt sich links wie rechts als Differenz zwischen blauer und grüner Kurve. Entsprechend ist
+
The red curve for the bandpass-like signal is the difference between the blue and green curve on the left and right. Accordingly
 
:$$x_{\rm BP}(t = 0)  = x_1(t = 0) - x_2(t = 0) = 8 \,\text{V},$$
 
:$$x_{\rm BP}(t = 0)  = x_1(t = 0) - x_2(t = 0) = 8 \,\text{V},$$
 
:$$\int_{- \infty}^{+\infty}x_{\rm BP}(t)\hspace{0.1cm}{\rm
 
:$$\int_{- \infty}^{+\infty}x_{\rm BP}(t)\hspace{0.1cm}{\rm
Line 127: Line 128:
  
  
==Synthese von BP-Signalen aus dem äquivalenten TP-Signal==
+
==BP-Signal Synthesis  from  Equivalent TP-Signals==
 
<br>
 
<br>
Wir betrachten ein Tiefpass-Signal&nbsp; $x_{\rm TP}(t)$&nbsp; mit Spektrum&nbsp; $X_{\rm TP}(f)$&nbsp; entsprechend der linken Skizze.  
+
We consider a low-pass signal&nbsp; $x_{\rm TP}(t)$&nbsp; with spectrum&nbsp; $X_{\rm TP}(f)$&nbsp; according to the left sketch.  
 +
 
 +
If this signal is multiplied by a (dimensionless) harmonic oscillation
  
Multipliziert man dieses Signal mit einer (dimensionslosen) harmonischen Schwingung
 
 
 
:$$z(t) =  {\cos} ( 2\pi \cdot f_{\rm T} \cdot
 
:$$z(t) =  {\cos} ( 2\pi \cdot f_{\rm T} \cdot
 
t)\hspace{0.15cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\hspace{0.15cm} Z(f) = {1}/{2}\cdot
 
t)\hspace{0.15cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\hspace{0.15cm} Z(f) = {1}/{2}\cdot
 
\delta (f - f_{\rm T})+ {1}/{2}\cdot \delta (f + f_{\rm T}),$$
 
\delta (f - f_{\rm T})+ {1}/{2}\cdot \delta (f + f_{\rm T}),$$
  
so ergibt sich nach dem Faltungssatz für das Spektrum des Signals&nbsp; $x_{\rm BP}(t) = x_{\rm TP}(t) \cdot z(t)$:
+
the convolution theorem for the spectrum of the signal&nbsp; $x_{\rm BP}(t) = x_{\rm TP}(t) yields \cdot z(t)$:
 
   
 
   
 
:$$X_{\rm BP}(f) =  X_{\rm TP}(f)\star Z(f) = {1}/{2}\cdot X_{\rm
 
:$$X_{\rm BP}(f) =  X_{\rm TP}(f)\star Z(f) = {1}/{2}\cdot X_{\rm
 
TP} (f - f_{\rm T})+ {1}/{2}\cdot X_{\rm TP}(f + f_{\rm T}).$$
 
TP} (f - f_{\rm T})+ {1}/{2}\cdot X_{\rm TP}(f + f_{\rm T}).$$
  
Hierbei ist berücksichtigt, dass die&nbsp; [[Signal_Representation/The_Convolution_Theorem_and_Operation|Faltung]]&nbsp; der Spektralfunktion&nbsp; $X_{\rm TP}(f)$&nbsp; mit der verschobenen Diracfunktion&nbsp; $\delta (f - f_\rm {T})$&nbsp; die um&nbsp; $f_\rm {T}$&nbsp; nach rechts verschobene Funktion&nbsp; $X_{\rm TP}(f-f_\rm {T})$&nbsp; ergibt.
+
Here it is considered that the&nbsp; [[Signal_Representation/The_Convolution_Theorem_and_Operation|Convolution]]&nbsp; of the spectral function&nbsp; $X_{\rm TP}(f)$&nbsp; with the frequency-shifted Dirac signal &nbsp; $\delta (f - f_\rm {T})$&nbsp; yields the same spectral function &nbsp; $X_{\rm TP}(f-f_\rm {T})$&nbsp; shifted to the right by &nbsp; $f_\rm {T}$&nbsp;.
  
 
[[File:P_ID2724__Sig_T_4_1_S4a.png|center|frame|Ein BP&ndash;Spektrum ergibt sich durch beidseitiges Verschieben eines TP&ndash;Spektrums]]
 
[[File:P_ID2724__Sig_T_4_1_S4a.png|center|frame|Ein BP&ndash;Spektrum ergibt sich durch beidseitiges Verschieben eines TP&ndash;Spektrums]]
  
Aus der rechten Spektralbereichsdarstellung erkennt man eindeutig, dass
+
From the right spectral range display you can clearly see that
 
 
:$$x_{\rm BP}(t) = x_{\rm TP}(t) \cdot {\cos} ( 2\pi \cdot f_{\rm T}
 
:$$x_{\rm BP}(t) = x_{\rm TP}(t) \cdot {\cos} ( 2\pi \cdot f_{\rm T}
 
\cdot t)$$
 
\cdot t)$$
  
ein Bandpass-Signal ist. Die Einhüllende von&nbsp; $x_{\rm BP}(t)$&nbsp; ist durch den Betrag&nbsp; $|x_{\rm TP}(t)|$&nbsp; gegeben.
+
is a bandpass signal. The envelope of&nbsp; $x_{\rm BP}(t)$&nbsp; given by the magnitude of&nbsp; $|x_{\rm TP}(t)|$&nbsp;.
Anwendung findet dieses Prinzip zum Beispiel bei der&nbsp; [[Modulation_Methods/Zweiseitenband-Amplitudenmodulation|Amplitudenmodulation ohne Träger]], die im Buch &bdquo;Modulationsverfahren&rdquo; eingehend behandelt wird.
+
For example, this principle is applied to the&nbsp; [[Modulation_Methods/Zweiseitenband-Amplitudenmodulation|amplitude modulation without carrier]],which is discussed thoroughly in the book &bdquo;Modulation Methods&rdquo;.
 
 
Aus obiger Grafik erkennt man:
 
*Das Spektrum&nbsp; $X_{\rm BP}(f)$&nbsp; hat im Bereich um die Trägerfrequenz&nbsp; $f_{\rm T}$&nbsp; die gleiche Form wie&nbsp; $X_{\rm TP}(f)$&nbsp; im Bereich um&nbsp; $f = 0$, ist aber gegenüber dem Tiefpass-Spektrum um den Faktor&nbsp; $2$&nbsp; gedämpft.
 
*Da&nbsp; $X_{\rm TP}(f)$&nbsp; bezogen auf&nbsp; $f = 0$&nbsp; einen geraden Real– und einen ungeraden Imaginärteil besitzt, weist das Bandpass-Spektrum&nbsp; $X_{\rm BP}(f)$&nbsp; gleiche Symmetrieeigenschaften auf – allerdings nun bezogen auf die Trägerfrequenz&nbsp; $f_{\rm T}$.
 
*Auch&nbsp; $X_{\rm BP}(f)$&nbsp; besitzt Anteile bei negativen Frequenzen. Da das zugehörige Signal&nbsp;  $x_{\rm BP}(t)$&nbsp; gemäß obiger Gleichung ebenfalls reell ist, muss auch&nbsp;  $X_{\rm BP}(f)$&nbsp; bezüglich der Frequenz&nbsp; $f = 0$&nbsp; einen geraden Real– und einen ungeraden Imaginärteil besitzen.
 
*Die Bandbreite des Bandpass-Signals ist doppelt so groß wie die des Tiefpass-Signals: &nbsp; $B_{\rm BP} = 2 \cdot B_{\rm TP}$. Voraussetzung für die Gültigkeit dieser Aussage ist, dass die Trägerfrequenz&nbsp; $f_{\rm T}$&nbsp; mindestens um den Faktor&nbsp; $2$&nbsp; größer ist als die maximale Frequenz&nbsp; $(B_{\rm TP})$&nbsp; des Signals&nbsp;  $x_{\rm TP}(t)$.
 
  
 +
You can see from the above graphic:
 +
*The spectrum&nbsp; $X_{\rm BP}(f)$&nbsp; has the same form as&nbsp; $f_{\rm T}$&nbsp; in the range around the carrier frequency&nbsp; $f_{\rm TP}(f)$&nbsp; in the range around&nbsp; $f = 0$, but is attenuated with respect to the low-pass spectrum by the factor&nbsp; $2$&nbsp;.
 +
*Since&nbsp; $X_{\rm TP}(f)$&nbsp; relative to&nbsp; $f = 0$&nbsp; has an even real and an odd imaginary part, the bandpass spectrum&nbsp; $X_{\rm BP}(f)$&nbsp; has the same symmetry properties - but now relative to the carrier frequency&nbsp; $f_{\rm T}$.
 +
*Also&nbsp; $X_{\rm BP}(f)$&nbsp; has portions at negative frequencies. Since the corresponding signal&nbsp; $x_{\rm BP}(t)$&nbsp; is also real according to the above equation,&nbsp; $X_{\rm BP}(f)$&nbsp; must also have an even real and an odd imaginary part with respect to the frequency&nbsp; $f = 0$&nbsp;.
 +
*The bandwidth of the bandpass signal is twice that of the low-pass signal: &nbsp; $B_{\rm BP} = 2 \cdot B_{\rm TP}$. Prerequisite for the validity of this statement is that the carrier frequency&nbsp; $f_{\rm T}$&nbsp; is at least larger than the maximum frequency&nbsp; $2$&nbsp; by the factor&nbsp; $(B_{\rm TP})$&nbsp; of the signal&nbsp; $x_{\rm TP}(t)$.
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 4:}$&nbsp; Ein Tiefpass-Signal besitze diskrete Spektralanteile bei&nbsp; $f_1 = 1\,\text{ kHz}, \, f_2 = 2\,\text{ kHz}, \,f_3 = 3\,\text{ kHz}$&nbsp; und&nbsp; $f_4 = 4\,\text{ kHz}$:
+
$\text{Example 4:}$&nbsp; A low pass signal has discrete spectral components at&nbsp; $f_1 = 1\,\text{ kHz}, \,f_2 = 2\,\text{ kHz}, \,f_3 = 3\,\text{ kHz}$&nbsp; and&nbsp; $f_4 = 4\,\text{ kHz}$:
  
 
:$$x_{\rm TP}(t) = 0.26\cdot {\cos} ( \omega_1 \hspace{0.05cm} t + 20^{ \circ}) \hspace{0.18cm}+ 0.54\cdot {\cos} ( \omega_2 \hspace{0.05cm} t - 180^{ \circ}) +  0.30\cdot {\cos} ( \omega_3 \hspace{0.05cm} t +
 
:$$x_{\rm TP}(t) = 0.26\cdot {\cos} ( \omega_1 \hspace{0.05cm} t + 20^{ \circ}) \hspace{0.18cm}+ 0.54\cdot {\cos} ( \omega_2 \hspace{0.05cm} t - 180^{ \circ}) +  0.30\cdot {\cos} ( \omega_3 \hspace{0.05cm} t +
Line 168: Line 167:
 
\circ}).$$
 
\circ}).$$
  
Das dazugehörige Spektrum&nbsp; $X_{\rm TP}(f)$&nbsp; ist wegen der von Null verschiedenen Phasenlagen komplex.
+
The corresponding spectrum&nbsp; $X_{\rm TP}(f)$&nbsp; is complex because of the non-zero phase positions.
 
 
[[File:P_ID687__Sig_T_4_1_S4b.png|center|frame|ZSB-AM-Signal mit unterschiedlichen Trägerfrequenzen]]
 
  
*Multipliziert man&nbsp; $x_{\rm TP}(t)$&nbsp; mit einem Cosinussignal der Amplitude&nbsp; $1$&nbsp; und der Frequenz&nbsp; $f_{\rm T} = 20 \,\text{kHz}$, so ergibt sich das Bandpass-Signal gemäß der oberen Grafik.
+
[[File:P_ID687__Sig_T_4_1_S4b.png|center|frame|DSB-AM-Signal With Different Carrier Frequencies]]
*Die untere Skizze gilt für das Bandpass-Signal mit der Trägerfrequenz&nbsp; $f_{\rm T} = 100 \,\text{kHz}$.
 
*In beiden Darstellungen sind die Funktionsverläufe&nbsp; $\pm \vert x_{\rm TP}(t) \vert $&nbsp; als Einhüllende der Bandpass-Signale zu erkennen. }}
 
  
 +
*If one multiplies&nbsp; $x_{\rm TP}(t)$&nbsp; with a cosine signal of amplitude&nbsp; $1$&nbsp; and frequency&nbsp; $f_{\rm T} = 20 \,\text{kHz}$, the bandpass signal is obtained according to the upper graphic.
 +
*The lower sketch applies to the bandpass signal with the carrier frequency&nbsp; $f_{\rm T} = 100 \,\text{kHz}$.
 +
*In both illustrations the function curves&nbsp; $\pm \vert x_{\rm TP}(t) \vert $&nbsp; can be recognized as the envelope of the bandpass signals. }}
  
''Hinweis'': Die Thematik dieses Kapitels wird im Lernvideo&nbsp;  [[Eigenschaften_von_Tiefpass-_und_Bandpasssignalen_(Lernvideo)|Eigenschaften von Tiefpass– und Bandpass–Signalen]]&nbsp; behandelt.
 
  
Weitere Informationen zum Thema, zahlreiche Aufgaben und Simulationen finden Sie im Versuch &bdquo;Analoge Modulationsverfahren&rdquo; des Praktikums „Simulation digitaler Übertragungssysteme”. Diese (ehemalige) LNT-Lehrveranstaltung an der TU München basiert auf
+
''Notes'':  The topic of this chapter is covered in the german learning video&nbsp; [[Eigenschaften_von_Tiefpass-_und_Bandpasssignalen_(Lernvideo)|properties of bandpass and lowpass signals]]&nbsp;.  
*dem Windows-Programm&nbsp; [http://en.lntwww.de/downloads/Sonstiges/Programme/AMV.zip AMV] &nbsp; &rArr; &nbsp; Link verweist auf die ZIP-Version des Programms und
 
*der zugehörigen&nbsp; [http://en.lntwww.de/downloads/Sonstiges/Texte/Analoge_Modulationsverfahren.pdf Praktikumsanleitung] &nbsp; &rArr; &nbsp; Link verweist auf die PDF-Version; insgesamt 86 Seiten.
 
  
 +
Further information on the topic, numerous tasks and simulations can be found in the experiment &bdquo;Analog Modulation Methods&rdquo; of the practical course "Simulation of Digital Transmission Systems". This (former) LNT course at the TU Munich is based on
 +
*dem Windows Program&nbsp; [http://en.lntwww.de/downloads/Sonstiges/Programme/AMV.zip AMV] &nbsp; &rArr; &nbsp;  Link refers to the ZIP version of the program and
 +
*the corresponding&nbsp; [http://en.lntwww.de/downloads/Sonstiges/Texte/Analoge_Modulationsverfahren.pdf Praktikumsanleitung]  &nbsp; &rArr; &nbsp;  Link refers to the PDF version; 86 pages in total.
  
  
  
==Aufgaben zum Kapitel==
+
==Exercises for the Chapter==
 
<br>
 
<br>
[[Aufgaben:Aufgabe_4.1:_Tiefpass-_und_Bandpass-Signale|Aufgabe 4.1: Tiefpass- und Bandpass-Signale]]
+
[[Aufgaben:Aufgabe_4.1:_Tiefpass-_und_Bandpass-Signale|Exercise 4.1: Tiefpass- und Bandpass-Signale]]
  
 
[[Aufgaben:Aufgabe_4.1Z:_Hochpass-System|Aufgabe 4.1Z: Hochpass-System]]
 
[[Aufgaben:Aufgabe_4.1Z:_Hochpass-System|Aufgabe 4.1Z: Hochpass-System]]

Revision as of 21:33, 24 November 2020

# OVERVIEW OF THE FOURTH MAIN CHAPTER #


In the third main chapter:   Aperiodic Signals – Impulses  often low-pass signals were assumed, i.e., those signals whose spectral functions lie in the range around the frequency  $f = 0$ . Particularly in optical transmission and in radio transmission systems - but not only in these - the transmitted signals are in the range around a carrier frequency  $f_{\rm T}$. Such signals are called  bandpass signals. All principles of the Fourier transformation and inverse transformation described in the last chapter apply to bandpass signals in the same way. Besides there are some special features of bandpass-signals, whose observance can lead to a simpler description.

This chapter contains in detail:

  • the enumeration of differences  and similarities  of lowpass and bandpass signals,
  • the synthesis  of bandpass signals from the equivalent lowpass signal,
  • the analytical signal  and the corresponding spectral function,
  • the equivalent low-pass signal  in the time and frequency domain, and finally
  • the representation of analytical signal/equivalent low-pass signal in the complex plane.

Further information about the topic as well as tasks, simulations and programming exercises can be found in the experiment Analog Modulation Methods  of the practical course „Simulation of Digital Transmission Systems”. This (former) LNT course at the TU Munich is based on

  • the Windows program  AMV   ⇒   Link refers to the zip version of the program
  • and its   lab manual   ⇒  link refers to the pdf version (86 pages).


Motivation of Bandpass Signals for Communications Engineering


In the previous chapters of this book, almost only signals whose spectra lie in a narrow range around the frequency  $f = 0$  have been considered. Examples are analog speech, music and image signals, which all - despite their different bandwidths - can be described as  'low pass signals  .

If you want to transmit such a low-pass signal to a spatially distant sink, the signal may have to be converted to another frequency position. There can be several reasons for this:

  • Often the transmission channel is unsuitable for the direct transmission of the source signal in the original frequency band, because this band contains frequencies that are unfavorable for it. Only by a frequency shift by means of a so-called modulator  a transmission is made possible.
  • A single transmission channel can be used for the simultaneous transmission of several signals, if they are modulated with different carrier frequencies at the transmitting end. This method is called    FDMA  ,abbreviated as Frequency Division Multiple Access
  • The transmission quality can be improved compared to the simplest analog methodAmplitude Modulation  at the expense of a larger bandwidth and thus a higher signal-to-noise ratio  can be achieved. Examples are the.   Frequency Modulation  (FM) as an analog method and the digital   Pul  (PCM).


$\text{Remember:}$  The transmitted signals of many transmission methods are  bandpass signals.


Note:   Dem Autor ist durchaus bewusst, dass es nach der letzten Rechtschreibreform „Tiefpasssignal” und „Bandpasssignal” heißen müsste. Um diese unschönen Konstrukte zu vermeiden, verwenden wir im Folgenden meist die Schreibweisen „Tiefpass–Signal” und „Bandpass–Signal”, manchmal auch „TP–Signal” und „BP–Signal”.

$\text{Example 1 : To classify signals with respect to „low pass” and „bandpass”}$

(a)     speech  and music  are low-pass signals with a bandwidth of  $\text{20 kHz}$  (at very good quality). Since a radio transmission is only possible from approx.  $\text{100 kHz}$ , a conversion to carrier frequencies between

  • $\text{0.525 ... 1.61 MHz}$  $($Medium wave broadcasting, amplitude modulation, channel spacing  $\text{9 kHz})$,
  • $\text{87.5 ... 108 MHz}$  $($Radio on FM, frequency modulation, channel spacing  $\text{300 kHz})$

is needed.


(b)     TV image signals  have a larger bandwidth, for example  $\text{5 MHz}$ . Here, as well, a frequency band shift occurs before the sound and image transmission due to carrier frequencies between

  • $\text{41 ... 68 / 174 ... 230 MHz}$  (television, VHF band, channel spacing  $\text{7 MHz})$,
  • $\text{470 ... 850 MHz}$  $($television, UHF band, channel spacing  $\text{8 MHz})$.

(c)    With GSM mobile radio  the carrier frequencies in the D-band are  $\text{900 MHz}$  and in the D-band   $\text{1800 MHz}$.

(d)     With optical transmission  the electrical signals are converted into light, i.e. to frequencies between ca.  $\text{200 THz}$  and  $\text{350 THz}$  $($correspondingly  $\text{1.55 µm ... 0.85 µm}$  Wavelength).


Properties of BP-Signals


On this page - without claiming to be complete - some characteristics of bandpass signals are compiled and compared to lowpass signals. We start from the spectral functions  $X_{\rm TP}(f)$  and  $X_{\rm BP}(f)$  according to the following sketch.

Low Pass- and Bandpass Spectrum

Regarding the graphic is to be remarked:

  • The triangular shape of the displayed spectra is to be understood schematically and is only to mark the occupied frequency band. So it should not be concluded that all frequencies within the band are actually occupied and that all spectral functions increase linearly with frequency  $f$ .
  • The corresponding time functions  $x_{\rm TP}(t)$  and  $x_{\rm BP}(t)$  are real for the time being. This means that according to the  Mapping Theorem   the spectral functions  $X_{\rm TP}(f)$  and  $X_{\rm BP}(f)$  - related to the frequency  $f = 0$  - each have an even real part and an odd imaginary part.
  • As bandwidth  $B_{\rm TP}$  or.  $B_{\rm BP}$  for both low pass and bandpass we refer to the occupied frequency band at the positive frequencies (in the graphic:   continuous curves).
  • As bandwidth  $B_{\rm TP}$  or.  $B_{\rm BP}$  for lowpass and bandpass we equally denote the occupied frequency band at the positive frequencies (in the graphic:   continuous curves).


$\text{Example 2:}$  An example with discrete spectral lines follows. The left graph shows the spectrum  $Q(f)$  of the message signal

$$q(t) = 3\hspace{0.05cm}{\rm V} + 4\hspace{0.05cm}{\rm V} \cdot \cos (2 \pi \cdot 3\hspace{0.05cm}{\rm kHz} \cdot t) + 2\hspace{0.05cm}{\rm V} \cdot \sin (2 \pi \cdot 4\hspace{0.05cm}{\rm kHz} \cdot t). $$

The discrete spectral lines of the real part   ⇒   ${\rm Re}\big[Q(f)\big]$  are shown in blue and those of the imaginary part   ⇒   ${\rm Im}\big[Q(f)\big]$  in red.

Example of a Low Pass- and Bandpass-Spectrum

On the right is the spectrum  $S(f)$  after single sideband amplitude modulation (ESB-AM) with the carrier frequency  $f_{\rm T} = 100 \,\text{kHz}$. A description of this transmission system can be found in chapter  Envelope Demodulation  of the book „Modulation Methods”.

  • According to this description,  $q(t)$  is uniquely a low-pass signal and  $s(t)$  is a band-pass signal. The bandwidths are  $B_{\rm TP} = B_{\rm BP} = 4 \,\text{kHz}$.
  • If the DC component  $(3 \,\text{V})$  would be missing in the source signal, then  $q(t)$  would still be described as low-pass filter-like.
  • Without knowledge of the task, one could interpret  $q(t)$  but then also as a bandpass signal with the bandwidth  $B_{\rm BP} = 1 \,\text{kHz}$ .



This example shows that there is no clear mathematical distinction between low pass and band pass signals.

Description of a BP-Signal with TP-Signals


We consider two low pass spectra  $X_1(f)$  and  $X_2(f)$  with the bandwidths  $B_1$  and  $B_2$  corresponding to the left graph.

Erzeugung eines Bandpass-Spektrums aus Tiefpass-Spektren

You can see from this diagram:

  • If   $X_1(f)$  and  $X_2(f)$  up to a frequency  $f_{12}$  are identical, the difference describes a bandpass spectrum with bandwidth  $B_{\rm BP} = B_1 - f_{12}$. According to the graphic on the right, the following then applies
$$X_{\rm BP}(f) = X_1(f) -X_2(f).$$
  • Due to the linearity of the Fourier transform, the time function associated with the bandpass spectrum  $X_{\rm BP}(f)$  is valid
$$x_{\rm BP}(t) = x_1(t) - x_2(t).$$
  • It generally follows from the Fourier transformation that the integral over the time function is equal to the spectral value at  $f = 0$ . Consequently, this integral is always zero for every bandpass signal:
$$\int_{- \infty}^{+\infty}x_{\rm BP}(t)\hspace{0.1cm}{\rm d}t = X_{\rm BP}(f \hspace{-0.1cm}= \hspace{-0.1cm} 0) =0.$$

$\text{Example 3:}$  The red curves in the two graphs show the bandpass spectrum  $X_{\rm BP}(f)$  and the corresponding time function

$$x_{\rm BP}(t) = 10\hspace{0.05cm}{\rm V} \cdot {\rm si} ( \pi \cdot 10 \hspace{0.05cm}{\rm kHz} \cdot t) \cdot {\rm si} ( \pi \cdot 2 \hspace{0.05cm}{\rm kHz} \cdot t) - 2\hspace{0.05cm}{\rm V} \cdot {\rm si} ( \pi \cdot 2 \hspace{0.05cm}{\rm kHz} \cdot t).$$
Low Pass– and Bandpass–Spectrum and Their Signals

Also shown are the two low-pass spectra and signals. You can see from these pictures:

  • The blue-dotted curve in the left graph represents the trapezoidal spectrum  $X_1(f)$  where the equivalent bandwidth  $\Delta f_1= 10 \,\text{kHz}$  and the rolloff factor  $r_1 = 0.2$  is
  • The blue-dotted curve in the right graphic shows the corresponding low pass–signal  $x_1(t)$. The signal value at  $t = 0$  corresponds to the blue trapezoidal area of the spectrum  $X_1(f)$:
$$x_1(t = 0) = 10 \,\text{V}.$$
  • The green curve applies to the rectangular spectrum  $X_2(f)$  with the equivalent bandwidth  $\Delta f_2= 2 \,\text{kHz}$. The corresponding time signal  $x_2(t)$  runs  $\sin(x)/x$-shaped and is valid:
$$x_2(t = 0) = 2 \,\text{V}.$$

The red curve for the bandpass-like signal is the difference between the blue and green curve on the left and right. Accordingly

$$x_{\rm BP}(t = 0) = x_1(t = 0) - x_2(t = 0) = 8 \,\text{V},$$
$$\int_{- \infty}^{+\infty}x_{\rm BP}(t)\hspace{0.1cm}{\rm d}t = X_{\rm BP}(f \hspace{-0.1cm}= \hspace{-0.1cm} 0) =0.$$


BP-Signal Synthesis from Equivalent TP-Signals


We consider a low-pass signal  $x_{\rm TP}(t)$  with spectrum  $X_{\rm TP}(f)$  according to the left sketch.

If this signal is multiplied by a (dimensionless) harmonic oscillation

$$z(t) = {\cos} ( 2\pi \cdot f_{\rm T} \cdot t)\hspace{0.15cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\hspace{0.15cm} Z(f) = {1}/{2}\cdot \delta (f - f_{\rm T})+ {1}/{2}\cdot \delta (f + f_{\rm T}),$$

the convolution theorem for the spectrum of the signal  $x_{\rm BP}(t) = x_{\rm TP}(t) yields \cdot z(t)$:

$$X_{\rm BP}(f) = X_{\rm TP}(f)\star Z(f) = {1}/{2}\cdot X_{\rm TP} (f - f_{\rm T})+ {1}/{2}\cdot X_{\rm TP}(f + f_{\rm T}).$$

Here it is considered that the  Convolution  of the spectral function  $X_{\rm TP}(f)$  with the frequency-shifted Dirac signal   $\delta (f - f_\rm {T})$  yields the same spectral function   $X_{\rm TP}(f-f_\rm {T})$  shifted to the right by   $f_\rm {T}$ .

Ein BP–Spektrum ergibt sich durch beidseitiges Verschieben eines TP–Spektrums

From the right spectral range display you can clearly see that

$$x_{\rm BP}(t) = x_{\rm TP}(t) \cdot {\cos} ( 2\pi \cdot f_{\rm T} \cdot t)$$

is a bandpass signal. The envelope of  $x_{\rm BP}(t)$  given by the magnitude of  $|x_{\rm TP}(t)|$ . For example, this principle is applied to the  amplitude modulation without carrier,which is discussed thoroughly in the book „Modulation Methods”.

You can see from the above graphic:

  • The spectrum  $X_{\rm BP}(f)$  has the same form as  $f_{\rm T}$  in the range around the carrier frequency  $f_{\rm TP}(f)$  in the range around  $f = 0$, but is attenuated with respect to the low-pass spectrum by the factor  $2$ .
  • Since  $X_{\rm TP}(f)$  relative to  $f = 0$  has an even real and an odd imaginary part, the bandpass spectrum  $X_{\rm BP}(f)$  has the same symmetry properties - but now relative to the carrier frequency  $f_{\rm T}$.
  • Also  $X_{\rm BP}(f)$  has portions at negative frequencies. Since the corresponding signal  $x_{\rm BP}(t)$  is also real according to the above equation,  $X_{\rm BP}(f)$  must also have an even real and an odd imaginary part with respect to the frequency  $f = 0$ .
  • The bandwidth of the bandpass signal is twice that of the low-pass signal:   $B_{\rm BP} = 2 \cdot B_{\rm TP}$. Prerequisite for the validity of this statement is that the carrier frequency  $f_{\rm T}$  is at least larger than the maximum frequency  $2$  by the factor  $(B_{\rm TP})$  of the signal  $x_{\rm TP}(t)$.

$\text{Example 4:}$  A low pass signal has discrete spectral components at  $f_1 = 1\,\text{ kHz}, \,f_2 = 2\,\text{ kHz}, \,f_3 = 3\,\text{ kHz}$  and  $f_4 = 4\,\text{ kHz}$:

$$x_{\rm TP}(t) = 0.26\cdot {\cos} ( \omega_1 \hspace{0.05cm} t + 20^{ \circ}) \hspace{0.18cm}+ 0.54\cdot {\cos} ( \omega_2 \hspace{0.05cm} t - 180^{ \circ}) + 0.30\cdot {\cos} ( \omega_3 \hspace{0.05cm} t + 120^{ \circ}) +0.14\cdot {\cos} ( \omega_4 \hspace{0.05cm} t -40^{ \circ}).$$

The corresponding spectrum  $X_{\rm TP}(f)$  is complex because of the non-zero phase positions.

DSB-AM-Signal With Different Carrier Frequencies
  • If one multiplies  $x_{\rm TP}(t)$  with a cosine signal of amplitude  $1$  and frequency  $f_{\rm T} = 20 \,\text{kHz}$, the bandpass signal is obtained according to the upper graphic.
  • The lower sketch applies to the bandpass signal with the carrier frequency  $f_{\rm T} = 100 \,\text{kHz}$.
  • In both illustrations the function curves  $\pm \vert x_{\rm TP}(t) \vert $  can be recognized as the envelope of the bandpass signals.


Notes: The topic of this chapter is covered in the german learning video  properties of bandpass and lowpass signals .

Further information on the topic, numerous tasks and simulations can be found in the experiment „Analog Modulation Methods” of the practical course "Simulation of Digital Transmission Systems". This (former) LNT course at the TU Munich is based on

  • dem Windows Program  AMV   ⇒   Link refers to the ZIP version of the program and
  • the corresponding  Praktikumsanleitung   ⇒   Link refers to the PDF version; 86 pages in total.


Exercises for the Chapter


Exercise 4.1: Tiefpass- und Bandpass-Signale

Aufgabe 4.1Z: Hochpass-System

Aufgabe 4.2: Rechteckförmige Spektren

Aufgabe 4.2Z: Multiplikation mit Sinussignal